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Although a hereditary contribution to emphysema has been long
suspected, severe a1-antitrypsin deficiency remains the only conclu-
sively proven genetic risk factor for chronic obstructive pulmonary
disease (COPD). Recently, genome-wide linkage analysis has led to
the identification of two promising candidate genes for COPD:
TGFB1 and SERPINE2. Like multiple other COPD candidate gene
associations, even these positionally identified genes have not been
universally replicated across all studies. Differences in phenotype
definition may contribute to nonreplication in genetic studies of
heterogeneous disorders such as COPD. The use of precisely mea-
sured phenotypes, including emphysema quantification on high-
resolution chest computed tomography scans, has aided in the
discovery of additional genes for clinically relevant COPD-related
traits. The use of computed tomography scans to assess emphysema
and airway disease as well as newer genetic technologies, including
gene expression microarrays and genome-wide association studies,
has great potential to detect novel genes affecting COPD suscepti-
bility, severity, and response to treatment.
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For nearly two hundred years, a hereditary contribution to
chronic obstructive pulmonary disease (COPD) has been sus-
pected. In the early nineteenth century, the American physician
James Jackson, Jr. observed that patients with emphysema were
more likely than unaffected individuals to have parents with
emphysema (1). A century and a half later, Laurell and Eriksson
described serum a1-antitrypsin (AAT) deficiency as a risk factor
for emphysema (2), the first report of a specific genetic contribu-
tion to COPD. Severe AAT deficiency remains the only conclu-
sively proven genetic risk factor for COPD, although several
other promising candidate genes for COPD unrelated to AAT
deficiency have been recently identified (3, 4).

Like many other common chronic diseases, the etiology of
COPD is complex, with contributions from multiple genetic and
environmental factors. Unlike most other complex diseases, the
major risk factor for COPD—cigarette smoking—is well known.
The fact that smoking is a clear risk factor leads to dilemmas and
opportunities in the study of COPD genetics. Because the major risk

factor (environmental, genetic, or otherwise) has been identified,
one may question the purpose of COPD genetics research, espe-
cially because the majority of COPD genes are likely to be of modest
effect sizes, as opposed to the strong effect of AAT deficiency.

Genetics provides a unique tool to study the pathophysiology of
COPD. Traditional laboratory or animal model studies may focus
on a single gene or protein or on a few genes/proteins in
combination, with these genes/proteins identified based on prior
knowledge or suspected mechanisms of COPD pathogenesis.
Human genetics studies may afford a complementary approach
to corroborate the findings of these candidate gene studies (Figure
1). However, classical genetics tools (e.g., linkage analysis) and
newer techniques (e.g., genome-wide association studies) allow for
the comprehensive evaluation of the entire genome without prior
assumptions regarding disease biology. These studies may lead to
the identification of novel COPD candidate genes, which can be
subjected to further in vitro or in vivo experimentation. These
genes may identify novel targets for COPD therapies or bio-
markers for the diagnosis and follow-up of patients with COPD.

The study of COPD genetics can also provide a useful example
to study other common chronic diseases. The main environmental
risk factor of cigarette smoking can be easily assessed via patient
interview or questionnaire (5) and is commonly categorized into
current, former, or never smokers or quantified by pack-years of
smoking (packs per day multiplied by number of years of smoking).
Gene–environment interactions are likely to be important in many
complex diseases (6); in COPD, these interactions can be explicitly
modeled. The gene-interaction models can provide valuable in-
sight into COPD pathogenesis and serve as an example for other
complex disease genetic studies. It is possible that interactions with
other environmental exposures, such as environmental tobacco
smoke or nutritional factors, are relevant in COPD.

AAT DEFICIENCY

AAT is a serine protease inhibitor and the major inhibitor of
neutrophil elastase in the lung. Additional functions of AAT
that may be relevant to COPD pathogenesis have been de-
scribed (7, 8). This 52-kD protein is encoded by the SERPINA1
gene on chromosome 14. The lung and liver diseases due to
severe AAT deficiency are inherited in an autosomal recessive
pattern. The majority of affected individuals inherit two copies
of the mutant Z allele, which is termed protease inhibitor (PI)
ZZ. The Z mutation is caused by a single nucleotide base pair
change that leads to the substitution of lysine for glutamic acid
at amino acid 342, affecting protein function. The Z protein
polymerizes in the liver, causing reduced serum AAT levels and
therefore less AAT to protect against proteolytic stress in the
lung (9, 10). Individuals with a PI SZ genotype, a compound
heterozygote of the Z allele with the mutant S allele (reduced
AAT levels), are at risk for COPD (11). AAT deficiency may
also be due to a combination of the Z allele with one of several
rare null alleles (no functional protein) (12).

Individuals with severe AAT deficiency are at risk for
emphysema at an early age, especially those who smoke ciga-
rettes. Phenotypic expression of lung and liver disease in AAT
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deficiency is highly variable and is likely subject to other modi-
fier genes and environmental exposures (13). Although AAT-
deficient individuals have significantly increased risks for COPD,
severe AAT deficiency accounts for only 1% to 2% of COPD
cases in the United States and Europe (14). Heterozygous carriers
of the Z allele (termed PI MZ) are more common, but it is not
clear whether carriers are at an increased risk for COPD (15). As
with the PI ZZ genotype, environmental and genetic factors may
modify COPD risk in individuals with the PI MZ genotype.

Patients with COPD and severe AAT deficiency are identi-
fied based on serum AAT levels, followed by isoelectric
focusing of serum to determine the PI phenotype and/or
genotyping of the PI locus. Augmentation therapy with pooled
human AAT may be beneficial in COPD due to severe AAT
deficiency (16), particularly in patients with moderate airflow
obstruction (17, 18). Recommendations for screening and
testing and indications for augmentation therapy have been
reviewed elsewhere (19). Case series have described lung
volume reduction surgery (LVRS) as a treatment for severe
emphysema due to AAT deficiency (20–22). However, data
from 10 AAT-deficient patients randomized to LVRS in the
National Emphysema Treatment Trial (NETT) suggest reduced
benefit from LVRS in AAT-deficient patients compared with
those without AAT deficiency (23).

GENOME-WIDE LINKAGE ANALYSES IN COPD

In a genome-wide linkage analysis, a set of short tandem repeat
DNA markers is genotyped throughout the genome in a family-

based study to identify chromosomal regions that segregate with
the disease of interest. In COPD, the only reported linkage
analyses have been performed in the Boston Early-Onset
COPD Study (24–27). In this study, extended families were
ascertained through a proband with severe airflow obstruction
(FEV1 ,40% predicted), age less than 53 years, and no severe
AAT deficiency (28). These individuals may be expected to
have a greater genetic contribution to COPD than subjects
diagnosed at later ages. The most significant evidence for
linkage was found on chromosome 2q for FEV1/FVC ratio,
both pre- and postbronchodilator (25, 26). Suggestive evidence
for linkage of prebronchodilator FEV1 was demonstrated on
chromosome 12p. In the initial genome scans, significant linkage
for postbronchodilator FEV1 was shown on chromosome 8p
(26), although the evidence for linkage was attenuated when
additional markers were studied (29). Chromosome 19q also
had suggestive evidence for linkage for qualitative and quanti-
tative traits (3, 24). No other linkage analyses have been
published in COPD to confirm these results. However, an
overlapping region on chromosome 2q has been linked to
FEV1/FVC in families from the general population (30), point-
ing to the potential importance of a gene or genes in this region.

GENETIC ASSOCIATION STUDIES IN COPD

In contrast to the genome-wide linkage studies mentioned
previously, the published COPD genetic association studies
have focused on candidate genes, identified based on presumed
importance in COPD pathogenesis or location in a region of

Figure 1. Integration of study designs in the genetic

epidemiology of chronic obstructive pulmonary disease

(COPD). NETT 5 National Emphysema Treatment Trial;
PFT5 pulmonary function test.
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linkage. Most commonly, distributions of alleles or genotypes of
one or more single nucleotide polymorphisms (SNPs) are
compared in COPD cases versus control subjects without
disease. Variations on this design have been used, including
analysis of quantitative traits or family-based study designs.
Polymorphisms in multiple genes have been associated with
COPD, emphysema, or related traits. Genes that have been
associated in two or more studies are listed in Table 1.

To test systematically the replication validity of previously
published COPD genetic associations, our group examined 29
variants in 12 COPD candidate genes (31). Genotyping was
performed in two study populations: a family-based study of
extended pedigrees from the Boston Early-Onset COPD Study
and a case-control study comparing 304 subjects with emphy-
sema and severe airflow obstruction from NETT with 441
smokers without airflow obstruction from the Normative Aging
Study (32). In the Boston Early-Onset COPD Study families,
a promoter SNP in tumor necrosis factor (TNF)-a, a coding
variant in surfactant protein B (SFTPB Thr131Ile), and a repeat
polymorphism near heme oxygenase-1 (HMOX1) were signif-
icantly associated with quantitative and qualitative spirometric
traits. In the case-control analysis, the SFTPB Thr131Ile variant
was significantly associated in a model that incorporated a gene-
by-smoking interaction term. A different allele of the HMOX1
repeat was significant. The TNF promoter SNP was not
replicated, but a coding SNP in microsomal epoxide hydrolase
(EPHX1 His139Arg, termed the ‘‘fast’’ allele based on its
presumed effect to increase enzyme activity [33]) was significant
only in the case-control study.

The results of our study and the publications listed in Table 1
highlight that many COPD genetic associations have not been
consistently replicated across all studies. Replication failure is

a problem throughout complex trait genetics and is not unique
to COPD (34, 35). Multiple factors are likely to explain the
inconsistent replication in COPD genetic association studies
(36). False-negative results may be the consequence of geno-
typing error or inadequately powered sample sizes. Spurious
associations may result from genotyping error, multiple testing,
or population stratification, which can arise from differences in
allele frequency between cases and controls due to ethnic
diversity and not true disease association. True genetic differ-
ences between study populations, termed genetic heterogeneity,
may also lead to replication failure, particularly when compar-
ing studies performed in different countries. Variation in case
definition or in the phenotypes analyzed across studies is likely
to be an important cause of nonreplication. This phenotypic
variation may be particularly relevant for studies of COPD,
a heterogeneous disease that includes components of emphy-
sema and airway disease, often occurring in variable combina-
tions in any given patient.

Two potential COPD susceptibility genes have been identi-
fied in the chromosomal regions found by the linkage analyses
described previously. Transforming growth factor (TGF)-b1 is
a widely expressed cytokine that has potential roles in airway
disease and interstitial lung disease (37). The TGFb1 gene is
located on chromosome 19q, a region linked to COPD-related
traits in the Boston Early-Onset COPD Study. Celedón and
colleagues genotyped additional short tandem repeat markers
on chromosome 19q, which led to increased evidence of linkage,
especially in a stratified analysis limited to current and former
smokers (3). Analysis of five SNP markers in TGFb1 found that
three SNPs, including one in the promoter (rs2241712), were
significantly associated with FEV1 in the Boston Early-Onset
COPD Study families. The association with the promoter SNP

TABLE 1. CANDIDATE GENES, BESIDES a1-ANTITRYPSIN (SERPINA1), WITH REPLICATED ASSOCIATIONS TO CHRONIC OBSTRUCTIVE
PULMONARY DISEASE, EMPHYSEMA, OR RELATED TRAITS

Gene Initial Association Replication Do Not Support Association

a1-Antichymotrypsin

(SERPINA3)

Poller, 1992 (80, 81) Ishii, 2000 (82) Sandford, 1998 (83); Benetazzo, 1999 (84)

b2-Adrenergic

receptor (ADRB2)

Ho, 2001 (85) Hegab, 2004 (72) Joos, 2003 (86); Brogger, 2006 (87)

Defensin b1

(DEFB1)

Matsushita, 2002 (88) Hu, 2004 (89) Wallace, 2006 (90); Hersh, 2006 (29)

Microsomal epoxide

hydrolase (EPHX1)

Smith, 1997 (91) Sandford, 2001 (51); Xiao, 2004 (92);

DeMeo, 2007 (62)

Yoshikawa, 2000 (93); Takeyabu, 2000 (94);

Yim, 2000 (95)

Vitamin D binding

protein (GC)

Horne, 1990 (96) Schellenberg, 1998 (97); Ishii, 2001 (98);

Ito, 2004 (99)

Kauffmann, 1983 (100); Kasuga, 2003 (101);

Sandford, 2001 (51)

Glutathione S-transferase

M1 (GSTM1)

Harrison, 1997 (102) Baranova, 1997 (54); Cheng, 2004 (103) Yim, 2000 (95); He, 2002 (104)

Glutathione S-transferase

pi (GSTP1)

Ishii, 1999 (105) He, 2002 (104) Yim, 2002 (106); Cheng, 2004 (103);

Xiao, 2004 (92)

Heme oxygenase

(HMOX1)

Yamada, 2000 (53) Guenegou, 2006 (107);

Nakayama, 2006 (108)

He, 2002 (104)

Matrix metallopeptidase-9

(MMP9)

Minematsu, 2001 (52) Zhou, 2004 (109) Joos, 2002 (110)

Serpin peptidase inhibitor E2

(SERPINE2)

DeMeo, 2006 (4) Zhu, 2007 (48) Chappell, 2006 (49)

Extracellular superoxide

dismutase (SOD3)

Juul, 2006 (111) Young, 2006 (112)

Surfactant protein B (SFTPB) Guo, 2001 (75) Seifart, 2002 (113)

Transforming growth

factor–b1 (TGF-b1)

Wu, 2004 (40) Celedon, 2004 (3); Su, 2005 (114);

Van Diemen, 2006 (41)

Yoon, 2006 (42); Ogawa 2007 (43)

Tumor necrosis factor (TNF) Huang, 1997 (55) Sakao, 2001 (115); Matheson, 2006 (116) Higham, 2000 (117); Ishii, 2000 (118);

Patuzzo, 2000 (119); Sandford, 2001 (51);

Ferrarotti, 2003 (120); Chierakul, 2005 (121);

Hegab, 2005 (122); Jiang, 2005 (123);

Seifart, 2005 (124); Brogger, 2006 (87);

Ruse, 2007 (125)
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was replicated in the study comparing NETT cases with control
smokers without airflow obstruction. A coding SNP (Leu10Pro,
which may lead to higher circulating TGF-b1 levels [38]) and an
additional promoter SNP were significant in the case-control
study. Analysis of unlinked SNPs did not show evidence of
population stratification between the cases and control subjects
(39).

In a case-control study from New Zealand, the Leu10Pro-
coding SNP in TGFb1 was associated with COPD (40). A
general population study from the Netherlands found significant
COPD associations with three TGFb1 SNPs, including the
promoter SNP in the study by Celedón and colleagues and
the Leu10Pro-coding SNP (41). The association between
TGFb1 SNPs and COPD has not been consistently replicated
in other studies (42, 43).

The SERPINE2 gene is located on chromosome 2q in
a region linked to FEV1/FVC ratio in the Boston Early-Onset
COPD Study. Based on a microarray experiment (44), DeMeo
and colleagues reported that this gene is highly expressed
during mouse lung development (4). Genes important in lung
development may predispose to emphysema through effects on
airspace size or injury repair. SERPINE2 expression was
associated with measures of pulmonary function in a microarray
study of emphysematous lung tissue from patients with LVRS
(45). The mouse and human gene expression results were
integrated with human genetic association data, initially by
genotyping SERPINE2 SNPs in members of the Boston Early-
Onset COPD Study families. Significant associations with
multiple SNPs were confirmed in an analysis of the NETT
COPD cases and community control subjects, identifying a risk
haplotype. The potential role of this novel COPD gene in
disease pathogenesis has yet to be determined; however, this
study demonstrates the power of integrating gene expression
and genotype data as well as human and murine studies. Animal
models are an important tool in COPD genetics research and
have been reviewed elsewhere (46, 47).

In a multicenter, family-based study of COPD in North
America and Europe, Zhu and colleagues genotyped 25 SNPs
in SERPINE2, finding six SNPs to be significantly associated with
COPD and spirometric measures of lung function (48). Five of
the six SNPs were associated with airflow obstruction among
COPD cases in a large case-control population from Norway.
Three of the five replicated SNPs overlapped with the SNPs
found to be significantly associated by DeMeo and colleagues (4)

The association of SERPINE2 SNPs with COPD was not
replicated in a case-control study from the United Kingdom
(49). These cases had a broader range of airflow limitation than
the severely affected cases from the Boston Early-Onset COPD
Study, NETT, and the family-based sample in the study by Zhu
and colleagues (48). This difference in phenotype is one poten-
tial explanation for the discordant results of the SERPINE2
association studies.

GENETIC STUDIES OF QUANTITATIVE
COPD PHENOTYPES

Phenotypic differences between subjects in COPD genetic
association studies extend beyond the SERPINE2 example
and are likely an important cause of nonreplication in the field.
In published genetics studies, researchers have defined COPD
based on clinical diagnosis (50), baseline pulmonary function
(25), lung function decline (51), emphysema (52, 53), or chronic
bronchitis (54, 55). Although some genetic mechanisms may be
common to this entire range of COPD phenotypes, other genes
may be more relevant to a specific COPD subtype. The analysis
of quantitative COPD-related traits as intermediate phenotypes

may aid in genetic studies by reducing phenotypic heterogene-
ity. Several researchers have analyzed spirometric measures as
quantitative traits (3, 4, 56); however, reduced lung function
may be the final consequence of multiple pathophysiologic
processes.

Exercise capacity and symptoms of dyspnea are important
outcomes for patients with emphysema, and exercise capacity
has been shown to be a predictor of response to LVRS (57).
These traits often show wide variability between patients with
similar levels of lung function. To search for a genetic contri-
bution to this phenotypic variation, we genotyped DNA poly-
morphisms in 22 candidate genes in 304 NETT subjects (56). By
randomly dividing the population into a test set and a replication
set to guard against false-positive results, we identified variants
in four genes—EPHX1, SFTPB, TGFb1, and latent TGFb

binding protein-4—that were associated with exercise capacity
(measured using cycle ergometry and 6-minute walk test
distance), dyspnea symptoms, BODE (body mass index, airflow
obstruction, dyspnea, exercise capacity) score (58), and carbon
monoxide diffusing capacity. The association between a pro-
moter SNP in TGFb1 and dyspnea symptoms was replicated in
the Boston Early-Onset COPD Study families.

In severe a1-antritrypsin deficiency, emphysema distribution
has been classically described as basilar predominant, although
apical-predominant emphysema is sometimes observed (59). It
is possible that genetic factors influence emphysema distribu-
tion in individuals without severe AAT deficiency. In addition
to the subjective assessment of emphysema severity and distri-
bution by radiologists, high-resolution chest CT (HRCT) scans
can allow for quantitative densitometric measurements of
emphysema severity and distribution (60). HRCT-derived in-
termediate phenotypes are starting to be used in COPD
genetics studies. Ito and colleagues genotyped a SNP in the
promoter region of matrix metallopeptidase-9 in 84 Japanese
patients with COPD and 85 control smokers (61). Although
these researchers found no association with COPD susceptibil-
ity, patients carrying the T allele had a predilection for upper-
lobe–predominant emphysema as determined by quantitative
HRCT analysis.

In NETT, upper-lobe–predominant emphysema distribution
emerged as an important predictor of response to LVRS (57).
DeMeo and colleagues examined variants in 22 candidate genes
in 282 subjects in the NETT Genetics Ancillary Study with
available CT scan data (62). Variants in two genes—glutathione
S-transferase pi (GSTP1) and EPHX1—showed significant
association with emphysema distribution based on computer-
ized densitometry analysis (2950 Hounsfield units) and radiol-
ogist scoring of emphysema. Coding variants in both genes
(GSTP1 Ile105Val and EPHX1 His139Arg) were associated with
upper-lobe–predominant emphysema. In an analysis comparing
the subset of 171 NETT subjects with upper-lobe–predominant
emphysema to Normative Aging Study control subjects, the
EPHX1 His139Arg SNP was significantly associated with COPD
susceptibility, despite the reduced sample size.

RARE VARIANTS IN COPD GENETICS

Another avenue into understanding COPD genetics is to lever-
age the lessons learned from other monogenic disorders, besides
AAT deficiency, that include emphysema as part of their clinical
phenotypes. One such disorder is autosomal dominant cutis laxa
(63), which can result from mutations in the gene encoding elastin
(64, 65), an important component of the lung extracellular matrix.
Sequencing of the six terminal exons of elastin in 116 Boston
Early-Onset COPD Study probands led to the discovery of
a novel coding variant in one subject (66). In this proband’s
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extended pedigree, all adult carriers of the mutation had airflow
obstruction. This variant was found in 1.25% of 318 NETT
participants and in 0.55% of control smokers, although this
difference was not statistically significant. Cellular studies dem-
onstrated a functional effect of this variant on the elastin protein,
related to elastic fiber assembly, susceptibility to proteolysis, and
decreased interaction with cellular receptors. Besides cutis laxa,
emphysema has been infrequently associated with other connec-
tive tissues disorders, including Ehlers-Danlos syndrome and
Marfan syndrome (46).

SUMMARY AND FUTURE DIRECTIONS

The use of precise intermediate phenotypes has tremendous
potential to aid in the discovery and confirmation of genetic
susceptibility factors for COPD and its subtypes. Quantitative
HRCT measurements of emphysema severity and distribution
are starting to be applied to human genetics studies, and the use
of these measurements can be expected to increase in the
future. High-throughput analysis of airway disease on HRCT
has lagged behind quantification of emphysema severity and
distribution but may become a reality for large-scale genetic
epidemiology studies. Besides serving as quantitative traits for
COPD genetics studies, these HRCT measurements may have
direct clinical relevance because emphysema distribution is
a major determinant of a patient’s eligibility for LVRS. Pre-
disposition to exacerbations and response to therapies for
COPD—including supplemental oxygen, LVRS (67), and in-
haled and systemic medications—are important outcomes for
patients, outcomes likely to have genetic contributions. Future
studies of well characterized populations of patients with
COPD, incorporating prospective collection of DNA samples
in COPD clinical trials, are necessary to find these pharmaco-
genetic mechanisms.

Most genetic association studies in COPD have focused on
a single gene or a limited set of genes. The International HapMap
project has characterized variation at millions of SNPs through-
out the genome in individuals of European-American, African,
and Asian descent (68). These publicly available data (www.
hapmap.org), coupled with advances in high-throughput geno-
typing technologies, have made feasible the simultaneous anal-
ysis of hundreds of thousands of SNPs to capture variation
throughout the genome. These genome-wide association studies
have the potential to uncover novel genetic associations for
COPD and related phenotypes and to confirm and expand
previous candidate gene results. Although genome-wide associ-
ation studies have not been performed in COPD, this technique
has been successfully applied to identify genes for other complex
diseases with broad public health impact, including age-related
macular degeneration (69), obesity (70), and type 2 diabetes (71).

Most of the COPD genetics studies discussed in this article
have been performed in individuals of European or Asian
descent, with occasional studies performed in other countries,
such as Egypt (72). Two studies have demonstrated significant
familial aggregation of pulmonary function measurements in
African Americans, in sibships from Maryland (73), and in twins
from North Carolina (74). However, genetic linkage and
association studies for COPD or lung function have not been
reported in African Americans. One study performed in
Mexicans has demonstrated association with COPD suscepti-
bility for variants in the genes encoding several surfactant
proteins (75); no other studies in Hispanics have been reported.
Given the increasing recognition of COPD morbidity and
mortality in African American (76) and Hispanic populations
(77), additional COPD genetics studies in ethnic minorities are
clearly warranted.

In this article, we have focused on variation in an individual’s
DNA as it relates to COPD susceptibility and related traits.
However, studies of gene expression profiling, using RNA or
cDNA microarrays, are another avenue of active investigation
in COPD and emphysema (45, 78, 79). Gene expression pro-
filing was used to aid in the identification of SERPINE2 as
a COPD susceptibility gene (4). Further studies that integrate
gene expression and genetic variation, in addition to the various
study designs described in this article, are likely to uncover
additional genes important in COPD pathogenesis, with the
hope of leading to improved diagnosis, monitoring, and treat-
ment of this common chronic illness.
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