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With the growing epidemic of obesity in an aging population,
obstructive sleep apnea (OSA) is increasingly encountered in clinical
practice. Given the acute cardiopulmonary stressors consequent to
repetitive upper airway collapse, as well as evidence for cardiovas-
cular homeostatic dysregulation in subjects with sleep apnea, there
is ample biologic plausibility that OSA imparts increased cardiovas-
cular risk, independent of comorbid disease. Indeed, observational
studies have suggested strong associations with multiple disorders,
such as systemic hypertension, heart failure, cardiac arrhythmias,
and pulmonary hypertension. Further data in the form of longitudi-
nal cohort studies and randomized controlled trials are accruing to
add to the body of evidence. This review examines pathophysiologic
mechanisms and explores current concepts regarding the impact of
OSA and its treatment on selected clinical disease states.

Keywords: sleep-disordered breathing; positive airway pressure;
arrhythmia; stroke

OBSTRUCTIVE SLEEP APNEA: ACUTE
PATHOPHYSIOLOGIC MECHANISMS

Acute cardiovascular (CV) stressors resulting from repetitive
episodes of upper airway narrowing and/or occlusion character-
istic of obstructive sleep apnea (OSA) include hypoxemia, reoxy-
genation, swings in intrathoracic pressure, and central nervous
system (CNS) arousals. Plausibly, these effects are cumulative
over time, potentially forming the basis for heightened CV risk in
individuals with OSA. There is evidence that CV homeostatic
mechanisms in subjects with OSA are disrupted, as demonstrated
by daytime abnormalities in sympathetic nervous system function
and heart rate variability (1).

There is considerable evidence that hypoxemia, in part by
stimulation of peripheral arterial chemoreceptors, drives some
important aspects of the pathophysiology in OSA. Stimulation
of the chemoreflex increases sympathetic efferent traffic during
hypoxemic stimulation, as demonstrated by direct peripheral
intraneural electrode recordings (2, 3) Those with OSA have
been found to have an exaggerated chemoreflex response to
hypoxemic stimulation, resulting in acute peripheral vasocon-
striction and consequent acute increases in arterial blood
pressure (BP). Under conditions of uninterrupted ventilation,
lung inflation serves to homeostatically maintain autonomic
balance on account of stimulation of lung and chest wall stretch
receptors mediated by vagal neural circuits. This sympatholysis
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is incomplete during the apneas and hypopneas characteristic of
OSA (4, 5), thus contributing to heightened sympathetic tone.

Each acute oxyhemoglobin desaturation is coupled to an
episode of reoxygenation, a process thought to promote oxida-
tive stress through formation of reactive oxygen species (6, 7),
a cascade that may be associated with heightened inflammation
(8, 9) and mitochondrial dysfunction (10).

Typical inspiratory efforts against an obstructed upper
airway during apneas can result in marked reductions in in-
trathoracic pressure, as measured by esophageal pressure, and
have been associated with acute changes in pulmonary arterial
pressures and blood flow (11) and increased cardiac afterload.
Enhanced venous return that may occur with reduced intratho-
racic pressure can result in acute leftward intraventricular septal
shift (12) and alterations in transmural cardiac pressures (13),
with impedance of left ventricular (LV) filling (14) and increase
in myocardial oxygen demand.

Apneas and hypopneas terminate with CNS arousals, form-
ing the basis for sleep fragmentation and neurocognitive
sequelae in OSA (15). CNS arousals are also associated with
important effects on CV function, resulting in abrupt increases
in sympathetic tone, heart rate, and BP (16, 17).

INTERMEDIARY MECHANISMS OF POTENTIAL
IMPORTANCE IN CONFERRING CARDIOVASCULAR RISK

Daytime neural circulatory control is disturbed in subjects with
OSA, even in the absence of overt CV disease. In part on the basis
of increased tonic chemoreflex drive, heightened sympathetic
tone is evident during normal waking hours in some patients with
OSA, even under conditions of normoxia (1, 18). Abnormalities
in variability of both heart rate and BP, both of which have been
found to be markers of future cardiovascular disease in population-
based studies (19), are present in OSA (18). The presence of endo-
thelial dysfunctionin OSA, as evidenced by a blunted small-vessel
dilatory response to vasoactive substances, such as acetylcholine
in some (but not all [20]) studies, may also be an important marker
of CV risk (21-23). There is evidence to support the role of re-
duced levels of the vasodilator, nitric oxide, in the mediation of
vascular disease and BP regulation in OSA (24), whereas levels of
serum endothelin, a potent vasoconstrictor, may be higher in pa-
tients with OSA compared with control subjects (25).

Other features of OSA that may indirectly increase the risk
for cardiovascular disease include a propensity for glucose intol-
erance (26), systemic inflammation, as suggested by an increase
in serum C-reactive protein levels and up-regulation of leuko-
cyte adhesion factors (27, 28), and abnormalities in coagulation
markers (29).

Notwithstanding this and other mechanistic pathways, estab-
lishing causality in the relationship between OSA and clinical CV
disease has been difficult, in large part because of shared risk
factors—in particular, obesity and advancing age, both of which
are primary determinants of sleep-disordered breathing, systemic
hypertension, heart failure (HF), and pulmonary hypertension
(PH), rendering the disentanglement of the independent effects
of OSA on clinical disease challenging. Moreover, there is a
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relative paucity of high-level, evidence-based data, such as inter-
ventional treatment trials of OSA in the setting of CV disease. As
such, much of the above findings are derived from case—control
studies, some of which, it should be noted, have rendered negative
associations between OSA and other biomarkers associated with
CV risk, including serum levels of brain natriuretic peptide (30)
and troponin T (31).

OSA AND SELECTED CARDIOVASCULAR DISEASES

Systemic Hypertension

Disordered breathing events during sleep are associated with well
recognized acute peripheral vasoconstriction and attendant rises
in BP during sleep (1). Further evidence is mounting to support
aprobable causative role for OSA in diurnal hypertension as well.
Data on the impact of OSA treatment on BP, particularly with
continuous positive airway pressure (CPAP) therapy, are accu-
mulating, but are not always consistent.

In normal individuals, sleep is associated with a reduced BP
when compared with wakefulness, referred to as the “dipping”
phenomenon, when systolic and diastolic BP may decline as
much as 10-15% (32, 33). Sleep apnea has been found to blunt
the dipping of BP during sleep, a finding that may confer
heightened cardiovascular risk (34).

Observational studies have shown that hypertension and
OSA often coexist and that subjects with OSA tend to have
higher BPs than matched controls (35, 36). Longitudinal studies
have built on these associations, the most notable from the
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Wisconsin Sleep Cohort, which provides prospective evidence
implicating OSA as a possible causal factor in hypertension
(35). Specifically, the presence of hypertension 4 years after
initial assessment was found to be dependent upon the severity
of OSA at baseline.

CPAP has been shown to acutely attenuate sympathetic drive
and nocturnal BP in patients with OSA (1, 37, 38). However, the
data regarding effects on daytime BP have been more difficult to
interpret. A number of observational studies, often uncontrolled
and from highly select populations, have suggested improve-
ments in daytime BP control with the use of CPAP. Because of an
apparent true placebo effect realized in measurement of BP,
randomized, placebo-controlled studies, a number of which have
been published and yielded variable results, may be the best
indicator of the antihypertensive effects of CPAP. The largest
trial to date comes from Pepperell and colleagues (39), who found
asmall but significant reduction in BP in a normotensive group of
subjects over 4 weeks of CPAP therapy. Data from Becker and
colleagues (40), who conducted a controlled trial testing more
than 60 days of CPAP treatment, showed the most dramatic
reductions in mean BP (9.9 + 11.4 mm Hg) in a small cohort with
severe OSA (mean apnea-hypopnea index [AHI] > 60/h)
(Figure 1). Notably, there was a high rate of subject dropout
(the data from these subjects were not included in an intention-to-
treat analysis), and the majority of subjects were treated with
various antihypertensive medications. These two studies were
included in a very recent meta-analysis of 12 placebo-controlled,
randomized trials (572 patients), which found a statistically
significant pooled reduction in mean BP of 1.69 mm Hg associated
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Figure 1. Changes in mean arterial blood pressure
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with CPAP treatment in OSA (41). That most of the trials were
limited to normotensive individuals leaves the door open to
further research on the BP-lowering properties of OSA treatment
in hypertensive populations.

Cardiac Arrhythmias and Cardiovascular Mortality

A number of observational studies have shown an association
between OSA and various nocturnal arrhythmias. Recent data
from the Sleep Heart Health Study, after adjusting for many
confounders, showed that, compared with subjects with a re-
spiratory disturbance index less than 5, those with severe OSA
(respiratory disturbance index = 30) had a higher rate of atrial
fibrillation, nonsustained ventricular tachycardia, and ectopic
ventricular beats (42). Bradyarrhythmias are commonly en-
countered in OSA, may correlate with the severity of disor-
dered breathing, can occur with a structurally normal heart, and
may be attenuated by effective CPAP therapy (43—45). The
Sleep Heart Health Study described above, however, found
similar rates of bradycardias and conduction delays between
those with severe OSA and those without significant OSA.

Mounting data strengthen the association between OSA and
atrial fibrillation, two disorders that often coexist (46). Continu-
ous cardiac monitoring with an atrial defibrillator showed that the
onset of nearly 75% of episodes of persistent atrial fibrillation in
patients with OSA occurred in the overnight hours (8 p.M.—8 A.M.)
(47) Retrospective analysis shows that, within 12 months of
successful therapeutic electrical cardioversion for atrial fibrilla-
tion, untreated subjects with OSA were found to have an
arrhythmia recurrence rate double that of patients treated with
CPAP (48).

Recent review of 17 years of polysomnographic data from
a population-based cohort suggests that nocturnal hypoxemia
associated with OSA influences the incidence of atrial fibrillation
(49). Because none of these observational data can convincingly
implicate OSA as an independent cause of new onset atrial
fibrillation, additional longitudinal cohort studies and outcome-
based interventional trials are needed to characterize the re-
lationship between OSA and atrial arrhythmias.

Ventricular arrhythmias have been reported in patients with
OSA (42,50), although a causative role for sleep apnea in serious
arrhythmias or sudden death has not been definitively proven.
Recent data provided by review of polysomnographic measures
in 112 patients with sudden death suggest a markedly higher rate
of lethal cardiac events between the hours of midnight and 6 A.m.
in those with OSA compared with those without, along with
a direct correlation between AHI and risk of death during the
night (51). Although the study suggests that OSA may influence
time of sudden cardiac death, it does not clearly demonstrate that
OSA heightens the risk of sudden death from cardiac causes.

In the longest-term prospective cohort study yet published
(10 yr), Marin and colleagues (52) demonstrated a higher risk of
both fatal and nonfatal cardiovascular events in men with severe
OSA who were noncompliant with CPAP therapy compared
with snorers, treated patients with OSA, and healthy men (Fig-
ure 2). Although biased by potential and difficult-to-measure
influences related to treatment noncompliance and imbalances
in some confounding variables at baseline (such as prevalence of
hypertension and glucose intolerance), this study is among the
most persuasive to argue that OSA has detrimental effects on
long-term CV outcomes.

Cerebrovascular Disease and Stroke

Several studies have investigated the association between stroke
and sleep-disordered breathing (53-55). A large prospective study
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Figure 2. Cumulative percentage of men who had (A) fatal and (B)
nonfatal cardiovascular events over more than 10 years of follow-up.
The upper tracing in each graph represents men who had severe
obstructive sleep apnea-hypopnea and were noncompliant with con-
tinuous positive airway pressure (CPAP) therapy. CVS = cardiovascular
system; OSAH = obstructive sleep apnea-hypopnea. Reprinted by per-
mission from Reference 52.

showed self-reported snoring to be an independent risk factor for
stroke in women (56). Until recently, associations with OSA have
been reported primarily in cross-sectional and case-control
studies, so it is unclear if OSA is a direct contributor to stroke
incidence, as comorbidities and risk factors are commonly seen in
both diseases. However, reports from two observational cohorts
have helped strengthen this association. Using data from the
Wisconsin Sleep Cohort, Arzt and colleagues (57) showed mod-
erate to severe sleep-disordered breathing to be a risk factor for
prevalent stroke and, with serial polysomnographic data, dem-
onstrated that the preexisting sleep disorder may be a risk factor
for incident stroke. Yaggi and colleagues (58) reported longitu-
dinal data (mean follow-up, 3.4 yr) on mortality from stroke and
other causes in more than 1,000 patients with preexisting OSA,
showing an increasing risk of events with OSA severity. Although
not powered to detect potential differences related to treatment
of OSA, and in contrast to findings in the Marin cohort (52), there
did not appear to be treatment effects in more than half of pa-
tients who were either treated with CPAP, lost weight, or under-
went upper airway surgery.

It is feasible that stroke, particularly as represented in case—
control studies, may itself predispose to sleep-disordered breath-
ing. This may relate to disruption of central respiratory control
mechanisms, leading to central sleep apnea or brainstem-mediated
upper airway reflexes that may cause obstructive apneas or hy-
popneas. Indeed, in a report of 161 inpatients with acute stroke
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or transient ischemic attack who underwent studies at baseline
and after 3 months, over 70% had an AHI greater than 10 (59).
Nearly one-third of apneas were central in origin during the acute
phase. At 3 months, however, the central apneas were signifi-
cantly reduced, whereas the obstructive events remained stable.
This could suggest that OSA preceded, and perhaps contributed
to, stroke, whereas central apneas resulted from the acute neuro-
logic event.

In addition to effects on atherogenesis and blood vessel
function noted previously here, a number of other mechanisms
may predispose to stroke in OSA. The strong association with
atrial fibrillation may confer a heightened risk of embolic
events. Furthermore, OSA has been shown to promote throm-
bosis, as evidenced by enhanced platelet aggregation (60) and
activation (61), elevated fibrinogen levels (62), and diminished
fibrinolytic activity (63). Finally, Doppler measurements have
suggested that apneic events are associated with reduced cere-
bral blood flow (64, 65), which can result in cerebral hypoxia
(66). Although CPAP treatment has been shown to reverse
some of these findings (67, 68), the impact of treatment on the
occurrence of stroke and death, as suggested by the study be
Yaggi and colleagues (58), may be limited and needs further
evaluation.

HEART FAILURE

By their strong associations with aging and obesity, HF and
OSA are closely linked, with the prevalence of OSA, approach-
ing 40% in patients with HF referred to a clinical sleep labo-
ratory (69). Further evidence linking OSA to HF comes from
the Framingham study, which showed that increasing body mass
index (BMI) is directly correlated with incident HF (70), an
effect that may be mediated, at least in part, by OSA. Incident
atrial fibrillation, an important risk factor for HF, is associated
with the degree of oxyhemoglobin desaturation in OSA (49).
The cascade of physiological responses to repetitive upper air-
way closure in OSA may exert deleterious effects on cardiac
function, particularly in the already compromised heart. De-
spite advances in treatment with drugs, lifestyle modifications,
and therapeutic devices, mortality from HF continues to rise.
Thus, there is increasing interest in the role of OSA treatment
on outcomes in HF.

Two controlled, interventional trials of CPAP for OSA in
the setting of HF have been cited frequently for their positive
impact on various CV variables (71, 72). Using a randomized,
parallel comparative design, the control groups in both stud-
ies were comprised of subjects optimally medically managed,
though not subjected to placebo. Kaneko and colleagues (71)
reported an approximately 9% increase in LV ejection fraction
(LVEF) and significant reductions in BP after just 1 month of
CPAP therapy. Mansfield and colleagues (72), studying a group
of subjects with somewhat less severe degrees of both HF and
OSA than those reported in the Kaneko paper, applied CPAP
therapy for 3 months and showed significant improvements in
LVEF and reductions in urinary catecholamines, but no changes
in BP.

In an unexpected turn of events, Smith and colleagues (73) very
recently published the results of a rigorous, placebo-controlled
cross-over study of CPAP in a population with a similar degree
of HF as the previous trials, and found no improvement in any
parameter of CV function, including LVEF, BP, and exercise
tolerance. Although these findings may relate in part to meth-
odologic limitations, such as the lack of a follow-up polysomno-
gram to confirm treatment efficacy with autotitrating CPAP (74),
the currently limited data regarding the impact of OSA treatment
on important HF endpoints calls for further interventional trials.
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PULMONARY HYPERTENSION

In 1947, Motley and colleagues (75) demonstrated that breath-
ing a gas mixture containing 10% oxygen induced a rise in
pulmonary arterial pressure (PAP). This hypoxic pulmonary
vasoconstriction is a critical autoregulatory mechanism impor-
tant in maintaining an appropriate V/Q relationship (76). Over
time, hypoxic vasoconstriction may result in pulmonary vascular
remodeling, which may or may not be reversible (77), poten-
tially contributing to the development of PH, as demonstrated
in populations with advanced lung disorders, such as chronic ob-
structive pulmonary disease. It may follow then, that repetitive
upper airway collapse and oxyhemoglobin desaturations char-
acteristic of OSA could also provide a pathophysiologic basis
for chronic elevations in PAP.

Precisely defining the role of OSA in the genesis of PH has
been difficult for a number of reasons. First, one limitation has
been the various methods by which the diagnosis of PH is made in
studies of subjects with OSA, many by way of Doppler echocar-
diography, with varying right heart/PAP thresholds. Currently,
PH is defined as a mean PAP greater than 25 mm Hg at rest or 30
mm Hg with exercise, as measured by right heart catheterization
(78). Previous definitions were based upon systolic PAP greater
than 40 mm Hg and echocardiographic Doppler measurements,
which may be particularly challenging to obtain in obese patients
with OSA. Second, as in other disease states mentioned pre-
viously here, PH and OSA share common risk factors—namely,
obesity and aging, which confound risk factor associations. In fact,
a pulmonary artery systolic pressure (PASP) greater than 40 mm
Hg is found in 6% of otherwise normal individuals age 50 years or
older, and in 5% of individuals with a BMI greater than 30 kg/m?
(79). Third, finding appropriate control groups with which to
compare endpoints (i.e., matched subjects with PH but no OSA)
is challenging. Nevertheless, based upon some literature exam-
ining the relationship between OSA and PH, the latest revision of
the Clinical Classification of Pulmonary Hypertension identifies
sleep-disordered breathing as part of the category of respiratory
disorders associated with PH (80). Limited epidemiologic data,
coming from numerous case series, comprised primarily of male
patients, suggest a prevalence of PH in OSA ranging from 17 to
52% (81-83). The largest published sample to date numbers 220
subjects with OSA, of whom 17% met diagnostic criteria for PH
(82). Population-based data are currently lacking.

Papers dating back more than three decades have docu-
mented increases in PAP associated with sleep-related hypox-
emia. Coccagna and colleagues (84) continuously measured
PAP during sleep in 10 patients with sleep-disordered breathing
and found sleep stage—-dependent increases in PAP, with more
marked changes occurring during rapid eye movement sleep.
Most early clinical studies suggested that abnormalities in under-
lying lung function sufficient to induce daytime hypoxemia were
required for the development of PH and right heart failure (85,
86). Further supporting this notion was the finding that the se-
verity of sleep-disordered breathing, as measured by the AHI,
and PAP elevations often failed to correlate. It should also be
noted that not all studies adequately excluded increases in left
atrial pressure, suggested by elevated pulmonary capillary wedge
pressures, as a contributor to the development of daytime in-
creases in PAP (87-89).

In an attempt to control for some of these confounding
variables, Sajkov and colleagues (90) studied 27 patients with
OSA in whom clinically significant cardiac and pulmonary
disease had been excluded. A total of 11 (41%) were found to
have PH, with a mean PAP of 26 mm Hg. No difference was
noted between patients with PH and those without PH in AHI,
BMI, smoking history, or lung function. However, those with
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PH were found to be more hypoxemic during daytime wake-
fulness than patients without PH, a finding that could either
contribute to or result from PH.

Treatment in the form of tracheostomy or supplemental
oxygen has been shown to reduce PAP in patients with chronic
obstructive pulmonary disease and nocturnal hypoxemia (91).
In 1978, the Stanford group reported an approximate 50% reduc-
tion in PAP in six selected patients with OSA who underwent
tracheostomy, some of whom may have had comorbid disease
(92).

There are very limited data on the effects of CPAP treat-
ment of OSA on PAP. Alchanatis and colleagues (93) studied
a group of 29 patients with OSA (with no evidence of pulmo-
nary or cardiac disease) with Doppler echocardiography before
and after 6-month CPAP treatment. Comparisons were made
with 12 healthy subjects. A total of 20% of the patients with
OSA had PH that was clinically mild (mean PAP, 25.6 mm Hg).
Greater age and increased BMI distinguished these from the
patients with OSA without PH; 6 months of CPAP treatment
was associated with reductions in mean PAP in both patients
with OSA with PH (25.6 = 4.0 to 19.5 = 1.5 mm Hg) and those
without PH (14.9 = 2.2 to 11.5 * 2.0 mm Hg).

Sajkov and colleagues (94) treated 20 patients with OSA
(without coexistent pulmonary or cardiac disease) with 4 months
of CPAP therapy. Only 5 patients met criteria for PH, with a
mean PAP for the whole group of 16.8 mm Hg. To assess the
reversibility of PH in these patients, PAP was measured by
echocardiography at three levels of inspired oxygen (50, 21, and
11%). After 4 months of CPAP therapy, PAP (for all patients)
decreased to a mean of 13.9 mm Hg. CPAP may also affect vaso-
reactivity, as the pulmonary artery pressor response to hypoxia
was attenuated.

Finally, in the first placebo-controlled trial of treatment of
OSA in PH, Arias and colleagues (95) recently reported the
results of a randomized cross-over trial of CPAP and sham CPAP
over 12 weeks in 23 patients with OSA. A total of 10 patients with
PH (defined as PASP > 30 mm Hg by Doppler echocardiogra-
phy) were more obese, had more ventilatory limitation (reduced
FVC), and more severe sleep apnea (by AHI and mean oxygen
saturation) than the 13 patients without PH. CPAP therapy
reduced PASP in all patients with OSA, though more so in those
with PH at baseline (mean reductions, 8.5 vs. 2.6 mm Hg) (Figure
3). Although the baseline differences in obesity and lung function
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Figure 3. Pulmonary artery systolic pressure (PASP) after sham and
therapeutic continuous positive airway pressure (CPAP). Reprinted by
permission from Reference 95.
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between groups preclude the attribution of PH to OSA alone,
these data are the first to show, in a placebo-controlled fashion,
the positive impact of CPAP therapy on PH in a small group of
patients with OSA. Further research is needed to assess the
durability of CPAP therapy on PAP and right heart function and
how CPAP therapy fits into the treatment paradigm amid an ever-
increasing arsenal of pharmacologic treatments for PH.
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