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Abstract
Compelling evidence suggests that major depression is associated with dysfunction of the brain
glutamatergic transmission, and that the glutamatergic N-methyl-D-aspartate (NMDA) receptor
plays a role in antidepressant activity. Recent postmortem studies demonstrate that depression is
associated with altered concentrations of proteins associated with NMDA receptor signaling in the
brain. The present study investigated glutamate signaling proteins in the amygdala from depressed
subjects, given strong evidence for amygdala pathology in depression. Lateral amygdala samples
were obtained from 13-14 pairs of age- sex-, and postmortem-interval matched depressed and
psychiatrically healthy control subjects. Concentrations of NR1 and NR2A subunits of the NMDA
receptor, as well as NMDA receptor-associated proteins such as postsynaptic density protein-95
(PSD-95) and neuronal nitric oxide synthase (nNOS) were measured by Western immunoblotting.
Additionally, levels of enzymes involved in glutamate metabolism, including glutamine synthetase
and glutamic acid decarboxylase (GAD-67), were measured in the same amygdala samples. NR2A
protein levels were markedly and significantly elevated (+115%, p=0.03) in depressed subjects as
compared to controls. Interestingly, PSD-95 levels were also highly elevated (+128%, p=0.01) in the
same depressed subjects relative to controls. Amounts of NR1, nNOS, glutamine synthetase, and
GAD-67 were unchanged. Increased levels of NR2A and PSD-95 suggest that glutamate signaling
at the NMDA receptor in the amygdala is disrupted in depression.
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Introduction
A rapidly growing body of research studies provides evidence that major depressive disorder
(MDD) is associated with a dysfunction of the glutamate signaling. Numerous clinical studies
demonstrate altered brain indices of glutamate transmission in depressed subjects. Altered
brain glutamate or glutamate/glutamine levels have been observed in magnetic resonance
spectroscopy (MRS) studies in depressed patients (Auer et al., 2000; Hasler et al., 2007;
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Michael et al., 2003a; Michael et al., 2003b; Mirza et al., 2004; Pfleiderer et al., 2003; Sanacora
et al., 2004) and in serum or plasma of medicated depressed subjects (Altamura et al., 1993;
Kim et al., 1982; Mauri et al., 1998). Postmortem brain findings demonstrate a depression-
associated reduction in the expression of genes for glutamate transporters (EAAT-1, EAAT-2)
and the glutamate synthesizing enzyme, glutamine synthase, in the temporal lobe (Choudary
et al., 2005). A role of glutamate in depression is also supported by numerous preclinical studies
demonstrating that drugs that alter glutamate signaling have antidepressant activity in
laboratory animals, and demonstration of antidepressant-like behavior in transgenic animals
lacking specific glutamate receptors (see Pittenger et al., 2007; Witkin et al., 2007 for reviews).

Of multiple receptors for glutamate, the N-methyl-D-aspartate (NMDA) receptor has received
the most attention with respect to the biology of depression and its treatment (Kugaya and
Sanacora, 2005; Pittenger et al., 2007). The NMDA receptor is a heterooligomeric structure
composed of the NR1 subunit, NR2(A-D) subunits, and less common NR3 (A-B) subunits.
NMDA receptors are embedded in the postsynaptic density (PSD) of the postsynaptic
membrane where they are anchored by PSD-95 and coupled to cytoplasmic signaling
molecules, including neuronal nitric oxide synthase (nNOS; Kornau et al., 1995; Sheng and
Kim 2002). Activation of NMDA receptors results in Ca2+ entry and subsequent activation
nNOS. Human postmortem studies provide evidence that radioligand binding to the NMDA
receptor is altered in cerebral cortex from suicide victims and from depressed subjects (Beneyto
et al., 2007; Nowak et al.,1995; Nudmamud-Thanoi and Reynolds, 2004). In addition, low
levels of nNOS and elevated levels of the NR2C subunit of the NMDA receptor have been
reported in the noradrenergic locus coeruleus in MDD (Karolewicz et al., 2004; Karolewicz et
al., 2005b). Interestingly, several antagonists of NMDA receptor activation demonstrate
antidepressant activity in behavioral models in laboratory animals (Kugaya and Sanacora,
2005). Of particular relevance is the demonstration that ketamine, a NMDA receptor
antagonist, exhibits rapid and sustained antidepressant activity in humans (Berman et al.,
2000; Zarate et al., 2006). Together, these findings demonstrate compelling evidence that
glutamate signaling through the NMDA receptor is disrupted in depression.

In the present study, levels of several proteins involved in glutamate signaling through the
NMDA receptor were measured in brain tissue from subjects who had clinically defined
depressed mood at the time of death, and psychiatrically normal control subjects. The NMDA
receptor signaling proteins chosen for study were relevant subunits of the NMDA receptor
(NR1 and NR2A), a major anchoring and scaffolding protein associated with the receptor
(PSD-95), and an intracellular signaling protein (nNOS) linked to the receptor. In addition two
major glutamate metabolic enzymes glutamine synthetase (GS) and glutamic acid
decarboxylase (GAD-67) were investigated. The area of the brain chosen for study was the
lateral nucleus of amygdala. The amygdala has long been implicated in the pathobiology of
depressive disorders and suicide (Bowley et al., 2002; Cheetham et al., 1989; Drevets et al.,
2002; Klimek et al., 2002; Sheline et al., 1998). Glutamatergic inputs from the prefrontal cortex
and thalamus enter amygdala at the lateral level (Carmichael and Price, 1995; McDonald,
1998), making this amygdala subregion a key brain region in receiving and processing cortical
and thalamic information transmitted via glutamatergic transmission. The NR1 and NR2A
subunits were specifically chosen for study because the NMDA receptor in the mature lateral
amygdala is largely composed of these two subunits (Lopez de Armentia and Sah, 2003; Radley
et al., 2007).

Materials and methods
Psychiatric autopsy and tissue collection

Postmortem brain samples were collected at autopsy from a total of 28 subjects at the Cuyahoga
County Coroner's Office in Cleveland, OH. Informed written consent was obtained from the
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legal next-of-kin of all subjects. Next-of-kin were interviewed and retrospective psychiatric
assessments were conducted in accordance with Institutional Review Board policies at Case
Western Reserve University and the University of Mississippi Medical Center. A trained
interviewer administered the Schedule for Affective Disorders and Schizophrenia: lifetime
version (SADS-L) and/or the Structured Clinical Interview for DSM-IV Psychiatric Disorders
(SCID-IV) to knowledgeable next-of-kin of subjects in the study.

A total of 14 subjects were studied that had the common feature of depressed mood: 11 subjects
met clinical criteria for MDD and 3 subjects met criteria for adjustment disorder with depressed
mood based on the Diagnostic and Statistic Manual of Mental Disorders – Revised DSM-IV.
One MDD subject had co-existing diagnosis of dysthymic disorder, and one MDD subject had
diagnosis of alcohol abuse (Table 1).

Fourteen subjects did not meet criteria for Axis I disorder (termed psychiatrically healthy
controls) except for nicotine dependence as noted (see Table 1). Among 14 depressed
individuals, 12 were suicide victims, and two died due to the other causes such as a homicide
or pulmonary embolism (Table 1). Blood and urine samples from all subjects were examined
by the coroner's office for psychotropic medications and substances of abuse, including ethanol
(Table 1). No antidepressant drugs were detected in the postmortem toxicology screening of
subjects in the present study (Table 1). Fourteen depressed subjects and 14 psychiatrically
healthy controls were arranged into 14 pairs, matched as closely as possible for age, gender,
postmortem interval, tissue pH and smoking history. As specified above, one MDD subject
had a diagnosis of alcohol abuse; this subject was matched with an alcohol-dependent control
subject with no other psychiatric disorders.

Dissection and anatomical positioning of measurements
Tissue was collected from frozen blocks containing the right amygdaloid complex. Frozen
blocks were cut into 50 μm-thick sections for collecting tissue for Western blotting and 20
μm-thick sections for histology. The 20 μm-thick tissue sections collected at 1 mm intervals
along the anterior-posterior extent of the amygdala were processed for acetylcholinesterase.
Acetylcholinestrease histology (as described previously by Biegon and Wolff, 1986 and
Karolewicz et al., 2005a) was used to create anatomical templates for anatomical positioning
and as a guide for the dissection of the lateral nucleus. For all subjects, the anatomical position
for collection of tissue punches of the lateral amygdala for Western blotting was established
approximately midway along the anterior-posterior extent of the amygdala (Figure 1). Tissue
punches (diameter 5 mm) containing the lateral nucleus were collected in centrifuge tubes and
stored at −80° C until assayed.

Western blotting
Tissue samples were prepared as published previously (Karolewicz et al., 2005b). Samples
were homogenized in ice-cold TE buffer (10 mM Tris-HCl and 1 mM ethylene-
diaminetetraacetate, EDTA) containing protease inhibitors (Protease Inhibitor Cocktail Tablets
- Complete™, Boehringer Mannheim GmbH, Mannheim, Germany). Total protein
concentrations for all samples were determined using the bicinchoninic acid (BCA) method
(Pierce Biotechnology Inc., Rockford, IL, USA). Samples were mixed with sample buffer (125
mM Tris base, 20% glycerol, 4% SDS, 10% mercaptoethanol, 0.05% bromophenol blue, pH
6.8) and heated at 95°C for 8 min. Solubilized protein (20 μg per lane) was subjected to 10 %
Criterion Precast Tris-HCl gel electrophoresis (Bio-Rad Laboratories, Hercules, CA, USA)
and transferred to nitrocellulose membranes (Hybond ECL; Amersham Biosciences,
Piscataway, NJ, USA). Membrane blots were blocked in 5% non-fat milk/TBS (20 mM Tris
base and 0.5 M NaCl, pH 7.5) or 5% non-fat milk/PBS (137 mM NaCl, 2.7 mM KCl, 8 mM
Na2HPO4 and KH2PO4, pH 7.4) for 2 h, then incubated (overnight at 4° C) with primary
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antibody (see Antibodies). Membranes were washed two times for 15 min in TBS (or PBST)
buffer and incubated with secondary anti-mouse antibody for NR1, PSD-95, nNOS, glutamine
synthetase, actin (diluted 1:2000; Amersham Biosciences, no. NA931) and anti-rabbit
secondary antibody for NR2A and beta-tubulin (diluted 1:5000; Amersham Biosciences, no.
NA934). After incubation, blots were washed 3 times for 15 min and developed using enhanced
chemiluminescence detection (ECL; Perkin-Elmer Life Sciences, Inc., Boston, MA, USA) and
immediately exposed to film (Hyperfilm-ECL; Amersham Biosciences).

Antibodies
All antibodies used in this study were commercially available and have been used previously
to detect NR1, NR2A, PSD-95, nNOS, GS, and GAD-67 in numerous regions of the human
and rat brain as well as in vitro studies (Gerlach et al., 2001; Karolewicz et al., 2004, 2005b,
2008; Ling et al., 2005; Kristiansen et al., 2006; Kronfeld et al., 2000). Mouse monoclonal
antibodies were used to label NR1 subunit (1:1000; BD Biosciences/Pharmingen, San Diego,
CA, USA; no. 556308), PSD-95 (1:1000; Upstate Biotechnology, Lake Placid, NY, USA; no.
05-494), nNOS (1:1000; BD Biosciences/Transduction Laboratories, Franklin Lakes, NJ,
USA; no. 610309), GS (1:1000; BD Biosciences/Transduction Laboratories; no. 610518), and
GAD-67 (1:1000; Chemicon, Temecula, CA, USA, no. MAB5406). NR2A subunit was labeled
using rabbit polyclonal antibodies diluted 1:500 (Novus Biologicals, Littleton, CO, USA; no.
NB 300-105). As a control for transfer and loading, actin or β-tubulin was detected on blots
using an anti-actin (Chemicon, no. MAB1501) or anti-tubulin (Abcam Inc., Cambridge, MA,
USA; no. ab6046) antibody.

Experimental design and data analysis
Immunoreactivities of glutamate-related proteins were investigated in 13-14 depressed
subjects and 13-14 matched normal control subjects. Pairs of subjects were immunoblotted on
the same gel (maximum 4-5 pairs) with duplicates on separate gels. In order to minimize inter-
blot variability and to aid in quantifying blots, each gel was loaded with 3 concentrations of a
cortical tissue standard consisting of 10, 20, and 40 μg of total protein. The tissue standard was
dissected from anterior PFC of one control subject and the same cortical tissue standard was
used for all experimental gels. Band densities were analyzed using MCID Elite 7.0 (Imaging
Research, St. Catherines, Ontario, Canada). Linear regression (GraphPad Prism 4.0) was used
to plot a standard curve for each gel, from which relative optical density (ROD) values of
samples were converted to cortical standard protein units for each experimental sample for
each gel. In order to control for accuracy of tissue loading and efficiency of transfer, data were
normalized to actin or tubulin detected on the same blots. The final data are expressed in cortical
standard protein units and presented as a ratio of [protein of interest]/[actin or tubulin].

Statistical analyses
Data were analyzed statistically using a two-tailed paired Student's t-test (GraphPad Prism 4.0).
Linear regression analysis was performed to test for associations between age, pH, postmortem
interval (PMI), time in freezer (TF) and each protein investigated. If a significant correlation
between protein immunoreactivities and ones of these variables was observed (p<0.05),
analysis of covariance (ANCOVA) was used to correct the test for the effect of diagnosis on
the protein expression. Summary statistics are reported as the mean ± S.E.M. A p-value <0.05
was considered significant.
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Results
Relationship between optical density and total protein concentration

In order to determine the relationship between optical density values and the concentrations of
protein immunoreactivities, 10, 20, and 40 μg of total cortical protein (standard) was
immunoblotted with all antibodies used in this study. Analyses of blots revealed a linear
relationship between optical density values and protein concentrations (Figure 2). All
measurements of control and depressed samples fell within the linear range of these standard
plots.

NMDA receptor subunits
For NMDA receptor subunits, immunoreactive bands corresponding to molecular masses of
120 and 180 kDa for NR1 and NR2A, respectively, were observed in homogenates of lateral
amygdala (Figure 3a). Averaged NR1 immunoreactivities from depressive (1.22 ± 0.15) and
control subjects (1.36 ± 0.20) were not statistically different (t=1.1, df=13, p=0.28). There were
no significant correlations between amounts of NR1 and pH, postmortem interval (PMI), age
or time in freezer. The amount of NR2A immunoreactivity from depressed subjects (1.38 ±
0.36) was significantly higher (+115%) than that from control subjects (0.64 ± 0.11; t=2.4;
df=12; p=0.03). A significant negative correlation was found between time in freezer and
amounts of NR2A immunoreactivity in depressed subjects (r2=0.48, p=0.008). Using
ANCOVA with time in freezer as a covariate for NR2A, an effect of diagnosis on this subunit
was still detected (p=0.011).

NMDA receptor – interacting proteins
PSD-95 and nNOS immunoreactivities appeared as bands with molecular masses of 95 and
160 kDa, respectively (Figure 3b). Averaged PSD-95 immunoreactivities from depressive
(1.49 ± 0.26) and control subjects (0.65 ± 0.12) were statistically different (+128 %; t=2.9;
df=13; p=0.01; Figure 4). Linear regression analysis showed negative correlations between
PMI and amounts of PSD-95 immunoreactivity in controls (r2=0.32; p=0.04) and between time
in freezer and PSD-95 immunoreactivity in depressed subjects (r2=0.32; p=0.03). Nevertheless,
using ANCOVA with PMI and time in freezer as a covariates, a significant effect of depression
for PSD-95 was still detected (p=0.002).

Amounts of nNOS immunoreactivity in depressives (1.75 ± 0.16) and control subjects (1.89 ±
0.16) were not significantly different (t=0.68; df=13; p=0.5). There was a significant negative
correlation between PMI and amounts of nNOS immunoreactivity in depressed subjects
(r2=0.45; p=0.008). Using ANCOVA with pH as a covariate for nNOS did not change the
statistical outcome of the analysis (p=0.998).

Glutamate metabolizing enzymes
Glutamine synthetase immunoreactivity appeared as a band at 45 kDa (Figure 3c) and amounts
of glutamine synthetase immunoreactivity were unchanged in depressed (0.84 ± 0.09) as
compared to control subjects (0.89 ± 0.06; t=0.43, df=13; p=0.67; Figure 5). There was a
significant positive correlation between pH and amounts of glutamine synthetase
immunoreactivity in control subjects (r2=0.36; p=0.02). Using ANCOVA with pH as a
covariate for glutamine synthetase, a main effect for diagnosis on glutamine synthetase was
not detected (p=0.98). GAD-67 was revealed as a single band at 67 kDa (Figure 3c). Average
amounts of GAD-67 immunoreactivity in control subjects (1.05 ± 0.11) and in depressed
subjects (0.95 ± 0.08) were not statistically different (t=0.89; df=13; p=0.38; Figure 5). There
were no significant correlations between amounts of GAD-67 and pH, age, PMI or TF.
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Correlations of immunoreactivities
The possibility that amounts of certain proteins in the NMDA receptor signaling cascade would
correlate was investigated. Amounts of NR2A immunoreactivity were highly positively
correlated with PSD-95 immunoreactivity only in depressed subjects (r2=0.79; p<0.0001).
There were no significant correlations between NR2A and nNOS or PSD-95 and nNOS in both
control and depressed subjects (data not shown).

Discussion
The present study is the first to analyze the levels of several glutamate signalingrelated
biological markers in postmortem amygdala from depressed subjects. Evidence is provided
that amounts of the NR2A subunit and its anchoring protein, PSD-95, are robustly elevated in
the lateral amygdala of depressed subjects as compared to psychiatrically healthy control
subjects. Increased expression of NR2 subunits of the NMDA receptor may be a common
pathology in depression since higher levels of the NR2C subunit were previously reported in
the noradrenergic locus coeruleus in depressed subjects (Karolewicz et al., 2005b).
Interestingly, recent research points to clinical efficacy of NMDA receptor antagonism in
depression, i.e. recent clinical studies have shown that a single intravenous dose of ketamine,
an NMDA receptor antagonist, produces robust, rapid, and relatively sustained antidepressant
effects in treatment-resistance depression (Berman et al., 2000; Zarate et al., 2006). Preclinical
research also suggests that inhibition of NMDA receptor, as well as inhibition of intracellular
signaling cascades including nNOS that are linked to the NMDA receptor, exhibit
antidepressant-like effects in animal screening procedures (Paul, 2001; Paul and Skolnick,
2003). Interestingly, NR2A knockout mice show antidepressant-like profiles in animal models,
as compared to wild-type controls (Boyce-Rustay and Holmes, 2006). Moreover, a selective
NR2B antagonist Ro25-6981 exhibits antidepressant-like properties in mice (Maeng et al.,
2007). A preliminary clinical study has demonstrated the benefit of supplementation with zinc,
a non-selective NMDA receptor antagonist, in antidepressant therapy (Nowak et al., 2003).
Collectively, current research suggests that the NMDA receptor complex is abnormal in
depression and regulation of NMDA receptor signaling in critical brain circuits may represent
a strategy for the development of effective and rapid-acting antidepressants.

The abnormalities at the excitatory synapse, as revealed by our postmortem research, may
occur in response to abnormal levels of glutamate in depression. Several lines of evidence
indicate altered glutamate or glutamate/glutamine levels in multiple brain regions in depressed
patients (Auer et al., 2000; Hasler et al., 2007; Michael et al., 2003a; Michael et al., 2003b;
Mirza et al., 2004; Pfleiderer et al., 2003; Sanacora et al., 2004). It has been well established
that glia play a key role in glutamate neurotransmission, including glutamate metabolism and
recycling, therefore depression-associated reductions in the density of these cells in prefrontal
cortex (Miguel-Hidalgo et al., 2000; Ongur et al., 1998; Rajkowska et al., 1999; Si et al.,
2004) and amygdala (Bowley et al., 2002; Hamidi et al., 2004) may also contribute to altered
synaptic glutamate in depression. Glutamine synthetase gene expression has been shown to be
reduced in the prefrontal cortex in depression (Choudary et al., 2005), which could also
contribute to altered glutamate levels and compensatory changes in glutamate receptors. Since
glutamine synthetase is exclusively expressed in astrocytes and a reduced density of astrocytes
has been consistently reported in depression (see above); we hypothesized that glutamine
synthetase protein immunoreactivity would be reduced in the amygdala. However, the present
findings demonstrate unaltered levels of glutamine synthetase in the lateral amygdala in
depression. It is conceivable that unchanged levels of glutamine synthetase may indicate (1)
unchanged density of astrocytes in the amygdala in depression, (2) a compensatory increase
in glutamine synthetase protein expression in remaining astrocytes, or (3) glutamine synthetase
expression may be turned on in cells other than astrocytes during depression. One other study

Karolewicz et al. Page 6

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



has also reported unchanged glutamine synthetase immunoreactivity in the prefrontal cortex
in depression (Toro et al., 2006).

Glutamate is an immediate precursor for GABA, and reductions in GABA levels are
consistently reported in neuroimaging studies in depression (Hasler et al., 2007; Sanacora et
al., 1999; Sanacora et al., 2004). In addition, postmortem analyses demonstrate a significant
reduction in the density and size of GABAergic interneurons immunoreactive for calbindin in
the dorsolateral prefrontal cortex in depression (Rajkowska et al., 2007). Reduced levels of
GAD-67 and GAD-65 were previously reported in cerebellum in major depressive subjects
(Fatemi et al., 2005). We expected to find lower GAD-67 protein levels in depression in the
present study. However, GAD-67 levels in the lateral amygdala were unchanged in depressed
subjects. Further studies aimed to investigate protein levels and/or activity of GAD-65, another
isoforms of GAD (Bu et al., 1992) are needed to fully address the status of GABA synthesis
in the amygdala in depression.

The NMDA receptor in the mature lateral amygdala is largely composed of the NR1 subunit,
a mandatory subunit, and the regulatory NR2A subunit (Lopez de Armentia and Sah, 2003;
Radley et al., 2007). To date, few studies have investigated NMDA receptors in postmortem
brain from depressed subjects. In this study, NR1 subunit immunoreactivity was unchanged
in the amygdala in depression, despite a significant elevation of NR2A subunit
immunoreactivity. Unchanged levels of NR1 subunit in amygdala in depression is consistent
with our previous observations in the LC and cerebellum of depressed subjects (Karolewicz et
al., 2005b) and no changes in NR1 immunoreactivity in subregions of the hippocampal dentate
gyrus and in the orbitofrontal cortex (Toro and Deakin, 2005).

Only two previous investigations have measured PSD-95 in brain tissues form depressed
subjects. Normal levels in depressed subjects were reported for PSD-95 mRNA in the striatum
(Kristiansen and Meador-Woodruff, 2005) and for PSD-95 protein in the hippocampus and
orbitofrontal cortex (Toro and Deakin, 2005). In the lateral amygdala, we found markedly
elevated levels of PSD-95 in depressives as compared to matched control subjects. These
findings suggest that PSD-95 involvement in depression is neuroanatomically limited. PSD-95
belongs to the large family of membrane - associated guanylate kinases (MAGUKs) and is
exclusively localized to dendritic spines at glutamatergic synapses (Hunt et al., 1996). PSD-95
binds to the NMDA receptor subunits NR2A and NR2B (Kornau et al., 1995) and also couples
synaptic NMDA receptors to downstream signaling molecules such as nNOS (Brenman et al.,
1996; Sattler et al., 1999) which serves as an intracellular mediator of NMDA receptor
activation. MAGUKs appear to play fundamental role in the transport, anchoring, and signaling
of glutamate NMDA receptors. In the present study, the increase in PSD-95 immunoreactivity
in depressives was highly correlated with an increase in NR2A subunit immunoreactivity.
Hence, the depression-associated elevation in levels of PSD-95 imply increased intracellular
trafficking, synaptic delivery, and coupling of the NMDA receptors to intracellular signaling
cascades in the amygdala. The lateral amygdala receives its major glutamatergic afferents from
the cortical areas and from the thalamus (Mahanty and Sah, 1999). These inputs activate
synapses containing both NMDA and non-NMDA receptors. Depression-associated
perturbations in markers of glutamate transmission in cortical regions, as revealed by imaging
and postmortem cell counting studies (Hasler et al., 2007; Rajkowska et al., 1999; Rajkowska
et al., 2005; Sanacora et al., 2004; Si et al., 2004) could result in abnormalities of glutamatergic
signaling in cortical projection areas, including the lateral amygdala. Recent imaging studies
in depressed humans point to reduced prefrontal cortical function that is linked to increased
amygdala activity (Drevets, 1999; Siegle et al., 2007). Elevated levels of NR2A/PSD-95 may
reflect an adaptive response to altered cortical input to the amygdala and may contribute to
altered amygdala activity in depression.
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A shortcoming of the present study is that NMDA receptor subunits were measured as a total
pool of proteins that included intracellular pools of unassembled proteins and assembled
NMDA receptors expressed at the cell membrane, complicating the prediction of functional
significance. However, it has been proposed that the NR1 subunit, which is synthesized in large
excess (~10-fold), accounts for most of the intracellular pool (Huh and Wenthold, 1999). The
excess production of NR1 increases the chance that NR2 subunits will find NR1 partners. In
contrast to NR1, only a small percentage of NR2 subunit protein is intracellular (Huh and
Wenthold, 1999); almost all NR2 subunits are expressed on the cell surface. Hence, the total
number of functional NMDA receptors appears to be controlled by expression of the NR2
subunits (Prybylowski et al., 2002). Based on this, the elevation of NR2A immunoreactivity
in homogenates of lateral amygdala from depressives is likely to reflect an increase of
functional surface NMDA receptors. Of course, a depression-associated disruption in the
normal cellular trafficking of NMDA receptor subunits cannot be ruled out with the present
data.

Treatment of depression may contribute to the adaptive changes seen in the human postmortem
brain. This study includes only two subjects with a reported history of medication with
antidepressants at some point during their lifetime. In both cases, the selective serotonin
reuptake inhibitor, sertraline, was prescribed. However, the presence of this drug was not
revealed in the postmortem toxicology screening and both subjects died as a result of suicide
(Table 1). One of these two subjects had PSD-95 and NR2A levels unchanged compared to
their matched control, while the other subject had levels higher than that of the matched control
subject and comparable to the average level of immunoreactivity of depressive subjects lacking
the drug exposure. It can be inferred from these observations that the past antidepressant drug
treatment is unlikely to contribute to the elevation of PSD-95 or NR2A levels observed in the
depressed subjects.

In summary, a marked elevation of NR2A subunit and PSD-95 immunoreactivities in the lateral
amygdala of depressed subjects as compared to control subjects were observed. A strong
correlation between levels of NR2A subunit and PSD-95 immunoreactivities were observed
in depressed subjects. Changes in NR2A and its anchoring protein in depression may reflect
an adaptive response to a decreased excitatory input from cortical regions. Further studies of
the glutamatergic signaling markers in depression involving non-NMDA ionotropic receptors,
metabotropic receptors, and glutamate transporters will lead to a better understanding of the
role of glutamate in the pathology of depression.
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Figure 1.
Digital image of a coronal section of the amygdala stained histochemically for
acetylcholinesterase. The acetycholinesterase staining preparation was used to visualize the
lateral amygdala and to distinguish it from neighboring nuclei: basal (B), accessory basal (AB),
central (C), medial (M), cortical (CO).
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Figure 2.
Relationship between the optical density values of Western blotted protein immunoreactivities
and total protein concentration for NR1, NR2A, PSD95, nNOS, glutamine synthetase (GS),
GAD67, actin, and tubulin. Wells were loaded with three concentrations of cortical standard
(dissected from a healthy control subject) consisting of 10, 20, and 40 μg of total protein.
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Figure 3.
Immunoblots of NR1, NR2A, and actin (a) nNOS, PSD-95, and actin (b) as well as glutamine
synthetase (GS), GAD67, and tubulin (c) from 3 representative pairs of controls (Cont) and
depressed subjects (Dep) used in the analysis. Each well was loaded with 20 μg of total protein
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Figure 4.
Amounts of NR1, NR2A, PSD-95, and nNOS immunoreactivities in the lateral amygdala from
control subjects (open circles; n=13-14) and depressed subjects (filled circles; n=13-14).
Significant increases in the NR2A and PSD-95 immunoreactivities (+115% and +128%,
respectively) were observed in depressed subjects as compared to controls. Normalized optical
density values for the individual subjects (circles) and mean values (horizontal lines) are
presented.
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Figure 5.
Amount of glutamine synthetase (GS) and GAD67 immunoreactivity from control subjects
(open circles; n=14) and depressed subjects (filled circles; n=14) in the lateral amygdala.
Normalized optical density values for the individual subjects (circles) and mean value
(horizontal lines) are presented.
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Table 1
Demographic characteristics of subjects

Parameter Controls (n=14) Depressed (n=14)

Age (years)* 53 ± 4 54 ± 4

Age range 27 − 74 30 − 73

PMI (hours)* 18 ± 1 19 ± 2

PMI range 6 − 26 5 − 33

pH* 6.68 ± 0.07 6.55 ± 0.07

pH range 5.99 − 6.96 6.15 − 6.91

Time in freezer
(months)*

121 ± 5 132 ± 8

Time in freezer range 81 − 158 61 − 181

Gender (F/M) 1/13 1/13

Medication historya 0/14 2/14 (sertraline)

Toxicology Clean, n=7
Drugs detected, n=5
(brompheniramine, lidocaine,
diazepam, chlorpheniramine)
Ethanol, n=1
CO, n=1

Clean, n=8
Drugs detected, n=3 (codeine,
phenobarbital, phenytoin)
Ethanol, n=1
CO, n=2

Cause of death Heart disease, n=9
Hypertension, n=1
Aneurysm, n=1
Accidental CO poisoning, n=1
Homicide, n=1
Thrombophlebitis, n=1

Suicide, n=12 (shot gun, n=5; CO
poisoning, n=3; hanging, n=2; drowning,
n=1; slit wrists, n=1),
Other causes, n=2 (pulmonary embolism,
homicide)

Diagnosis Alcohol dependence, n=1
Phobia (heights), n=1

MDD, n=9
MDD and dysthymic disorder, n=1
MDD and alcohol abuse, n=1
Adjustment disorder with depressed
mood, n=3

Smoking Smokers, n=6
History of smoking, n=3

Smokers, n=6
History of smoking, n=3

PMI, postmortem interval; F, female; M, male; CO, carbon monoxide; MDD, major depressive disorder;

*
mean ± S.E.M.

a
Treatment with antidepressants within 4 weeks of time of death. The average ages, PMI, pH and times in freezer of depressed and control subjects were

not statistically different.
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