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Chronic obstructive pulmonary disease (COPD) is an inflammatory
lung disorder with complex pathological features and largely un-
known etiology. The identification of biomarkers for this disease
could aid the development of methods to facilitate earlier diagnosis,
the classification of disease subtypes, and provide a means to define
therapeutic response. To identify gene expression biomarkers, we
completed expression profiling of RNA derived from the lung tissue
of 56 subjects with varying degrees of airflow obstruction using the
Affymetrix U133 Plus 2.0 array. We applied multiple, independent
analytical methods to define biomarkers for either discrete or
quantitative disease phenotypes. Analysis of differential expression
between cases (n 5 15) and controls (n 5 18) identified a set of 65
discrete biomarkers. Correlation of gene expression with quantita-
tive measures of airflow obstruction (FEV1%predicted or FEV1/FVC)
identified a set of 220 biomarkers. Biomarker genes were enriched in
functions relatedtoDNAbindingandregulationof transcription.We
used this group of biomarkers to predict disease in an unrelated data
set, generated from patients with severe emphysema, with 97%
accuracy. Our data contribute to the understanding of gene expres-
sion changes occurring in the lung tissue of patients with obstructive
lung disease and provide additional insight into potential mecha-
nisms involved in the disease process. Furthermore, we present the
first gene expression biomarker for COPD validated in an indepen-
dent data set.
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Chronic obstructive pulmonary disease (COPD), an inflammatory
disorder that is characterized by a gradual loss of lung function,
is currently the fourth leading cause of death in the United
States (1). Strongly associated with cigarette smoking, COPD is
expected to be the third most common cause of death and fifth
most common cause of disability worldwide by 2020 (2). COPD
is typically diagnosed late in the course of disease when the
patient presents with significant physiologic impairment (3, 4).
The need for improved early diagnosis and the identification of
novel therapeutic targets, which may improve treatment options
and reduce mortality, has recently gained heightened interest (5).

COPD includes a broad spectrum of histopathologic findings
and respiratory symptoms best characterized as a syndrome.
Chronic obstructive bronchitis/bronchiolitis with peribronchio-
lar fibrosis (small airways disease), and abnormal enlargement
of airspace distal to the terminal bronchioles with destruction of
lung parenchyma (emphysema), are the pathological hallmarks
of disease. Small airways disease and emphysema can present
alone or in combination, with varying degrees of severity (6, 7).
Genetic and environmental factors contribute to variable sus-
ceptibility in the general population. a1-Antitrypsin deficiency
is a proven genetic risk factor, which modifies disease suscep-
tibility in response to environmental factors, most notably
tobacco smoke exposure (8, 9). Given the complexity of disease
pathogenesis, the presence of varying levels of susceptibility in
the general population and the fact that patients rarely present
early in disease pathogenesis, at a time when disease-modifying
therapy may be more effective, the identification of biological
markers of disease susceptibility and/or progression is needed.

Numerous previous studies have sought to identify disease
biomarkers, such as genetic or expression variants. DNA micro-
arrays have been proven to be a powerful tool capable of
biomarker discovery for various disease states, including COPD
(10–14). Spira and coworkers measured gene expression from
lung tissue of 35 patients undergoing surgery for severe em-
physema, and identified gene expression patterns associated
with disease severity and surgical outcome (13). Golpon and
colleagues used a similar approach to characterize global gene
expression patterns in patients with and without a1-antitrypsin
deficiency (10). Both Zhang and coworkers and Ning and
colleagues identified EGR1 overexpression in patients with
COPD (12, 14). We have previously reported a multidisciplinary
approach, using gene expression microarrays and genetic asso-
ciation studies, to identify serine protease inhibitor, clade E,
member 2 (SERPINE2) as a novel COPD candidate suscepti-
bility gene (15).

Here, we present a novel gene expression microarray data
set generated from 56 subjects with mild to severe COPD as
defined by airflow obstruction. We report the identification of
gene expression biomarkers for both discrete (case versus con-
trol) and quantitative COPD-related phenotypes. Further, we
identify a subset of these biomarkers that can reliably predict
disease in an independent data set, derived from a distinct
population with COPD. This gene set represents a robust gene
expression biomarker for COPD. The identification of these
differentially expressed genes may assist with the future de-
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velopment of methods (such as genetic tests) for improved early
diagnosis or the identification of therapeutic response.

MATERIALS AND METHODS

Subjects

Lung tissue was obtained, according to an approved IRB protocol,
from 62 subjects undergoing surgical resection of a solitary nodule
suspected to be cancer. Tissue samples were acquired and processed as
previously described (16). Briefly, frozen samples of resected ‘‘normal’’
(grossly uninvolved) lung were obtained within 30 minutes of resection
and subdivided into samples (z 100 mg). Samples intended for nucleic
acid extraction were snap frozen on powdered dry ice and individually
stored in liquid nitrogen. Diagnosis was confirmed by surgical pathol-
ogy. Written informed consent was provided and subjects underwent
lung function testing by spirometry (without bronchodilator) and com-
pleted a lung health–related questionnaire before surgery. Age, height,
weight, sex, and surgical pathology were obtained from subjects’ medical
charts. Predicted lung function values (FEV1%predicted, FVC) were
calculated in SAS v9.1 from SAS Institute (Cary, NC) using the Crapo
equation for white subjects (17) and the Hankinson equation for African-
American subjects (18).

RNA Isolation

Tissue used for RNA isolation was obtained from a histologically
normal area of the lung distant from the tumor. Lung tissue was dis-
sected and adjacent pieces were either fixed for histology or snap-
frozen in liquid nitrogen and stored at less than 2708C (16). Frozen
tissue was immediately pulverized upon removal from liquid nitrogen
and transferred into Trizol reagent (Invitrogen, Carlsbad, CA). Sam-
ples were homogenized in Trizol using a rotor-stator homogenizer, and
RNA was isolated following manufacturer’s protocols. RNA was
further purified using the solid-phase column method (RNeasy kit;
Qiagen, Valencia, CA). A total of 64 RNA samples were generated
from lung tissue obtained from 62 subjects.

Microarray Analysis

Labeled target was synthesized from purified RNA samples according
to manufacturer’s recommendations as previously described (19).
These studies used the Affymetrix HG-U133Plus 2.0 array (Affyme-
trix, Santa Clara, CA), containing 54,675 probe sets interrogating over
47,000 human transcripts. Target hybridization, washing, and array
scanning were performed according to standard protocols. Two in-
dependent versions of expression intensities were extracted from raw
data files using either Robust Multichip Average (RMA [20]) or
Affymetrix Microarray Suite (MAS) 5.0 algorithms. MAS 5.0 yields
scaled, background-subtracted, nonnormalized signal intensities, while
RMA provides background-subtracted, log-transformed signal intensi-
ties. Data extraction was performed using affy library in BioConductor,
an R-based package. The annotation information of the selected probe
sets was retrieved from the Affymetrix analysis portal (NetAffx,
www.netaffx.com). Reliability of signal intensity measurement was
determined using the Detection Call extracted using affy library in
BioConductor, an R-based package. Unsupervised clustering with the
nonparametric bootstrap (21) was applied to check for undesirable and
unanticipated structure or associations among the samples. Of 64 RNA
samples arrayed, 56 passed quality control criteria, including those
recommended by the Best Practices Working Group (22), and were
subjected to further analysis. The data described in this manuscript have
been made available at Gene Expression Omnibus (accession number
GSE8581). All samples have been annotated as per the requirements of
MIAME/MAGE standards.

Microarray Data Analysis

For discrete phenotype analysis, cases were defined as subjects with
FEV1 , 70% predicted and FEV1/FVC , 0.7, and controls as subjects
with FEV1 . 80% predicted and FEV1/FVC . 0.7. We applied two
independent tests for differential expression on both RMA and MAS5
versions of the data set: Bayesian analysis of differential gene expression
(BADGE, http://genomethods.org/badge [23, 24]) at P , 0.01 and
Significance Analysis of Microarrays (SAM [25]) at a False Discovery

Rate (FDR) of 0 using MultiExperiment Viewer (MeV) 3.0 from TIGR
(http://www.tm4.org/mev.html). Here FDR 5 0 means that the median
number of false positives calculated during the procedure is equal to 0,
not that there are no false positives. For probe sets to be defined as
differentially expressed, they were required to show significant changes
in expression between groups in all four statistical comparisons (RMA-
BADGE, MAS5-BADGE, RMA-SAM, MAS5-SAM). For quantitative
phenotype analysis, correlation coefficients of signal intensity and lung
function (FEV1%predicted or FEV1/FVC) were calculated. For each
probe set, we calculated both the Pearson linear and Spearman rank
correlation coefficients for both RMA and MAS5-derived expression
intensities using SAS. For probe sets to be defined as significantly
correlated, they were required to show significant correlation (at a P
value threshold of < 0.05; see RESULTS) between gene expression and
lung function in all four statistical comparisons (RMA-Pearson, RMA-
Spearman, MAS5-Pearson, MAS5-Spearman). Visualization of data for
significantly regulated genes was generated using RMA-derived signal
intensity data and plotted in MeV.

Class Prediction

Of the 254 probe sets that were either differentially expressed or sig-
nificantly correlated with lung function parameters in the current data set
using the Affymetrix U133 plus 2.0 array, 84 were also present on the
Affymetrix U133A 2.0 (which is a subset of U133 plus 2.0 with a total of
22,275 probe sets) used by Spira and coworkers (13). Our gene expression
biomarkers were used to distinguish emphysema cases from controls in
the cohort of Spira and colleagues by average linkage hierarchical
clustering with Euclidean distance. These analyses were performed using
the Gene Expression Data Analyzer (http://bioinformatics2.pitt.edu/
GE2/GEDA.html) (26). Cases were subjects who met the clinical criteria
and underwent lung volume reduction surgery. Controls were former
smokers with an FEV1 greater than 45% predicted or DLCO greater than
50% predicted, for which emphysema was ruled out by high-resolution
computed tomography.

Expression Validation

We performed quantitative reverse transcriptase-polymerase chain re-
action (qPCR) for a subset of the genes identified as discrete and/or
quantitative disease markers. qPCR was performed on a Stratagene
MX3000P (Stratagene, La Jolla, CA) using Taqman chemistry, essen-
tially as previously described (27). Pre-developed, gene-specific assays
for measuring gene expression were purchased from Applied Biosystems
(Foster City, CA). Gene expression levels were calculated according to
the relative expression analysis approach using GAPDH and/or PPIA
(peptidyl prolyl isomerase A or cyclophilinA) as an internal, endogenous
control. Primary validation was defined as a significant (P , 0.05)
concordance in expression patterns between array data and qPCR as
defined by correlation coefficient. For this analysis, we measured the
linear (Pearson) and rank (Spearman) correlation between the dCt
(cycle threshold of biomarker gene – endogenous control gene) of the
biomarker and the RMA-derived relative signal intensity values, using
GAPDH as the endogenous control. We also repeated the analysis using
PPIA as an endogenous control. Differential expression analysis was
performed on individual sample values of dCt for each gene using either
the parametric Student’s t test or nonparametric Mann-Whitney U-test.
For differential expression analysis, we used either GAPDH or PPIA as
en endogenous control.

Gene Ontology

Functional classification of genes was performed using Expression
Analysis Systematic Explorer (EASE) v2.0 (http://david.abcc.ncifcrf.
gov) (28). Entrez GeneIDs for the selected biomarker genes were used
as the input list, while Entrez GeneIDs for all filtered probe set genes
(16,452 always detected in either cases or controls) served as the
background set. Gene Ontology categories with an EASE score of less
than 0.05 were defined as significantly overrepresented.

RESULTS

Subject Demographics

We assessed genome-wide expression patterns in lung tissue speci-
mens derived from 56 subjects. These subjects were undergoing
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lobectomy for removal of a suspected lung tumor, and tissue for our
studies was derived from histologically normal tissue distant from
the tumor margin. Low values for both FEV1%predicted and
FEV1/FVC are characteristic features of COPD and associated
with disease severity. For our studies, we defined cases (n 5 15) as
subjects with FEV1 , 70% predicted and FEV1/FVC , 0.7 and
controls (n 5 18) as subjectswith FEV1 . 80% predicted and FEV1/
FVC . 0.7. The distribution of lung function in cases and controls is
listed in Table 1. Individual subject characteristics are listed in Table
E1 in the online supplement. Twenty-three subjects were not
classified as cases or controls, and data derived from these subjects
were used solely for quantitative analysis. A majority of the subjects
were diagnosed with adenocarcinoma (n 5 26) or squamous cell
carcinoma (n 5 19), while other tumor types or benign lesions were
found in the remaining subjects (n 5 11). There was a similar
frequency of tumor incidence in cases or controls (80% versus 67%,
respectively), although squamous cell carcinoma was more fre-
quently observed in cases (53%), while adenocarcinoma was more
frequent in controls (44%).

Identification of Gene Expression Markers for

COPD Susceptibility

We used a highly stringent set of criteria to define differential
expression in this data set, relying upon multiple data extraction
and significance testing methods, and focusing on consistency of
observations (see MATERIALS AND METHODS). We first removed
data from all probe sets that were not reliably detectable in
either all cases or all control samples. We then extracted signal
intensity data using RMA and MAS5. Each data set was tested
separately using both BADGE (23, 24) and SAM (25) to
identify differential expression. Signal intensity values for a total
of 293 probe sets were significantly different in BADGE analysis
(P , 0.01). SAM analysis was more restrictive, identifying a total
of 65 probe sets that were significantly different between COPD
cases and controls. All probe sets identified in SAM analysis
were also identified using BADGE. The relative expression levels
for these 65 probe sets, representing 55 genes, are shown in
Figures 1 and E1. Additional information regarding these probe
sets is provided in Table E2. While expression of these genes
clearly segregates a subset of the samples (note Cases 1–9 versus
Controls 3–16), others appear to have intermediate levels of ex-
pression. This likely reflects the combined heterogeneity of tissue
samples, disease subtypes, and a relatively small sample size.
Interestingly, all genes identified using these highly stringent
criteria were expressed at a lower level in cases as compared with
controls. This is a result of our restrictive approach, as numerous
genes were identified as expressed at a significantly higher level in
cases than controls using individual tests. However, there is a clear
trend toward significant reduction in gene expression in COPD
tissue samples. This may reflect a ‘‘diseased state’’ of the tissue,
but does not seem to be related to subject age (mean cases 5 63
versus controls 5 64; Table 1).

We assessed whether differences in the distribution of tumor
type between cases and controls contributed to the identifica-
tion of these gene expression biomarkers. We applied differen-

tial expression analysis (as described for cases and controls
above) comparing all samples classified as adenocarcinoma and
all samples classified as squamous cell carcinoma. No probe sets
were identified as consistently differentially expressed between
tumor types. Further, no probe sets identified as differentially
expressed between tumor types in any single analysis were
among the COPD biomarker gene set.

Identification of Gene Expression Markers for COPD Severity

Case-control analysis identified a set of genes that did not clearly
segregate disease and control samples, in part due to small sample
size. A number of our subjects (40%) were not classified as either
cases or controls using the defined criteria. In an effort to identify
additional markers capable of disease prediction, we further ana-
lyzed our entire data set for gene expression correlation with lung
function. The signal intensity for each probe set was correlated to
FEV1%predicted across all subjects (n 5 56) to identify quantita-
tive gene expression markers. Again, we used highly stringent
criteria to confirm correlation of gene expression and lung function,
relying upon multiple data extraction and significance testing
methods, and focusing upon consistency of observations (see
MATERIALS AND METHODS). These results are shown in Table 2. A
total of 614 probe sets were significantly correlated with FEV1

%predicted at P , 0.05. A subset of 65 probe sets, representing 47
known genes, were significant at P , 0.01. The relative expression
levels for these 65 probe sets are shown in Figure 2. Correlation
coefficient with FEV1%predicted and P values for these probe sets
are listed in Table E3A. There were an equal proportion of genes
showing positive and negative correlations with FEV1%predicted.
Only two probe sets (PCDH10, KLF8) were significantly corre-
lated with FEV1 at P , 0.001.

We repeated quantitative gene expression analysis using
FEV1/FVC as a quantitative phenotype. We identified 1,649
probe sets significantly correlated with FEV1/FVC at P , 0.05,
170 probe sets significant at P , 0.01 and 9 at P , 0.001 (Table
2). Correlation coefficients with FEV1/FVC and P values are
listed in Table E3B. We further considered whether any
markers were consistently correlated with both FEV1%pre-
dicted and FEV1/FVC (Figure 3). At P , 0.05, 220 probe sets
were significantly correlated with both lung function measures,
while only 8 probe sets (representing KLF8, SEMA6D, ZNF30,
LCMT1, RMST, PTCH, ZF, RP9) were correlated at P , 0.01.
There was no overlap among probe sets at P , 0.001.

Identification of a Robust Gene Expression

Biomarker for COPD

A total of 254 probe sets passed criteria as either discrete (n 5 65)
or quantitative (n 5 220 at P , 0.05) gene expression markers of
COPD. Among these, 43 probe sets representing 35 genes were
significantly different in case-control analysis and significantly
correlated with FEV1 at P , 0.05. Further, 31 probe sets
representing 22 known genes were significantly different in
case-control analysis and significantly correlated with both
FEV1%predicted and FEV1/FVC at P , 0.05. The relative
expression levels for these 22 genes are shown in Figure 4.

These genes are highly informative within our data set.
However, a major limitation of gene expression biomarker
identification is the failure to replicate across studies or
populations. Spira and coworkers reported a gene expression
microarray data set from a distinct cohort of patients with
severe COPD undergoing lung volume reduction surgery (13).
This data set included a similar number of cases and controls
(18 and 15, respectively) and was generated using Affymetrix
microarrays. Unlike our data set, the cases in the data set of
Spira and colleagues were undergoing lung volume reduction

TABLE 1. GROUP DEMOGRAPHICS AND LUNG FUNCTION

Age, yr FEV1%predicted FVC %predicted FEV1/FVC (%)

Case (n 5 15) 63 (39–82) 43.23 (10–67) 63.17 (18–99) 56.52 (41–63)

Control (n 5 18) 64 (56–77) 101.39 (83–154) 105 (80–125) 77.17 (73–85)

Unclassified

(n 5 23)

69 (50–84) 71.52 (51–98) 82.33 (66–119) 73.15 (68–89)

All (n 5 56) 66 (39–84) 72.24 (10–154) 83 (18–125) 69.53 (41–89)

Provided are group means and range. Complete information for individual

subjects is provided in Table E1 in the online supplement.
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surgery for severe emphysema. Furthermore, Spira and co-
workers used a previous version of Affymetrix Human Genome
arrays (Hu133Av2). We tested our 254 gene expression bio-
markers for their ability to identify affection status in the data
set of Spira and colleagues using class prediction methods. A
total of 84 probe sets were identified on the Hu133Av2 platform
corresponding to the 254 gene expression biomarkers we
identified in our data set (see MATERIALS AND METHODS). We
tested the ability of these 84 probe sets to discriminate cases
from controls in the data set of Spira and coworkers (Table 3).
Using all 84 probe sets, we achieved 97% predictive accuracy
with 100% sensitivity and 93% specificity. Slightly reduced
predictive accuracies were achieved using subsets derived solely
from quantitative (85%) or discrete (88%) biomarkers. Further,
we were able to identify a subset of 40 probe sets that achieved
100% accuracy in distinguishing cases from controls. Informa-
tion for these 84 probe sets is provided in Table E4, and the
corresponding dendrograms are shown in Figure E2.

Expression data for these biomarkers from the data set of
Spira and colleagues are presented in Tables E5A–E5C. For

these data, we extracted the signal intensity values and applied
our analytical approach (as described in MATERIALS AND METH-

ODS), specifically focusing upon consistency of results across
multiple data extraction algorithms and statistical tests. Results
from qualitative (A) and quantitative (B, C) analysis are
included.

Gene Ontology

In an effort to determine if any biological systems or functions
were particularly defined by either discrete or quantitative
COPD biomarkers, we performed gene ontology assessment
using EASE (Figure 5). Strikingly, there was a universal and
consistent overrepresentation of functions relating to transcrip-
tional activity and nucleic acid binding for all sets of COPD
biomarkers. A total of 24 genes, or 43% of biomarkers tested for
ontology (a subset of each list lacked ontological annotation),
were classified in one or more categories related to these
functions. For discrete marker genes (case-control), 11 of 20
(55%; P , 0.05) were classified for Nucleic Acid Binding
(GO:0003676) and 8 of 19 (42%; P , 0.05) were classified for
DNA-dependent Transcription (GO:0006351). For quantitative
marker genes, 19 of 47 (40%; P , 0.05) were classified for Nucleic
Acid Binding (GO:0003676) and 16 of 45 (36%; P , 0.05) were
classified for DNA-dependent Transcription (GO:0006351). For
the 31 markers shared between discrete and quantitative pheno-
types, 5 of the 10 genes (P , 0.05) with ontological information

TABLE 2. DISTRIBUTION OF PROBE SETS CORRELATED WITH
LUNG FUNCTION

Threshold FEV1% predicted FEV1/FVC Overlap

P , 0.05 614 1649 220

P , 0.01 65 170 8

P , 0.001 2 9 0

Figure 2. Quantitative biomarkers. Shown are signal intensity measure-

ments for 57 probe sets representing well-annotated genes (among the

65 probe sets) identified as significantly correlated with FEV1%predicted

at P , 0.01. Poorly annotated probe sets without an Entrez GeneID have
been removed. Data from individual subjects are in columns and data for

individual genes are in rows. Signal intensity data are color-coded such

that the intensity of red indicates a relatively high level of expression,

while the intensity of green represents a relatively low level of expression.

Figure 1. Discrete biomarkers. Shown are signal intensity measure-

ments for each of the 65 probe sets identified as significantly differentially
expressed between cases and controls using both Significance Analysis of

Microarrays and Bayesian analysis of differential gene expression. Data

from individual subjects are in columns and data for individual genes are

in rows. Signal intensity data are color-coded such that the intensity of red
indicates a relatively high level of expression, while the intensity of green

represents a relatively low level of expression. Poorly annotated probe

sets without an Entrez GeneID have been removed.
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available were classified for DNA-dependent Regulation of
Transcription (GO:0006355). In all Cases, the ontological over-
representation included a group of zinc finger proteins whose
biological functions have not been well defined.

Biological Validation

We measured the expression of 25 biomarker genes in a subset
of our subjects (n 5 16) by qPCR. We observed validation of
the array data for 14 of the 25 genes, as defined by a significant
correlation (Pearson or Spearman P , 0.05 using GAPDH) in
expression between array-based and qPCR-based expression
levels (Table 4). Another five genes showed a trend toward
validation (P , 0.10). Similar results were obtained using an
alternate endogenous control gene (PPIA; data not shown). In
summary, we observe evidence for array expression validation
for a total of 19 (76%) of the 25 biomarker genes.

Using either of the endogenous control genes, we were able to
validate significant differences in expression between cases and
controls for 6 of the 25 biomarker genes (Table 5; ARHGAP,

C1QTNF7, CIRBP, HIF3A, HPGD, ZF10). Additional genes
showed a trend toward significance and/or a substantial fold-
change between cases and controls. By including qPCR data from
the remaining 17 subjects (n 5 33), we validated significant
differences in expression between cases and controls for an
additional four genes (CTSK, CYYR1, KLF8, SERPINB9).
Another six genes (ARHGEF, KIT, KITL, PHACTR2,
RUNX1T1, ZNF207) showed a trend (P , 0.10) toward differ-
ential expression. In summary, we observe evidence for differen-
tial expression for a total of 16 (64%) of the 25 biomarker genes
(Table 5). In total, we were able to find some evidence of
validation for 23 (92%) of the 25 biomarker genes.

DISCUSSION

Several approaches have been undertaken to discover biomarkers
for COPD that may be useful for early diagnosis, prevention,
therapeutic intervention, and prognosis. The first COPD bio-
marker was described by Eriksson, in that patients lacking
a1-antitrypsin, the principal inhibitor of neutrophil elastase, de-
veloped early-onset emphysema (29). Subsequent genetic studies
have identified regions of the genome, and lists of gene variants,
associated with COPD phenotypes (30, 31). DNA microarrays
have been proven to be a major contributor in the discovery of
biomarkers for various diseases. Microarray technology allows
simultaneous comparison of expression of thousands of genes (32).
Numerous studies on the use of DNA microarrays have supported
the effectiveness of gene expression patterns for clustering dis-
eased tissues apart from each other and from normal tissues.
However, comparison of the observed gene expression data often
reveals significant biases in classification schemes.

Recently, gene expression microarray analysis of human lung
tissue has been used in an effort to identify biomarkers, distin-
guish disease subtypes, and generate candidates for further
genetic and biological studies. Spira and colleagues reported
genome-wide expression profiling of subjects with severe emphy-
sema undergoing lung volume reduction surgery (13). These
studies identified gene expression markers for severe emphysema
as well as positive response to surgery. Golpon and coworkers
used a similar approach and identified gene expression bio-
markers distinguishing patients with a1-antitrypsin deficiency
(10). As with most disease-focused microarray studies, there
has been a general lack of consistency in the identification of
COPD gene expression biomarkers. One notable exception is
EGR1. EGR1 was identified in a microarray study as a gene
overexpressed in subjects with emphysema by Zhang and col-
leagues (14). Subsequently, Ning and coworkers, using a com-

Figure 4. Biomarkers for both

discrete and quantitative phe-
notypes. Shown are signal in-

tensity measurements for 22

probe sets representing well-

annotated genes (among 31
probe sets) identified as signif-

icantly different between cases

and controls and significantly

correlated with both quantita-
tive phenotypes (FEV1%pre-

dicted and FEV1/FVC).

Figure 3. Distribution of quantitative biomarkers. Venn diagram
showing relationships for biomarkers of quantitative COPD phenotypes

(FEV1%predicted and FEV1/FVC) at significance levels of P , 0.05 (top)

or P , 0.01 (bottom).
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bined microarray/SAGE approach, validated EGR1 induction
associated with COPD severity (12). Ning and colleagues went on
to show that EGR1 appears to contribute to disease pathogenesis,

as it can regulate matrix remodeling potential through fibroblast
protease production. Interestingly, we find no evidence of dif-
ferential expression for EGR1 in our population with regard to
either discrete or quantitative phenotypes.

We have recently used an integrated genomics approach to
identify SERPINE2 as a candidate COPD susceptibility gene
(15). These data indicated that SERPINE2 expression was
significantly correlated with quantitative COPD phenotypes in
the data set of Spira and coworkers (13). No probe sets for
SERPINE2 passed the repeated criteria used in this current
study to be defined as gene expression biomarkers. However,
we did find significant association for each of the three SER-
PINE2 probe sets for individual quantitative traits (227487_s_at,
rFEV1%predicted 5 20.36833, P 5 0.0061; 212190_at,
rFEV1%predicted 5 20.28406, P 5 0.037; 236599_at, rFEV1/FVC 5

Figure 5. Gene ontology analysis.
Ontologic categories significantly

(EASE score , 0.05) overrepre-

sented in (A) discrete, (B) quantita-
tive, or a (C) union of COPD

biomarkers. Given are GO category

name and number, the percentage

of genes within the category (plot-
ted, with value) and the EASE score

for the category. Open bars, all

genes tested; shaded bars, COPD

biomarkers.

TABLE 3. CLASS PREDICTOR SIZE AND ACCURACY

No. of Probe sets False Positive False Negative Sensitivity Specificity

84* 1 0 100 93.33

74† 3 2 88.88 80

21‡ 2 2 88.88 86.66

40 0 0 100 100

* Probe sets derived from union of markers of discrete and quantitative

phenotypes.
† Probe sets derived from markers of quantitative phenotypes only.
‡ Probe sets derived from markers of discrete phenotype only.
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20.28908, P 5 0.034). These data are consistent with our previ-
ous observations, revealing robust and consistent increases in
SERPINE2 gene expression in the lungs of subjects with airflow
obstruction.

In the studies described here, we report the identification of
a molecular signature for discrete and quantitative COPD
phenotypes through the generation and analysis of microarray
data from human lung tissue. We used a repeated approach for
data analysis; gene expression level (signal intensity) values
were extracted from raw data files using both nonnormalized

(MAS5) and normalized (RMA) approaches, Frequentist
(SAM) and Bayesian (BADGE) statistical methods were used
to test for significant associations between gene expression and
discriminate phenotypic variables (e.g., disease versus control),
and linear (Pearson) and rank (Spearman) correlations were
used to test for significance with continuous phenotypic varia-
bles (e.g., FEV1%predicted, FEV1/FVC). All analysis methods
were repeated for each probe set and signal intensity data set.
Results were summarized where data consistently implicated an
association between gene expression and the disease variables.
Initially, we identified genes differentially expressed between
cases and controls, as has been performed in previous studies. In
principle, differentially expressed genes (i.e., genes that areTABLE 4. CORRELATION IN EXPRESSION PATTERNS BETWEEN

MICROARRAY AND qPCR DATA

Gene Correlation (r, GAPDH) P Value

KLF8 0.793 P , 0.05

CYYR1 0.674 P , 0.05

AMIGO2 0.662 P , 0.05

HIF3A 0.612 P , 0.05

RUNX1T1 0.600 P , 0.05

KITLG 0.591 P , 0.05

SEMA6D 0.585 P , 0.05

DAAM1 0.545 P , 0.05

KIT 0.518 P , 0.05

HPGD 0.512 P , 0.05

IREB2 0.488 P , 0.05

MRPS25 0.468 P , 0.05

ZNF207 0.450 P , 0.05

ARHGAP 0.435 P , 0.05

CROP 0.416 P , 0.10

QKI 0.400 P , 0.10

SERPINB9 0.399 P , 0.10

PTCH 0.357 P , 0.10

C1QTNF7 0.341 P , 0.10

For a given gene, the RMA-derived signal intensity for each subject was

correlated with the gene expression level determined by qPCR as defined by the

dCt using GAPDH as the endogenous control gene. Listed is the maximum absolute

value correlation coefficient and associated significance value for each gene.

TABLE 5. DIFFERENTIAL EXPRESSION ANALYSIS BETWEEN
CASES AND CONTROLS BY qPCR

Gene Fold-Change P Value

RUNX1T1 0.126 P , 0.10

KITLG 0.130 P , 0.10

ZF10 0.211 P , 0.05

ARHGEF 0.266 P , 0.10

ARHGAP 0.333 P , 0.05

CYYR1 0.334 P , 0.05

KLF8 0.336 P , 0.05

HIF3A 0.384 P , 0.05

ZNF207 0.399 P , 0.10

KIT 0.434 P , 0.10

C1QTNF7 0.479 P , 0.05

CIRBP 0.479 P , 0.05

HPGD 0.547 P , 0.05

PHACTR2 1.716 P , 0.10

CTSK 2.198 P , 0.05

SERPINB9 2.398 P , 0.05

For a given gene, differential expression between cases and controls was

calculated using the mean and standard deviation of the dCt values for each

subject in a class. Listed is the highest significance level for each gene along with the

associated fold-change.

Figure 5. (Continued ).
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expressed more in one group than another) should provide the
highest predictive power, yet methods developed to date fall
short in their ability to predict the status of known samples. The
identification of genes differentially expressed in the presence
or absence of COPD in our data set appeared to be driven by
a subset of the subjects and was potentially biased due to the
small sample size (used only 33 of 56 subjects) and phenotypic
heterogeneity. In addition, we performed an assessment of gene
expression changes associated with quantitative changes in lung
function. This allowed us to use the entire data set and control
for phenotypic heterogeneity as defined by FEV1%predicted or
FEV1/FVC. We suggest that the combined set of genes identi-
fied in these studies represents a robust molecular signature for
discrete and quantitative COPD phenotypes.

Finally, we assessed the utility of our methods and results to
predict COPD in a separate data set. Biomarkers were developed
using our heterogeneous subject population, containing individuals
with wide-ranging levels of airflow obstruction. We tested these
biomarkers in a more homogeneous population composed of
subjects with severe emphysema (13). Using the 254 informative
probe sets identified in our subjects, 84 of which were available
in the data set of Spira and colleagues, we had 97% predictive
accuracy and 100% sensitivity. This represents the first gene ex-
pression array biomarker for COPD validated in an independent
population. In addition, we discovered a group of 40 of these probe
sets (representing 38 genes) with 100% predictive accuracy.

Even though the establishment of a validated gene expression
biomarker for COPD is a significant achievement, the current
study has limitations. Due to the varying distribution of airflow
obstruction in our study cohort, we chose to design analyses based
on quantitative spirometry measures as opposed to GOLD
criteria, as recently reported by others (12). We classified cases
on the basis of general criteria for significant airflow obstruction
characteristic of COPD, including FEV1 , 70% predicted and
FEV1/FVC , 0.7, while controls showed no evidence of signif-
icant airflow obstruction (FEV1 . 80% predicted, FEV1/FVC .

0.7). Of course, one must consider variability in the measurement
of quantitative traits such as lung function that may contribute to
reliability of marker detection. Further, the presence of emphy-
sema by radiology/surgical pathology was not thoroughly
assessed in a majority of our subjects. The phenotypic heteroge-
neity of COPD may be the cause of limited replication of previous
results in the current study, and in previous studies in general.
Other confounding factors that limit the reliability of these types
of studies include tissue sample heterogeneity and small number
of samples relative to the number of genes tested. The effect of
phenotypic heterogeneity upon marker identification, at least in
theory, can be minimized by assessing quantitative variables of
disease severity. We applied such an approach here to both offset
the obvious disease heterogeneity in our subjects and to sub-
stantially increase our sample size (n 5 33 versus 56). A sample
size of 56 subjects makes this the largest gene expression bio-
marker study of COPD published to date. In addition, cigarette
smoke can have broad and significant effects on gene expression.
The genome-wide response to cigarette smoke exposure in
airway epithelial cells has been reported (33). It will be of great
interest to examine the relationships between gene expression
changes resulting from cigarette smoke exposure and those
consistently associated with COPD phenotypes as defined in
the current study. Those genes that are responsive to smoke and
differentially expressed in diseased individuals may represent
true susceptibility factors.

Another potential limitation of the current study is the
diagnosis of tumors in most subjects. Lung cancer and COPD
are both typically found in smokers, and the diagnosis of lung
cancer can serve as an independent predictor for COPD, in-

dependent of smoking history. In this study, the presence of
malignant, or even benign, tumors may result in significant effects
on gene expression in the distant, histologically normal lung tissue
used for our gene expression studies (see Ref. 34). The vast
majority of our subjects (80%) were diagnosed with either
squamous cell carcinoma (34%) or adenocarcinoma (46%). We
tested for and found no consistent differences in gene expression
between tumor types within cases, within controls, or indepen-
dent of lung function. Further, COPD biomarkers were not
significantly differentially expressed between tumor types in
any independent test. Finally, the potential influences of tumor
upon gene expression did not limit the ability of our biomarkers to
serve as successful class predictors in tumor-free patients with
COPD. These data suggest that any effects of the tumor upon
gene expression in distant, histologically normal tissue were not
consistent or robust.

While there is no indication that the genes that we identified are
etiological or causative in COPD pathology, an analysis of bio-
marker function using ontological assessment identifies an over-
representation of genes involved in DNA binding and transcription
factor activity. This was unanticipated and is independently
observed for biomarkers of either discrete or quantitative COPD
phenotypes. Historically, there has been only modest investigation
of the involvement of transcriptional regulators in COPD patho-
genesis. Notable exceptions include the previously identified and
validated COPD expression biomarker gene EGR1 (12, 14), and
the recent identification of Nrf2 as a genetic susceptibility factor for
experimental emphysema in mice (35). Interestingly, histone
deacetylase activity (HDAC2) has recently been implicated in
gene dysregulation in human patients with COPD (36). The
identity and regulatory function of individual biomarker genes
identified in this study are not clear, but include a number of zinc
finger–binding domain containing proteins.

We used a rigorous analytical approach for these studies, to
identify the most robust and consistent set of biomarkers for
discrete and quantitative COPD phenotypes. This strategy used
multiple, independent microarray data extraction methods and
repeated statistical testing. This approach is prompted by the
limitations of any single analytical method when applied to
complex, disease tissue–associated microarray data sets. This
approach is supported by our successful validation using an
independent COPD lung tissue data set. The genes we identi-
fied and validated have no previously described roles in pro-
cesses relevant to disease pathogenesis, so they are more likely
to be true markers rather than etiological. The identification of
these markers may help to facilitate the development of non-
invasive methods (such as genetic tests) that facilitate diagnosis,
classification of disease subtypes, and/or provide a means to
define response to therapeutic intervention. Further studies will
be required to determine if any of these biomarker genes play
a role in human COPD susceptibility or pathogenesis.
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