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Abstract: Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential 

(TRP) ion channels, also called thermoTRP’s. Chemosensitivity of thermoTRP’s to certain natural compounds eliciting 

pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent 

chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for 

other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and 

TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious 

cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during 

chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have 

been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-

mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific 

second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a 

broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable 

experimental models. However, progress into TRPA1’s role in pain has received much attention recently. Another ther-

moTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce 

pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP’s 

(TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This 

review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the activa-

tor and inhibitor molecules known to interact with them and modulate their activity. 
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INTRODUCTION 

 Pain is an unpleasant experience resulting from complex 
and interactive series of mechanisms at multiple levels of the 
nervous system. The afferent pain pathway relays pain sig-
nals from the periphery to the brain via the spinal cord by a 
class of nerve fibers called “nociceptors” [181]. Nociceptors 
(C and A ) have peripheral and central terminals originating 
from cell bodies housed in dorsal root ganglia (DRG).  
Peripheral terminals innervate skin and viscera, while  
the central terminals innervate the dorsal horn of the spinal 
cord. Pain perception or nociception is an integration of the 
modulatory events that take place in the periphery (site of 
initial pain), in the dorsal horn (DH) of the spinal cord (pri-
mary processing centers), supraspinal relay centers in brain 
such as the thalamus (secondary processing centers) and the 
corticolimbic structures. Acute and sub chronic pain serves a 
physiological function of warning and withdrawal from 
harmful or noxious stimuli. On the other hand, persistent 
chronic pain associated with inflammatory tissue damage 
and or nerve injury is considered pathological. Pathological 
pain can prolong pain sensation and become maladaptive if 
left unmanaged or untreated. Also, in pathological pain there 
is heightened sensitization of nociceptors due to changes in 
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the milieu that regulates sensory transducers to function to-

wards more damaging pain.  

 A solution to effectively treat pain originating from such 
tissue or nerve damage is to better understand the mecha-
nisms of nociceptive transmission of potential sensory trans-
ducers of pain and their regulation within the nociceptors. 
One such major family of sensory transducers in nociceptors 
belongs to the Transient Receptor Potential (TRP) family of 
cation channels [139, 34]. The uniqueness of these receptors 
is that they render the nociceptors polymodal, responding to 
chemical, thermal and mechanical stimuli. Their unique re-
sponse to temperature has given them the name thermoTRP’s. 
These include members from the subfamily vanilloidTRPV 
(TRPV1, 2, 3 and 4), melastatinTRPM (TRPM8), and an-
kyrin transmembrane proteins TRPA (TRPA1) [45]. Be-
tween them, response to noxious heat is mediated by TRPV1 
and TRPV2, innocuous warm temperature by TRPV3 and 
TRPV4, innocuous cool temperature by TRPM8 and noxious 
cold by TRPA1 [45]. Discovery of thermoTRP’s as molecu-
lar targets for some of the naturally occurring compounds 
that elicit thermal or painful behavior underlies the basis for 
such sensory functions of nociceptors. Much of the past, 
current and future thermoTRP research is based on leads 
obtained from TRPV1, the first cloned thermoTRP member. 
In order to achieve significant analgesia from a state of acute 
or chronic pain following noxious chemical or thermal stim-
uli and tissue damage to nociceptors it is imperative to target 
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a range of thermoTRP’s for developing new therapeutic 
strategies.  

 Several lines of evidence ranging from in vitro and in 
vivo studies in animals to humans have proved TRPV1 to be 
a potential target in nociceptors for the treatment of patho-
logical pain, ranging from inflammation to neuropathies. The 
paradigm that TRPV1 can serve as a target for alleviating 
certain pain modalities has generated interest in expanding 
the search for other thermoTRP’s which will also serve as 
targets for pain relief. This review will focus on current re-
search scenarios highlighting the role of thermoTRP’s in 
nociception, with TRPV1 still the front runner in this search. 
Here we discuss selected thermoTRP’s in the sequence 
TRPV1, TRPV2, TRPA1, TRPM8, TRPV3 and lastly TRPV4 
The selected thermoTRP's represent sensitivity to a range of 
temperatures from noxious heat (TRPV1, TRPV2) and cold 
(TRPA1) to innocuous cool (TRPM8) and warmth (TRPV3, 
TRPV4). 

TRPV1  

 A new horizon in pain research was realized in 1997 
when Julius and colleagues [25] identified the specific recep-
tor responding to the hot chilli pepper active ingredient, cap-
saicin, in subsets of nociceptors. The name vanilloid receptor 
1 (VR1) coined by the group is now re-named TRPV1 under 
the unified nomenclature for the family of TRP cation chan-
nels [34,139]. TRPV1 stands out as the first thermally gated 
cation channel to be discovered in nociceptors. TRPV1 
knockout studies gave clear evidence of the importance of 
TRPV1 in thermal hyperalgesia, bladder function, reduced 

fever response and more [23, 24]. Since its cloning, TRPV1 
has emerged as an important transducer in several settings of 
pain and beyond, an update of which is highlighted in the 
following sections. 

Expression, Physiology and Pathology  

 The expression pattern of TRPV1 has been widely stud-
ied and there now is a comprehensive amount of data avail-
able to define not only its localization but also functional 
expression in physiology and disease. Functional expression 
of TRPV1 among sensory neurons includes somatosensory 
ganglia, namely dorsal root ganglia (DRG), trigeminal gan-
glia and jugular ganglia. TRPV1 is also expressed in nodose 
ganglia [146]. While trigeminal ganglia peripheral terminals 
innervate the face and mouth, the DRG projects its periph-
eral terminals to the rest of the body. Jugular ganglia receive 
the glossopharyngeal nerve which innervates the pharynx 
and tongue. Nodose ganglia receive the vagus nerve whose 
peripheral terminals innervate viscera of the thorax and ab-
domen. The majority of these afferents belong to the C and 
A  class of nociceptors. Peripheral TRPV1 positive termi-
nals are located in layers of skin epidermis, gastrointestinal 
tract (GI), urinary bladder, airways, cardiovasculature and 
oral cavity [146]. In the spinal cord, while the lamina I of 
DH is innervated by a peptidergic subset of TRPV1 positive 
terminals, lamina II is innervated by non-peptidergic TRPV1 
terminals. In the brain TRPV1 terminals are located in the 
solitary tract nucleus and trigeminal nucleus, which receive 
afferent signals via vagal, glossopharyngeal and facial nerves. 
Other areas of the brain with TRPV1 expression have been 
reported. They include the ventral medulla, periaqueductyl 

Table 1. Distribution of TRPV1, TRPV2, TRPA1, TRPM8, TRPV3 and TRPV4 

ThermoTRP Neuronal Distribution Non-Neuronal Distribution 

TRPV1 dorsal root ganglia; trigeminal ganglia; jugular ganglia; nodose 

ganglia; solitary tract nucleus; trigeminal nucleus; ventral me-

dulla; periaqueductyl grey; dorsal raphe nucleus; locus coer-

uleus; 

hypothalamus; thalamus; hippocampus; ventral tegmental area; 

cerebellum; substantia nigra; somatosensory cortex 

epithelial cells of the GI, airway and bladder; epidermal kerati-

nocytes from human skin; enterocytes; liver; vascular endothe-

lium; mast cells; smooth muscle; fibroblasts; peripheral mono-

nuclear blood cells. 

TRPV2 dorsal root ganglia; trigeminal ganglia; nodose ganglia; spinal 

cord Lissauer's tract, dorsal column nuclei, posterior column, 

ventral horn, motoneurons, sympathetic preganglionic neurons, 

central canal ependymal; hypothalamic paraventricular nuclei, 

suprachiasmatic nuclei, supraoptic nuclei, oxytocinergic and 

vasopressinergic neurons; cerebral cortex 

vascular and cardiac myocytes; mast cells; astrocytes; spleen; 

lung; intestine; vas deferens 

TRPA1 dorsal root ganglia; nodose ganglia; trigeminal ganglia; superior 

cervical ganglion; geniculate ganglia 

lung fibroblasts; hair cell stereocilia; intestine; skeletal muscle; 

heart; immune system 

TRPM8 dorsal root ganglia; trigeminal ganglia; nodose ganglia prostate; urogenital tract; taste papillae; testis; scrotal skin; 

bladder urothelium; thymus; breast; ileum; 

TRPV3 dorsal root ganglia; motor neurons; superior cervical ganglia; 

nigral dopaminergic neurons 

keratinocytes; hair follicle sheath cells; skeletal muscle; pitui-

tary; intestine 

TRPV4 dorsal rrot ganglia; trigeminal ganglia; circumventricular or-

gans; choroids plexus; cerebral cortex; thalamus; hippocampus; 

cerebellum; hypothalamus 

vascular aortic endothelium; blood–brain barrier endothelium; 

renal collecting duct; vascular smooth muscle; cochlea; kerati-

nocytes 
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grey, dorsal raphe nucleus, locus coeruleus, hypothalamus, 
thalamus, ventral tegmental area, substantia nigra, hippocam-
pus, cerebellum and somatosensory cortex [193]. However, 
the physiological function of TRPV1 in these areas is still in 
its infancy with respect to making major claims.  

 The non-neuronal distribution of functional TRPV1 in-
cludes epithelial cells of the GI, airway and bladder; epider-
mal keratinocytes from human skin; enterocytes; liver; vas-
cular endothelium; mast cells; smooth muscle; fibroblasts; 
and peripheral mononuclear blood cells. Despite such a wide 
distribution pattern, nociceptors most abundantly express 
TRPV1, being in the order of more than 30 times that in 
other tissues [25]. Such abundance in nociceptors confers to 
TRPV1 a primary physiological role in transducing pain 
upon its activation by noxious chemical or thermal stimuli 
from the external environment. It also confers a role in medi-
ating pathological pain signals resulting from the changing 
expression and or sensitivity of the receptor to the external or 
internal environment during disease.  

 One component of TRPV1-mediated neuronal dysfunc-
tional states of pain originates at peripheral terminals of no-
ciceptors innervating skin and viscera. These include condi-
tions like neurogenic and non-neurogenic inflammation (ther-
mal hyperalgesia, hyperesthesia and allodynia), neuropathy 
(trigeminal neuralgia, post-herpetic neuralgia, diabetic neu-
ropathy and nerve injury), cancer pain (mastalgia and bone 
sarcomas), inflammatory joint pain (osteoarthritis), cardiac 
pain ( heart pain, cardial ischemia), bladder diseases (hyper-
reflexia, interstitial colitis and detrusor overreactivity), GI 
diseases (inflammatory bowel, Crohn’s, ulcerative colitis and 
gastro-oesophageal reflux), vulvodynia, lung diseases (chro-
nic cough and particulate matter-induced apoptosis), head-
ache (cluster headache and migraine) [37, 75, 205- 207]. 

 The other component of TRPV1 mediated pain includes 
central sensitization at the spinal level, where nociceptors 
terminate in the superficial DH. Intradermal injection of cap-
saicin results in primary hyperalgesia to heat and mechanical 
stimuli in the vicinity of the injection site [113, 188, 189]. 
This is followed by the development of secondary mechani-
cal hyperalgesia and allodynia in an area surrounding the site 
[113, 216]. Pain due to secondary hyperalgesia and allodynia 
involve sensitization of nociceptive terminals in the dorsal 
horn. Capsaicin stimulates nitric oxide production via ill-
defined mechanisms, which, in turn, initiates the release of 
glutamate from terminals of vanilloid-sensitive nociceptors 
in dorsal horn [177]. Glutamate activates NMDA receptors 
(NMDAR) on neurons of the dorsal horn, including spi-
nothalamic tract cells. During capsaicin-induced hyperalge-
sia, there are enhanced responses (sensitization) to glutamate 
activation of NMDAR [51, 53]. The positive feedback by 
glutamate on vanilloid-sensitive nerve endings in dorsal horn 
facilitates the release of SP [120]. Dorsal horn neurons in-
volved in pain transmission express receptors (NK-1Rs) for 
SP, which is upregulated during inflammatory hyperalgesia 
[129, 179]. NK-1R antagonists prevent the sensitization of 
spinothalamic tract neurons after intradermal capsaicin in-
jection [52]. Therefore, NMDAR- and NKR-mediated mecha-
nisms facilitate central sensitization of dorsal horn during 
development of capsaicin-induced hyperalgesia. However, 

mechanisms for TRPV1-mediated thermal hyperalgesia dur-
ing neuropathic pain could not be confirmed, as there was 
increased TRPV1 expression in uninjured neurons [171]. 
Also, tactile allodynia prevails in a neuropathic pain model 
where C nociceptors are ablated by capsaicin, largely due to 
recruitment of de novo TRPV1-positive A  afferents for pain 
signalling following central sensitization [171]. The role of 
NMDAR in central sensitization during peripheral hypersen-
sitivity-mediated visceral pain involves a TRPV1-mediated 
component in parallel to mechanisms described for periph-
eral thermal-hyperalgesia [234]. However, a supraspinal 
regulation of this condition is also in place, whereby NMDAR 
activation in the rostral ventro-medial medulla maintains the 
central sensitization at the spinal cord via its descending 
modulation. Visceral pain is also regulated by other supra-
spinal areas, like the cortex and hypothalamus, with TRPV1-
positive neurons. These areas control visceral afferent noci-
ceptive processing during diseases associated with emotional 
states like stress and anxiety [193]. A direct or regulatory 
role for TRPV1 in such disease states needs further investi-
gation. 
 In addition to the importance of receptor distribution, two 
other basic rules for heightened TRPV1-mediated pain proc-
essing by the nociceptors can be sensitization and upregula-
tion of expression during disease. An increase in TRPV1 
expression occurs in primary sensory neurons after periph-
eral inflammation and requires retrograde transport of nerve 
growth factor (NGF). NGF pathways of increased TRPV1 
expression include activation of p38 mitogen-activated pro-
tein kinase (MAPK) and phosphoionositide 3 kinase (PI3K) 
and phospholipase C (PLC) [18, 30, 93, 136, 194, 242, 244]. 
Moreover, protein kinase C (PKC) activation induces rapid 
delivery of TRPV1 channels to the cell membrane, contribut-
ing to the sensitizing effect of this kinase on TRPV1 [142]. 
Increases in the trafficking of TRPV1 to the periphery con-
tribute to inflammatory pain hypersensitivity [93], a problem 
that can be easily targeted via therapeutic blocking by 
TRPV1 antagonists. It is the TRPV1 sensitization by a myr-
iad of endogenous activators and modulators that has drawn 
a great deal of attention, aimed at finding a comprehensive 
approach to silencing the receptor during specific modalities 
[170]. Another aspect of TRPV1 is the paradoxical state of 
desensitization following its activation by agonists, whereby 
the desensitized TRPV1 represents analgesia. Thus, while 
newly developed antagonists present a promising avenue to 
block TRPV1-mediated pain, the age old formula of TRPV1 
desensitization by its agonists has not lost its importance. 
The following sections will address these topics.  

Activation and Regulation 

Endogenous Activators  

 A wide variety of endogenous substances that can acti-
vate TRPV1 have been discovered. These include lipids such 
as N-arachidonoyldopamine (NADA), oleoylethanolamide 
(OEA) and N-oleoyldopamine (NODA) [2, 28, 82, 219] and 
their metabolite anandamide [246], which is also a cannabi-
noid receptor ligand [44].  

 Other lipid mediators include metabolites of the lipoxy-
genase (LOXs) pathway, namely, 12- and 15-(S)-hydroper-
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oxyeicosatetraenoic acids (12- and 15-HPETE), 5- and 15-
(S)-hydroxyeicosatetraenoic acids (5- and 15-HETE); leukot-
riene B4 [85, 183] polyamines (spermine). These endoge-
nous ligands contribute to TRPV1-mediated pain in disease 
where the receptor is sensitized via a variety of signaling 
cascades, as described in the next section.  

Sensitization via Signaling Molecules 

 Prostaglandin E2 (PGE2), bradykinin, NGF, extracellular 
ATP, glutamate, trypsin, prolactin, prokineticin2 (Bv8) are 
pro-inflammatory mediators that activate their respective 
receptors EP prostaglandin, B1/B2 bradykinin, high-affinity 
TrkA NGF receptor, P2Y2, mGlu 5, PAR-2, PRLR and PKR2 
G protein-coupled receptors [48, 96, 148, 221]. Activation of 
these receptors in nociceptors leads to activation of phos-
pholipase C (PLC), phospholipase A2 (PLA2), adenylyl cy-
clase, protein kinase C (PKC) and protein kinase A (PKA) 
signaling pathways. These pathways result in sensitizing 
TRPV1 indirectly via phosphorylation [96]. PLC hydrolyzes 
phosphatidylinositol 4,5-bisphosphate (PIP2) and hydrolysis 
of PIP2 also releases inositol 1,4,5-trisphosphate (IP3) and 
diacylglycerol (DAG), which activate PKC, leading to TRPV1 
phosphorylation [83]. Proposed relief of TRPV1 from PIP2 
mediated tonic inhibition [30] is debatable as PIP2 was 
shown to sensitize TRPV1 when applied intracellularly [173, 
194]. Other pathways that potentiate TRPV1 are activation 
by PI3K [244] either via calmodulin-dependent kinase II 
(CaMKII), PKC, or ERK [244] or PKA [185]. The PLA2

pathway produces arachidonic acid (AA), which can be con-
verted to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) 
by 12-lipoxygenase (LOX). HPETE activates TRPV1 [183]. 
Inhibition of PLC, PKC, PLA2, and PKA reduce peripheral 
nociception [61, 79]. Sensitization of TRPV1 via a multitude 
of signaling cascades during disease poses a challenge to 

therapy with agonists, while antagonists would prove more 
beneficial. Pros and cons of potential agonists and antago-
nists in therapy are discussed in sections below.

Mechanisms of Desensitization- the Paradox with Activa-

tion 

 TRPV1 can be desensitized following its activation and 
desensitization is calcium and phosphorylation-state depend-
ent [212]. Prolonged or repeated application of capsaicin 
induces a desensitization of TRPV1, representing analgesia, 
a paradox in pain biology. The calcium dependence of 
TRPV1 desensitization was reproduced in a non-neuronal 
context, where desensitization of TRPV1 expressed in Xeno-
pus oocytes required the presence of extracellular calcium 
[25]. Capsaicin-induced desensitization is a complex process 
with varying kinetic components. A fast component appears 
to be dependent on intracellular calcium, voltage, and cal-
cineurin activity, while a slower component appears at least 
to be ATP dependent [49, 110, 167, 215]. Further complexity 
is overlaid by interactions between factors such as voltage-
dependent calcium influx and calcium-dependent phospha-
tase activity [151, 138, 163]. Recently, advances have been 
made at the molecular and biochemical level to understand 
how phosphorylation by protein kinases regulates TRPV1 
desensitization. 
 The cAMP-dependent PKA signal pathway decreases 
desensitization of TRPV1 wild type. Disruption of phos-
phorylation at potential PKA phosphorylation site S116D 
(replacing serine (S) residue with alanine (A)) [16, 137] pre-
vented desensitization. Unlike PKA-dependent reversal of 
TRPV1 tachyphylaxis by short repeated applications of cap-
saicin, acute desensitization of wild type (WT) TRPV1
evoked by a prolonged capsaicin application remained unaf-
fected by PKA. 

Table 2. Ligands for TRPV1, TRPV2, TRPA1, TRPM8, TRPV3 and TRPV4 

ThermoTRP Non-endogenous Endogenous 

TRPV1 vanilloids (capsaicin, resiniferatoxin, piperine, eugenol, gin-

gerols, capsiate, NGX-4010, WL-1002); non-vanilloids (ginse-

nosides, cannabidiol, evodia compounds, unsaturated 1,4-

dialdehyde terpenes, triprenyl phenol, polygodial and drimanial, 

unsaturated 1,4-dialdehyde sesquiterpenes, 2-APB, camphor) 

N-arachidonoyldopamine (NADA); oleoylethanolamide (OEA); 

N-oleoyldopamine (NODA); anandamide; 12- and 15-(S)-

hydroperoxyeicosatetraenoic acids (12- and 15-HPETE), 5- and 

15-(S)-hydroxyeicosatetraenoic acids (5- and 15-HETE); leu-

kotriene B4; polyamines (spermine) 

TRPV2 2-APB  

TRPA1 isothiocyanates; cinnamaldehyde; THC; acrolein; eugenol; 

methyl salicylate; icilin; gingerol; URB597 

calcium 

TRPM8 terpenes (menthol, eucalyptol, Menthone, geraniol, linalool, 

menthyl lactate, trans- and cis-p-menthane-3,8-diol, isopulegol, 

hydroxy-citronellal); non-terpenes (Icilin (AG-3–5), WS23, 

WS3, Frescolat ML, Frescolat MGA, Cooling-agent 10) 

lysophospholipids 

TRPV3 carvacrol; thymol; eugenol; 6-tert-butyl-m-cresol; dihydro-

carveol; carveol; (+)-borneol; camphor; menthol; 2-APB; 

diphenylboronic anhydride (DPBA); cinnamaldehyde 

TRPV4 synthetic phorbol esters; bisandrographolide A (BAA) anandamide (AEA); arachidonic acid (AA); epoxyeicosatrienoic 

acid (EET) metabolites (5,6-EET; 8,9-EET; 11,12-EET); N-acyl 

taurines (NAT’s) 
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 Mutation of a single amino acid in transmembrane do-
main 6 (TM6) of TRPV1, Y671K or Y671R (replace tyro-
sine (Y) with lysine (K) or arginine (R)), dramatically altered 
the high relative Ca

2+
 permeability and desensitization prop-

erties of the receptor [137]. Both mutations Y671K and 
Y671R showed a decrease in relative permeability for Ca

2+

over Na
+
 ions and the mutated receptor did not desensitize at 

all.  

 Interestingly, calcium entry following capsaicin applica-
tion is found to form a CaM/Ca

2+
 complex with a 35-aa seg-

ment of TRPV1 and cause desensitization [154]. This was 
confirmed by disrupting of a 35-aa segment in TRPV1, 
which inhibited capsaicin-induced tachyphylaxis and acute 
desensitization [154]. 

 Reversal of TRPV1 desensitization as a positive feed-
back-loop for regaining activity was shown to be mediated 
by CaMKII or PKC [97, 127, 128]. Mutation of TRPV1 at 
the CaMKII consensus sites of TRPV1 phosphorylation 
S502 or T704 showed lack of agonist binding. Recovery of 
the sensitivity of desensitized TRPV1 was achieved via
PKC  mediated phosphorylation at S800 residue [128]. 

 Current knowledge points to the conclusion that phos-
phorylated TRPV1 is active and sensitized, while its de-
phosphorylated state represents desensitization. Phosphoryla-
tion of TRPV1 by kinases appears to be critical for its sensi-
tization, and dephosphorylation by calcineurin appears to be 
critical for its desensitization. However, further work is still 
needed to identify the site of de-phosphorylation that deter-
mines inactivation of TRPV1. This will make available the 
molecular determinant that can overcome the influence of 
the milieu of modulators that can sensitize TRPV1 via phos-
phorylation in disease. These models can be applied to spe-
cific disease states that can alter the milieu of relevant sec-
ond messenger systems.  

Therapeutic Potential- Agonists Versus Antagonists 

 This section describes compounds that have been con-
firmed as TRPV1 agonists or antagonists following the clon-
ing of the receptor, in addition to traditional use of some in 
pain therapy. Other pharmacological effects in addition to 
TRPV1-mediated mechanisms are not described here. How-
ever, some compounds acting as agonists or antagonists for 
other thermoTRP’s are included. 

Vanilloids 

 TRPV1 had derived its maiden name Vanilloid Receptor 
subtype 1 (VR1) [25] from the fact that it was cloned with 
the help of capsaicin (trans-8-methyl-N-vanillyl-6-nonena-
mide), which belongs to the vanilloid class of compounds 
composed of the vanillyl moiety in their chemical structure. 
Capsaicin to date has been shown to selectively activate 
TRPV1, thus making it one of the most prolifically used spe-
cific pharmacological tools in pain research. Much earlier to 
the cloning of TRPV1, the hallmark agonist capsaicin has 
been traditionally in use for pain relief of peripheral origin in 
different disease settings like chemical or thermal hyperalge-
sia in neurogenic inflammation, herpes zoster, neuropathy, 
paresthetica, thoracotomy, mastectomy, amputation, and skin 
cancer [37, 64, 75, 206, 209]. Other disease states of visceral 
origin that have found capsaicin useful are bladder detrusor 

instability, hyperreflexia and migraine. Resiniferatoxin, a 
phorbol ester with the vanillyl moiety, is an ultrapotent ago-
nist of TRPV1 and has also been under intense clinical trial 
evaluation for relieving incontinence [38, 187]. Alkaloid 
piperine (piperinoyl-piperidine), the pungent ingredient of 
black or white pepper, reduces intestinal motility in vivo in 
mice by a mechanism that seems to involve capsaicin-
sensitive neurons [91]. Eugenol, a phenol with vanillyl moi-
ety is derived from clove oil and cinnamon leaf oil [59] and 
used for toothache, pulpitis, and dentin hyperalgesia [157, 
158]. However, eugenol is a nonselective TRPV1 agonist as 
it is also activates other thermoTRP’s, namely TRPA1 and 
TRPM8 [11]. The other class of phenol compounds with 
vanillyl moiety that are derived from ginger include gin-
gerols ([8]-gingerol and [6]-gingerol) used in traditional 
Chinese medicine for headaches, nausea, colds, arthritis, 
rheumatological disorders and muscular discomfort [43, 
175]. Gingerols also activate TRPA1 [11]. In addition to 
gingerols, [6]-shogaol [59] is also used for its analgesic 
properties. Other less effective compounds that are TRPV1 
agonists include zingerone, a phenolic ketone metabolite of 
gingerols, and Capsiate (4-hydroxy-3-methoxybenzyl (E)-8-
methyl-6-nonenoate) obtained from a non-pungent cultivar 
of red peppers (as C. annuum or C. frutescens), named CH-
19 Sweet [88, 104]. Typical routes of administration for va-
nilloids include topical, visceral instillations, injections to 
epidural or subarachnoid space in the case of deep tissue 
pain, perineural route in neurogenic inflammation. Such 
treatment regimens mainly include reversible and or irre-
versible loss of capsaicin-sensitive C-fibers as a mechanism 
for analgesic effect. Pungency and irritation of vanilloid 
compounds have been the major drawbacks in pain therapy. 
However, synthetic analogs of some of the naturally occur-
ring vanilloids have been developed to overcome the pun-
gency factor, such as NGX-4010 (NeurogesX), which is in 
phase III trials for postherpetic neuropathy, HIV-associated 
sensory neuropathy; WL-1002 (Winston Laboratories) is 
under clinical trial for cluster headache, migraine and os-
teoarthritic pain; compound 4975 (Anesiva) is under clinical 
trial for neuropathic and musculoskeletal pain. 

Non-vanillyl Compounds  

 The list of TRPV1 agonists has increased several fold in 
recent years, to include non-vanillyl naturally occurring 
agents, some of which are partial antagonists such as the 
Ginseng derivatives ginsenosides [21]; Cannabidiol, a can-
nabinoid [133]; Evodia compounds (evodiamine and rutae-
carpine), alkaloids from Evodia rutaecarpa fruits [78, 106-
109, 164]; unsaturated 1,4-dialdehyde terpenes [196]; tripre-
nyl phenol (scutigeral), from Albatrellus ovinus [74, 208]; 
jellyfish and cnidarian envenomations [41]; spider toxins 
[95] and polygodial and drimanial, unsaturated 1,4-dial-
dehyde sesquiterpenes isolated from the bark of Drymis win-
teri [9]. However, additional studies are necessary to confirm 
the precise nociceptive or anti-nociceptive mechanism/s 
through which some of these compounds interact or modu-
late the TRPV1 channel.  

TRPV1 Antagonists 

 Since agonists are able to activate nociceptors and cause 
pain, a paradox that makes their selection for some pain 
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therapies a difficult choice, specific antagonists of TRPV1 
have been developed, with the aim to overcome the initial 
pain factor associated with using agonists. Capsazepine, a 
first generation TRPV1 antagonist, has been shown to be less 
promising than expected due to its poor pharmacokinetics 
[218]. In addition to this capsazepine has shown non-selective 
blockade of other ion channels such as voltage-sensitive cal-
cium channels [153], nicotinic acetylcholine receptors [121] 
and TRPM8 [14]. Several pharmaceutical companies like 
GlaxoSmithKline, Novartis, Astra Zeneca, Amgen, Johnson 
& Johnson, Neurogen/Merck, Renovis/Pfizer and so on have 
launched attempts to develop second generation TRPV1 an-
tagonists and some of their concerted efforts are beginning to 
bear fruit as clinical trials are in progress. A number of these 
have been developed, including iodo-RTX, SB705498, 
SB366791, BCTC, NGD-8243, AMG-517, AMG-9810, A-
425619, KJM429, JYL1421, JNJ17203212, NGX-4010, 
WL-1001, WL-1002, A-4975, and GRC-6127. Some of these 
have reached Phase I and or Phase II clinical trials.  

 SB-705498 (GlaxoSmithKline) [169] successfully com-
pleted Phase I clinical trials, whereby it reduced capsaicin-
evoked flare and heat-evoked pain in non-sensitized skin. 
UVB-evoked inflammation was also reduced by SB705498. 
Presently, Phase II trials for the acute treatment of dental 
pain and migraine is underway (ClinicalTrials.gov identifier: 
NCT00269022). A-425619 (Abbott) [1-isoquinolin-5-yl-3-
(4-trifluoromethyl-benzyl)-urea] inhibited mechanical allo-
dynia induced by skin incision and reversed mechanical hy-
peralgesia in rat models of chronic and neuropathic pain [56, 
77]. AMG-9810 (Amgen) [(E)-3-(4-t-Butylphenyl)-N-(2, 3-
dihydrobenzo[b] and dioxin-6-yl) acrylamide] reverted ther-
mal and mechanical hyperalgesia induced by complete Fre-
und's adjuvant (CFA) [66]. BCTC [N-(4-tertiarybutylphenyl)-
4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-
amide] and Nrgn (Neurogen) significantly attenuated thermal 
and mechanical hyperalgesia in the chronic constriction in-
jury (CCI) model of neuropathic pain and CFA model of 
inflammatory pain in rats [111]. GRC 6127 (Glenmark), an 
orally active antagonist, can reverse both CFA-induced and 
partial sciatic-nerve legation-induced mechanical hyperalge-
sia in the rat [111]. JNJ-17203212 (Johnson&Johnson) re-
lieved osteolytic sarcoma-related bone pain in the mouse 
[205]. Similar to capsazepine and iodo-RTX, JNJ-17203212 
can block citric-acid-induced cough in guinea pigs [205]. 
Other recent literature reports on TRPV1 antagonists include 
2-(4-pyridin-2-ylpiperazin-1-yl)-1H-benzo[d]imidazole com-

pound 46ad [156]; 6-aryl-7-isopropylquinazolinones [40]; 
5,6-fused heteroaromatic urea A-425619.0 [55]; 4-amino-
quinazoline [243]; halogenated thiourea compounds 23c and
31b [98]; N-tetrahydroquinolinyl, N-quinolinyl and N-iso-
quinolinyl carboxamides [233]; pentacyclic triterpene and 
oleanolic acid [125]. 

 Despite these promising developments, TRPV1 antago-
nists are beset with problems of side-effects, largely arising 
from interference with the physiological function of TRPV1-
expressing cells. Recent evidence has shown that orally ac-
tive TRPV1 antagonists can induce gastric ulcer formation, 
hypertension, hyperthermia and central nervous system ef-
fects [76, 207]. It remains to be seen in clinical trials whether 
or not the TRPV1 antagonists have favorable therapeutic 
actions. Some patients on TRPV1 antagonists for pain might 
be at risk of the possible masking of ischemic pain of cardiac 
origin, as C-fibers innervating the heart are blocked [162]. 
Thus TRPV1-ligand effects can be unpredictable in patients 
with complex cardiovascular problems. At present, it is un-
clear to what degree these findings apply to humans. Also, 
TRPV1 antagonists which cross the blood brain barrier may 
cause CNS side effects. 

 In addition to the use of agonists or antagonists, sub-
stances able to modulate TRPV1 (such as at phosphorylation 
sites) or to decrease the production of endogenous ligands 
could also be drugs of clear interest. However, clinical stud-
ies with these modulators are still lacking and such studies 
are critical to demonstrate the efficacy of such molecules in 
controlling certain pain disorders. While from the above dis-
cussion the clinical value of modulation of the first ther-
moTRP member TRPV1 as a target in some pain settings is 
clear, other thermoTRP members have also drawn recent 
attention.  

TRPV2 

 Residual noxious heat sensation at temperatures above 
52

o
C in TRPV1 knockout mice led to the discovery of the 

second thermoTRP, originally known as vanilloid receptor 
like protein 1 (VRL-1) and now renamed TRPV2 [22, 140]. 
Since its cloning TRPV2 has emerged as an ion channel with 
distribution and functions not only in nociceptors but also in 
other tissues. 

Expression, Physiology and Pathology  

 TRPV2 is localized in medium to large diameter DRG, 
Trigeminal ganglia and Nodose ganglia neurons representing 

Table 3. Cell Signaling Modulators of TRPV1, TRPV2, TRPA1, TRPM8, TRPV3 and TRPV4 

ThermoTRP +ve Modulators -ve Modulators 

TRPV1 PKC, PKA, CAMKII, ERK, PI3K calcineurin, calmodulin; PIP2 

TRPV2 IGF-I; AKAP/cAMP/PKA; PI3K; CAMK  

TRPA1 p38 MAPK; ERK; PLC; Artemin pyrophosphate (PPi); polytriphosphate (PPPi) 

TRPM8 PIP2; calcium PKC; PKA 

TRPV3 arachidonic acid and metabolites; PKC  

TRPV4 Src-tyrosine kinase; AQP5; PACSINs; MAP7 WNK1; WNK4 
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the A  and A  nociceptors. TRPV2 distribution in spinal 
cord include Lissauer's tract and laminae I, II, III and IV of 
the DH, dorsal column nuclei, posterior column, ventral horn 
of sections at the lumbosacral junction, ventral horn moto-
neurons, intermediolateral (IML) cell column composed of 
sympathetic preganglionic neurons, ependymal cells lining 
the central canal and astrocytes [3, 22, 87, 115, 241]. Central 
projections of A  nociceptors with TRPV2 in laminae I and 
II may be involved in nociception, although direct in vivo
evidence is still lacking. However, it is known that TRPV2 
expression in trkC subpopulations of adult DRG’s is depend-
ent on NT-3 signaling in development stages [211]. Since 
NT-3 is reported to induce mechanical and thermal hyperal-
gesia followed by mechanical hypoalgesia [126, 184], it is 
suggested that TRPV2 may play a role in NT-3 mediated 
thermal hyperalgesia. TRPV2 may also serve non-nocicep-
tive functions. Laminae III and IV, dorsal column nuclei and 
posterior column, receive large diameter mechano-A  sen-
sory fibers involved in proprioception. TRPV2 in the lumbo-
sacral junction may have a functional role towards the ure-
thral sphincter and ischiocavernosus muscles that are inner-
vated by neurons of the dorsolateral nucleus [131, 180]. A 
role of TRPV2 in CSF transport of molecules is speculated 
due to its presence in the central canal ependymal cells. The 
presence of TRPV2 in NG (vagal afferents) and intrinsic 
neurons of myentric plexus suggest a role for receiving sen-
sory signals from viscera and intestine [86, 100]. Among the 
viscera, laryngeal innervation is TRPV2 positive and hence 
suggests a possible role in laryngeal nociception [159]. In the 
brain, TRPV2 is localized to hypothalamic paraventricular, 
suprachiasmatic, supraoptic nuclei, oxytocinergic and vaso-
pressinergic neurons and cerebral cortex [116]. Since these 
areas of the brain have neurohypophysial function and regu-
lation of neuropeptide release in response to changes in os-
molarity, temperature, and synaptic input, TRPV2 may have 
a role in disorders of the hypothalamic-pituitary-adrenal axis, 
such as anxiety, depression, hypertension, and preterm labor 
[226]. In a model of peripheral axotomy, TRPV2 was up-
regulated in postganglionic neurons in lumbar sympathetic 
ganglia but not in the DRG, spinal cord or brainstem, sug-
gesting a role in sympathetically mediated neuropathic pain 
[65].  

 The non-neuronal distribution of TRPV2 includes vascu-
lar and cardiac myocytes [90, 144, 160] and mast cells [197]. 
TRPV2 is activated by membrane stretch, a property relevant 
for its sensory role in the gut. TRPV2 in cardiac muscle may 
be involved in the pathogenesis of dystrophic cardiomyopa-
thy [89] and in mast cells, and may play a role in urticaria 
due to physical stimuli (thermal, osmotic and mechanical). 
Activation by physical stimuli is discussed in the next sec-
tion. A functional role for TRPV2 recently found in human 
peripheral blood cells needs further study [178].  

Activation and Regulation 

 TRPV2 is activated in vitro by physical stimuli such as 
heat, osmotic and mechanical stretch [22, 90, 144] and 
chemical stimulus by 2-aminoethoxydiphenyborate (2-APB) 
[80]. Translocation of TRPV2 from intracellular locations to 
plasma membrane required for its activation is regulated by 
insulin-like growth factor-I (IGF-I) [99]; A-kinase anchoring 
proteins (AKAP)/cAMP/protein kinase A (PKA) mediated 

phosphorylation [197]; G-protein coupled receptor ligands 
like neuropeptide head activator (HA) via phosphatidylinosi-
tol 3-kinase (PI3-K) and of the Ca

2+
/calmodulin-dependent 

kinase (CAMK) signaling [17]. These regulatory mecha-
nisms that induce membrane localization of TRPV2 seem to 
be important regulation mechanisms for TRPV2 activation. 

Therapeutic Potential 

 Given the distribution pattern of TRPV2 in sensory affer-
ents and their projections, the predicted physiological and 
pathological role in mediating pain makes it an important 
target for certain pain states in addition to TRPV1. However, 
progress into TRPV2 pharmacology, unlike TRPV1 has been 
patchy and requires more investigations to determine its 
niche in pain biology. In vivo evidence for thermal and me-
chanical nociception via TRPV2 is still elusive. 2-APB, the 
only known chemical activator of TRPV2, is non-selective. 
Ruthenium Red (RR) a general blocker of TRPV ion chan-
nels is non-selective antagonist of TRPV2. The lack of spe-
cific tools and knockout animal models has impeded detailed 
investigations into TRPV2 function in physiology and pa-
thology. Future efforts in this direction are awaited.  

TRPA1 

 The ankyrin-repeat transient receptor potential (TRPA) 
channel subfamily has currently a single member named 
TRPA1 (previously coined p120, ANKTM1 or TRPN1), with 
characteristic long ankyrin repeats in its N-terminus [92, 94, 
139, 199]. A role for TRPA1 in somatosensation is currently 
not without inconsistencies due to variable pain assay meth-
ods. Evidence for TRPA1 as a thermoTRP directly activated 
by noxious cold [11, 199] could not be reproduced by later 
studies using in vivo TRPA1 knockout model or other het-
erologous expression systems [12, 94]. However, another 
independent knockout study showed a cold response role for 
TRPA1 [112]. Nevertheless, sensory transduction of cold-
induced pain by TRPA1 seems to draw attention. Evidence 
for distribution and function in nociceptors makes TRPA1 an 
exciting new therapeutic target to achieve analgesia.  

Expression, Physiology and Pathology 

 TRPA1 and TRPV1 are co-expressed in C and A  noci-
ceptors from DRG, nodose ganglia and trigeminal ganglia 
[105, 145, 199], making these transducers of both noxious 
cold and heat-induced pain. TRPA1 is also expressed in 
sympathetic neurons from the superior cervical ganglion 
[191] and neurons of the geniculate ganglia [102], suggesting 
a role in oral sensory transduction. Non-neuronal expression 
of TRPA1 is currently limited to lung fibroblasts (as 
ANKTM1) [92] and hair cell stereocilia [36, 145] where it 
may serve as a mechanotransducer. Other non-neuronal ex-
pression was found at mRNA levels in small intestine, colon, 
skeletal muscle, heart, brain, and immune system. Nocicep-
tive afferents expressing TRPA1 innervate bladder [8], sug-
gesting a role in bladder contraction. Upregulation of TRPA1 
expression is observed in pathological pain models like cold 
hyperalgesia induced by inflammation and nerve damage 
[155]; exaggerated response to cold in uninjured nerves dur-
ing spinal nerve ligation [101]; cold allodynia during spinal 
nerve injury [7]; bradykinin (BK)-induced mechanical hy-
peralgesia and mechanical pin prick pain [11, 112]. Due to 
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normal auditory behaviour in TRPA1 knock out studies, its 
role in hearing has been ruled out [12, 112], and hence its 
role in hair cell mechanotransduction remains challenged 
[36]. Further studies are necessary to clearly define pain 
mechanisms mediated via TRPA1. Also, further evaluation 
TRPA1 expression and function using knockout studies are 
required with emphasis on cold- and mechano-transduction 
mechanisms.  

Activation and Regulation 

 Similar to TRPV1, TRPA1 pharmacology has made great 
strides since the receptor was found to respond to pungent 
ingredients from natural products.  

Isothiocyanates 

 TRPA1 can be selectively activated by pungent ingredi-
ents like allyl, benzyl, phenylethyl, isopropyl, and methyl 
isothiocyanate, from wasabi, yellow mustard, Brussels 
sprouts, nasturtium seeds, and capers, respectively [94]. 
However, its involvement in burning pain induced by the 
mustard oil derivative allyl isothiocyanate in variable subsets 
of nociceptors is debated [12, 24, 94, 112].  

Cinnamaldehyde 

 Cinnamaldehyde, the main pungent constituent from cin-
namon oil, activates TRPA1 [11]. Acute burning pain sensa-
tion caused by cinnamaldehyde is suggested to be mediated 
by TRPA1 expressed in nociceptors that project to the 
tongue and skin [11].  

9
-tetrahydrocannabinol 

 THC, a cannabinoid, activates TRPA1 and is suggested 
to induce some of its biological effects, like dilation of he-
patic or mesenteric arteries via activation of capsaicin-
sensitive, CGRP-containing perivascular sensory nerve end-
ings innervating the smooth muscle [247]. THC also acti-
vates TRPA1 in trigeminal neurons [94]. Hence, cannabinoid 
mechanisms may play an important role by interacting with 
the TRPA1 component in these nociceptors. 

Acrolein 

 Acrolein (2-propenal), a higly toxic air pollutant in tear 
gas, vehicle exhaust, and smoke from burning vegetation, 

including tobacco products [72, 73] selectively activated 
TRPA1 [12]. Thus biological effects of acrolein, like apnea, 
shortness of breath, cough, airway obstruction, and mucous 
secretion [67] may result from TRPA1 activation in TRPV1- 
and CGRP-positive afferent innervations of airway. Che-
motherapeutic agents like cyclophosphamide and ifosfamide 
for cancer, severe arthritis, multiple sclerosis, and lupus [62, 
149] generate acrolein as a metabolite, suggesting that TRPA1 
may be involved in the side effects of such conditions. Stud-
ies using heterologous expression and knockout systems rule 
out acrolein as a TRPV1 agonist [47, 204]. 

Fatty Acid Amide Hydrolase (FAAH) Inhibitor 

 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB 
597), a potent and systemically active inhibitor of FAAH 
(the enzyme responsible for anandamide degradation) was 
recently shown to directly gate TRPA1 and is being pursued 
as an antinociceptive drug [150].

Non-Selective Activators 

 These include eugenol (from clove oil), gingerol (from 
ginger), and methyl salicylate (from Wintergreen oil), syn-
thetic AG-3-5 (Icilin) [132, 200], all of which non-selectively 
activate TRPV1 and TRPM8. Allicin, thought to be a non-
selective activator of TRPV1 and TRPA1 [123] is now being 
considered as a selective agonist for TRPA1 [12]. 

Modulators 

 Like TRPV1, hypersensitivity of TRPA1 is coupled to G-
protein mediated BK signaling and contributes to mechano- 
and cold-hyperalgesia [11, 112]. Noguchi and colleagues 
showed that an increase in NGF-induced TRPA1 in nocicep-
tors via p38 MAPK activation was necessary for cold hyper-
algesia [134, 155]. TRPA1 is potentiated by extracellular 
signal-regulated protein kinase (ERK) and PLC disinhibition 
of PIP2 via proteinase activated receptor (PAR)-2 mediated 
activation in models of thermal hyperalgesia and inflamma-
tory pain [42, 103, 135]. These studies provide further in-
sights into TRPA1 signaling. Like the TRPV1, PLC-medi-
ated pathway sensitization of TRPA1 has been shown [132]. 
Activation of Mu and Kappa opioid receptors antagonized 
the stimulant action of icillin on TRPA1 [232], suggesting a 

Table 4. Antagonists for TRPV1, TRPV2, TRPA1, TRPM8, TRPV3 and TRPV4 

ThermoTRP Antagonists 

TRPV1 capsazepine; ruthenium red; diphenyltetrahydrofuran (DPTHF); iodo-RTX; SB705498; SB366791; BCTC; NGD-8243; AMG-517; 

AMG-9810; A-425619; KJM429; JYL1421; JNJ17203212; NGX-4010; WL-1001; WL-1002; A-4975; GRC-6127; 2-(4-pyridin-2-

ylpiperazin-1-yl)-1H-benzo[d]imidazole compound 46ad; 6-aryl-7-isopropylquinazolinones; 5,6-fused heteroaromatic urea A-

425619.0; 4-aminoquinazoline; halogenated thiourea compounds 23c and 31b; N-tetrahydroquinolinyl, N-quinolinyl and N-

isoquinolinyl carboxamides; pentacyclic triterpene; oleanolic acid; 

TRPV2 ruthenium red; diphenyltetrahydrofuran (DPTHF) 

TRPA1 ruthenium red; camphor; menthol; compoud A and compound B (Abbott Laboratories) 

TRPM8 capsazepine; BCTC; CTPC; SB-452533; 2-APB; URB597; cinnamaldehyde 

TRPV3 ruthenium red; diphenyltetrahydrofuran (DPTHF) 

TRPV4 ruthenium red 
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central mechanism of interaction between opioid receptors 
and TRPA1. Evidence for TRPA1 as a substrate for ubiquiti-
nation by CYLD (an ubiquitin hydrolase and a tumor sup-
pressor gene product) along with wide tissue distribution 
indicates a probable role in cancer [198]. Further studies are 
necessary to identify wider functional TRPA1 protein ex-
pression. Evidence for indirect gating of TRPA1 by cold is 
shown to be regulated by calcium binding domain (EF hand) 
in the N-terminus [50, 245]. Artemin, a glial cell line-derived 
neurotrophic factor (GDNF) protein, was shown to increase 
TRPA1 gene expression in skin and is suggested to mediate 
cold allodynia during inflammation [57]. Most of these sig-
naling mechanisms involving TRPA1 sensitization of pain 
states need to be addressed using TRPA1 knockout studies in 
tandem with TRPV1 knockout models.

Therapeutic Potential 

 Evidence for TRPA1 as a transducer of pain is certainly 
on the rise, making it yet another important target for ther-
apy. The therapeutic potential of TRPA1 for appropriate 
pharmacological treatment of certain pain states needs fur-
ther investigation. Unlike TRPV1, the agonists of TRPA1 
currently are only known to produce pain and hence antago-
nists are a better choice than agonists as analgesics. One re-
cent published work describes identification of potential 
TRPA1 anatagonists using a novel transient expression sys-
tem screening method [27]. Development of these substances 
is an important step for elucidating the role played by 
TRPA1 in painful conditions. Since activation of TRPA1 in 
nociceptors induces pain behaviour, design of specific an-
tagonists seems beneficial. Since other physiological roles of 
TRPA1 are under debate, further research into its pharma-
cology would help in choosing agonists versus antagonist 
drugs. 

TRPM8 

 TRPM8 (Trp-p8 or CMR1), is a channel belonging to the 
TRPM (long or melastatin) subfamily of TRP channels, with 
a characteristic lack of ankyrin repeat domains in the N-
terminus [34, 130, 140, 165, 217]. The channel was cloned 
initially as an upregulated protein in prostate [217]. Later it 
was discovered as a thermoTRP for cool and menthol sensa-
tion by two groups- one used an expression screening strat-
egy (similar to TRPV1 cloning) for a menthol- and cold-
sensitive receptor [130], while the other used genomic DNA 
databases for TRP protein sequences [165]. The threshold for 
TRPM8 activation is about 25 °C, a temperature in the non-
noxious range. Long awaited studies on the role of TRPM8 
in nociceptors using knockout strategies have now been pub-
lished [13, 35, 46]. These studies have shown that TRPM8 
can serve as thermosensor for cold and mediate both cold-
induced nociception as well as analgesia. However, the 
TRPM8 knockout mice retained response to intense cold 
temperatures below 10 

o
C, indicating the presence of other 

thermosensors. A study involving mice with double knock-
out of TRPA1 and TRPM8 would perhaps eliminate the en-
tire range of cool to cold temperature sensation. However, 
this remains to be seen as, Koltzenburg and colleagues have 
shown the presence of a third population of cold-sensitive 
neurons distinct from the TRPA1 and TRPM8 population 
[143].

Expression, Physiology and Pathology 

 Interestingly, TRPM8 is expressed in a subset of sensory 
neurons of C and A  class in DRG, trigeminal ganglia and 
nodose ganglia that are negative for nociceptor markers 
TRPV1, CGRP and IB4 [130, 147, 165, 172]. A recent strat-
egy to generate transgenic mice with GFP under the control 
of TRPM8 promotor has good potential to study distribution 
and function in its physiology and pathology [210]. Neuronal 
expression and knockout studies implicate TRPM8 for a so-
matosensory role in cool temperature sensation [13, 35, 46, 
130, 165]. It is believed that TRPM8 activation leads to an-
algesia during neuropathic pain. Evidence for such an anal-
gesic mechanism was recently shown to be centrally medi-
ated, whereby TRPM8-induced glutamate release activates 
inhibitory Group II/III metabotropic glutamate receptors 
(mGluRs) to block nociceptive inputs [168]. However, a role 
for TRPM8 in innocuous cold nociception has also been 
shown [69, 227]. The TRPM8 knockout mice studies more 
clearly point towards a role for TRPM8 in sensory neurons 
in physiological (somatosensation) and pathological condi-
tions (cold pain), especially owing to their presence in C and 
A  fibers, generally regarded as nociceptors [13, 35, 46].  

 The non-neuronal expression of TRPM8 is currently re-
stricted to prostate, urogenital tract, taste papillae, testis, 
scrotal skin, bladder urothelium, thymus, breast, ileum and in
melanoma, colorectal cancer and breast cancer cells [1, 195, 
217, 240, 241]. The physiology of TRPM8 in non-neuronal 
tissues is well described elsewhere [240].  

Activation and Regulation 

 TRPM8 pharmacology has also progressed considerably 
due to availability of a number of agonists and antagonists. 
Several studies have also been conducted to understand regu-
latory mechanisms of the receptor.  

Terpenes 

 Menthol, derived from peppermint oil, cornmint oil, cit-
ronella oil, eucalyptus oil, and Indian turpentine oil, activates 
TRPM8 in sensory neurons of DRG and TG [130, 165]. 
Menthol sensitizes TRPM8 to cold stimulus [172]. However, 
menthol is now known to non-selectively activate and sensi-
tize TRPV3 [124]. Eucalyptol derived from Eucalyptus 
polybractea activates TRPM8 with lower efficacy than men-
thol. It is used in as an analgesic for inflammatory and mus-
cular pain [20]. 

 Menthone, geraniol, linalool, menthyl lactate, trans- and 
cis-p-menthane-3,8-diol, isopulegol, and hydroxy-citronellal 
are other terpene compounds known to activate TRPM8 [11, 
14] by mechanisms that need further analysis.  

Non-Terpenes 

 Icilin (AG-3–5), WS23, WS3, Frescolat ML, Frescolat 
MGA, and Cooling-agent 10 are some of the non-terpene 
compounds that have been shown to effectively activate and 
desensitize TRPM8 [20].

Antagonists 

 Non-selective antagonists of TRPM8 include capsazepine, 
N-(4-tert. butyl-phenyl)-4-(3-chloropyridin-2-yl) tetrahydro-
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pyrazine-1 (2H)-carboxamide (BCTC) and a thio-derivative 
of BCTC, (2R)-4-(3-chloro-2 pyridinyl)-2-methyl-N-[4-(tri-
fluoromethyl)phenyl]-1 piperazonecarboxamide (CTPC) and 
SB-452533 [14, 231]. Surprisingly, 2-APB, an activator of 
TRPV1, 2 and 3 is an antagonist of TRPM8 [80]. 2-APB 
could be useful in characterizing TRPM8 mechanisms selec-
tively. Agonists of TRPA1 like cinnamaldehyde and URB597 
are shown to antagonize TRPM8 [124, 150].  

Modulators 

 Voltage dependence of TRPM8 during cold and menthol 
activation suggests its dependence on membrane potential 
for activation [19, 84, 213]. PIP2 was shown to be essential 
for activation of TRPM8, and PIP2 depletion via PLC path-
way activation resulted in desensitization [15, 119, 174]. 
Activation of TRPM8 by icilin was shown to be dependent 
on intracellular calcium [29]. Calcium-independent and 
iPLA2-dependent activation of prostate TRPM8 by lys-
ophospholipids (metabolites of iPLA2) provides a first evi-
dence for endogenous ligands in non-neuronal tissue not 
exposed to cooling [220]. This mechanism has not been at-
tributed to sensory transduction by TRPM8. A structural 
component necessary for formation and trafficking of func-
tional TRPM8 to plasma membrane lies in the coiled-coil C-
terminal region [58]. Other structural motifs necessary for 
channel activation are two cysteine residues in the pore re-
gion flanked by the glycosylation site [54]. Such studies are 
useful to understand the channel function in response to spe-
cific modalities, where TRPM8, like other thermoTRP’s, is 
polymodal. 

 Since TRPM8 activation can mediate both pain and anal-
gesia, it is necessary to develop both agonists and antago-
nists, as seen in the case of TRPV1 for pain management.  

Therapeutic Potential 

 As is the case of TRPA1, therapeutic potential of TRPM8 
with existing data makes it a target to achieve analgesia dur-
ing cold pain. Unlike TRPA1, either activation or blockade 
of TRPM8 is therapeutically useful depending on the mo-
dalities of different pain settings. TRPM8 can also be an 
important target for identification and or therapy of cancer in 
prostate, breast, colon, lung and skin. 

TRPV3 

 TRPV3 is the other thermoTRP that responds to innocu-
ous temperatures with a threshold higher than TRPV4 [166, 
190]. Expression of TRPV3 among sensory neurons is vari-
able between species and thus its role in somatosensation 
needs further investigations [166, 190, 239]. However, an 
increase in TRPV3 expression in peripheral nerves after in-
jury and in avulsed DRG is documented [60]. Evidence for a 
role of TRPV3 in thermosensation has emerged with demon-
stration of its presence in the keratinocytes [31, 32, 166, 239] 
and aberrant thermal selectivity in TRPV3 knockout study 
[141]. In addition, gene knock out studies have shown hair 
loss [10]. CNS expression of TRPV3 includes ventral motor 
neurons, deeper laminae of DH, superior cervical ganglion 
neurons, nigral dopaminergic neurons [70, 60, 190, 239]. A 
physiological role for TRPV3 in these areas needs further 
investigation. A functional role for TRPV3 in pain is not yet 

well established. Some studies may point towards this direc-
tion. One study showed an increase in TRPV3 expression 
following brachial plexus avulsion, however, its symptoms 
are not pain related [190]. Another feature of TRPV3 which 
prompts its possible role in pain is its sensitization upon re-
peated heat applications in skin cells and heterologous ex-
pression systems, a phenomenon yet to be confirmed in sen-
sory neurons [32, 141, 166]. An increase in expression was 
also seen in skin cells during breast pain in addition to 
TRPV1 upregulation in nociceptors [68]. A recent study 
showed that TRPV3 in oral and nasal epithelium is activated 
and sensitized by non-selective pungent compounds like 
carvacrol, thymol, eugenol, 6-tert-butyl-m-cresol, dihydro-
carveol, carveol and (+)-borneol [222, 237]. Camphor, men-
thol, 2-APB and diphenylboronic anhydride (DPBA) are the 
other non-selective agonists of TRPV3 which can activate 
and sensitize it to repeated applications [33, 124]. Also 
TRPV3 response to heat is sensitized in the presence or prior 
applications of its chemical agonists [141, 237]. Since cam-
phor and menthol exhibit opposite thermal properties of 
warm and cool sensation, a role for TRPV3 in coding for 
cool sensation is not proven. Such paradoxes need to be re-
solved. TRPV3 pharmacology will also need more than the 
existing two known non-selective antagonists of TRPV3, 
ruthenium red and diphenyltetrahydrofuran (DPTHF) [33]. 
Chemical stimulation of TRPV3 by these non-selective com-
pounds increases the complexity of TRPV3 pharmacology 
and more detailed characterization and physiological role in 
pain models need to be addressed before it can be considered 
a validated target for such therapy. Interestingly, a recent 
study has shown that TRPV3 can be potentiated by arachi-
donic acid and its metabolites, the endogenous mediators of 
inflammatory response in skin cells [81]. The close proxim-
ity of nociceptors to skin epidermal layers, where functional 
TRPV3 is present, makes it a potential molecule with an 
extended role in physiology and pathology of thermosensa-
tion and pain [26, 114]. Such an extended role may involve 
activation of TRPV3 in the skin followed by release of some 
diffusible neuroactive substances like ATP that interact with 
the terminals of the nociceptors. The importance or contribu-
tion of TRPV3 in disease and therapy require further investi-
gations. Development of antagonists for TRPV3 seems bene-
ficial to overcome its sensitization in pain settings. However, 
these agents may have side effects of skins barrier integrity. 

TRPV4 

 Innocuous warm temperatures (27-32
o
C) activate the 

thermoTRP TRPV4 (previously coined with several names, 
including VRL-2, OTRPC4, VR-OAC and TRP12). It was 
first identified as an osmoreceptor [71, 117, 201, 228, 235]. 
TRPV4 is reported to have a wide tissue distribution pattern 
and to function in both excitable and non-excitable cells. 
TRPV4 knockout studies have resulted in an intensive ex-
amination of function in physiology and pathology. Here we 
focus on pain mechanisms that have emerged recently. 

Expression, Physiology, Pathology 

 Expression of TRPV4 in the nociceptor class of sensory 
neurons in DRG and trigeminal ganglia earlier limited to 
mRNA studies [71, 117] is now extended to functional pro-
tein expression. TRPV4 is involved in mechanical hyperal-
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gesia and allodynia following its sensitization during hypo-
osmotic mediated inflammation, taxol-induced neuropathy or 
mild hypertonic insult [4-6]. These studies have shown that 
PGE2 and PAR2 mediated sensitization of TRPV4 occurs 
during inflammatory hyperalgesia. TRPV4 knockdown stud-
ies have also shown impaired sensitivity to acid, increase in 
mechanical nociceptive threshold with unchanged response 
to heat and touch and reduced thermal hyperalgesia [118, 
202, 214]. However, more studies are necessary to confirm if 
there is a central component to the diminished mechanical 
pain behavioral phenotype observed in TRPV4 knockout 
studies. The CNS expression includes neurons of circumven-
tricular organs, ependymal cells of choroids plexus, cerebral 
cortex, thalamus, hippocampus, and cerebellum [117]. A role 
for TRPV4 in regulating excitability of mouse hippocampal 
neurons at physiological body temperature has recently been 
demonstrated [182]. 

 Numerous studies provide evidence for TRPV4 as being 
a crucial mechano- or osmo-receptor in other cell types, such 
as vascular aortic endothelial cells, blood–brain barrier endo-
thelial cells, renal collecting duct cells, vascular smooth 
muscle cells, hypothalamus (neurons of the circumventricu-
lar organs and the organum vasculosum of the lamina termi-
nalis with projections to the magnocellular regions of the 
supraoptic and paraventricular nuclei) and cochlear hair cells 
[161]. Expression of TRPV4 in keratinocytes and its re-
sponse to warm temperatures has raised the possibility of a 
sensory role of thermoTRP’s in non-neuronal cells [31, 32, 
71]. Aberrant thermal selection in TRPV4 knockout studies 
provided physiological evidence for its role in thermosensa-

tion [114].  

Activation and Regulation 

 In addition to physical stimuli like heat, pressure and 
hypotonicity, chemical activation of TRPV4 include exoge-
nous and endogenous ligands. TRPV4 pharmacology has had 
mixed progress in light of the non-availability of selective 

antagonists. 

Synthetic Phorbol Esters 

 4 -phorbol 12,13-didecanoate (4 -PDD) and other non-
active 4  phorbol ester isomers selectively activate TRPV4 
[228, 236] active phorbol esters like PMA, PDD and PDBu 
are agonists of TRPV4 at warmer temperatures and activate 

TRPV4 in a PKC dependent manner [236]. 

Endogenous Second Messenger Metabolites 

 TRPV4 is directly activated by anandamide (AEA) and 
its LOX metabolite arachidonic acid (AA) [229]. Further, 
epoxyeicosatrienoic acid (EET) metabolites of AA formed 
by cytP450 epoxygenase pathway (5,6-EET; 8,9-EET; 11, 
12-EET) also activate TRPV4 [223]. Other endogenous acti-
vators of TRPV4 include N-acyl taurines (NAT’s), which are 
fatty acid amides regulated, by fatty acid amide hydrolase 

(FAAH) [176]. 

Plant Extracts 

 Like other thermoTRP’s activated by natural compounds, 
a very recent study has identified a natural compound bisan-

drographolide A (BAA) contained in extracts of the plant
Andrographis paniculata to activate TRPV4 [192]. 

Intracellular Components as Modulators 

 The presence of intracellular components that interact 
and regulate TRPV4 channel expression and function were 
evident from the fact that it cannot be activated by heat in a 
membrane de-limited condition [228], necessitating the pres-
ence of intracellular components as modulators. A number of 
studies in this direction have emerged. Inhibition of 4
PDD-induced TRPV4 activity was inhibited by an increase 
in both extracellular and intracellular calcium, and this 
modulation was dependent on amino acid residues in the 6

th

transmembrane domain (F707), pore region (D682) and C-
terminus (E797), whereby increased extracellular calcium 
has an inhibitory effect on the channel [230]. Phorbol esters 
and heat activation rely on aromatic residue Tyr-556 at the N 
terminus of transmembrane domain 3 [224] and two hydro-
phobic residues Leu-584 and Trp-586 in the central part of 
transmembrane domain 4 [225]. However, in addition to 
phorbol esters and heat, responses to cell swelling, arachi-
donic acid, and 5,6-EET were affected by mutations of two 
residues Tyr-591 and Arg-594 in the C-terminal part of 
transmembrane domain 4 [225]. These residues of trans-
membrane domains 3 and 4 are thus essential for channel 
gating and ligand binding affinity for TRPV4 [224, 225]. 
Lyn, a member of Src-family of tyrosine kinases, mediated 
tyrosine phosphorylation at Tyr-253 residue to regulate 
TRPV4 response to hypotonic stress [224, 236]. Glycosyla-
tion of TRPV4 at N651 residue of the pore loop region re-
sults in inhibition of membrane trafficking and thus a de-
creased channel response to hypotonicity [238]. Association 
of aquaporin 5 (AQP5) with TRPV4 initiates a regulatory 
volume decrease (RVD) mechanism following hypotonic 
stimulus in epithelial cells [122, 186]. PACSINs, the regula-
tors of synaptic vesicular membrane trafficking and dy-
namin-mediated endocytotic processes, were shown to inter-
act with the amino terminus of TRPV4 and increase plasma
membrane-associated TRPV4 protein. The interaction was 
found between TRPV4-specific proline-rich domain up-
stream of the ankyrin repeats of the channel and the car-
boxyl-terminal Src homology 3 domain of PACSIN 3 [39]. 
A cytoskeletal protein, microfilament-associated protein 
(MAP7), was shown to interact with TRPV4 and form a 
mechanosensitive molecular complex to drive and enhance 
membrane expression of the ion channel [203]. MAP7 inter-
acts with the C-terminus domain between amino acid resi-
dues 789-809. The serine/threonine kinases "With No Lysine 
(K) Kinases" (WNK)1 and WNK4 were also shown to inter-
act with TRPV4 and reduce its cell surface expression, inhib-
iting response to activators like 4  PDD and hypotonicity 
[63].  

 The list of intracellular components that interact with 
TRPV4 may increase in future due to its wide distribution 
and function in various tissues. This will help understand the 
regulatory events controlling TRPV4 in health and disease. 

Therapeutic Potential 

 As pointed out earlier in this section of the review, so far 
there is no report of specific antagonists to enhance the de-



32    Current Neuropharmacology, 2008, Vol. 6, No. 1 Mandadi and Roufogalis 

tailed pharmacological characterization in pain conditions 
involving TRPV4. However, such developments are neces-
sary to achieve novel therapeutic strategies for TRPV4-
dependent pain states. TRPV4 knockout studies have how-
ever revealed a physiological role and predicted involvement 
of TRPV4 in diseases like thermal hyperalgesia, neuropathic 
pain, hyperresponsive airway during asthma, hypotonic 
stress during cystic fibrosis, impairment of hearing [152]. In 
parallel to TRPV1, more studies are necessary to elucidate 
sensitization mechanisms of TRPV4 in pain settings when 
exposed to physical stimuli like heat, hypotonic and me-
chanical stress. Given the wide distribution, function and 
complexity in modulation of TRPV4, it would be a challenge 
to target the receptor with agonists or antagonists for specific 
disease states.  

CONCLUSION 

 ThermoTRPs in nociceptors have emerged as potential 
targets for the treatment of pain with a broader perspective. 
Much progress has been made in the last decade since the 
cloning of TRPV1. Clinical trials for TRPV1 as a target for 
selected pain modalities is clear evidence for continuing ef-
forts to search for other thermoTRP transducers of pain in 
nociceptors. Much effort is needed to establish the role of 
thermoTRP’s as potential targets in pain and other therapy 
and the progress so far has been quite rapid. TRPV1 studies 
definitely lead the way to providing the basis for the search 
for remaining thermal transducers of pain in nociceptors. 
Future work on TRPV1 and other thermoTRP’s will enhance 
our understanding of somatosensation in health and disease. 
Availability of animal models especially knockout mice of 
each of the above mentioned thermoTRP’s are vital to rap-
idly advance thermoTRP research. Much effort is warranted 
towards development of more specific drugs (agonists/anta-
gonists) to target each thermoTRP for progress in under-
standing TRP pharmacology.  

REFERENCES 

[1] Abe, J., Hosokawa, H., Okazawa, M., Kandachi, M., Sawada, Y., 
Yamanaka, K., Matsumura, K., Kobayashi, S. (2005) TRPM8 pro-

tein localization in trigeminal ganglion and taste papillae. Brain
Res. Mol. Brain Res., 136, 91-8. 

[2] Ahern, G.P. (2003) Activation of TRPV1 by the satiety factor 
oleoylethanolamide. J. Biol. Chem., 278, 30429-34. 

[3] Ahluwalia, J., Rang, H., Nagy, I. (2002) The putative role of vanil-
loid receptor-like protein-1 in mediating high threshold noxious 

heat-sensitivity in rat cultured primary sensory neurons. Eur. J. 
Neurosci., 16, 1483-9. 

[4] Alessandri-Haber, N., Dina, O.A., Yeh, J.J., Parada, C.A., Reich-
ling, D.B., Levine, J.D. (2004) Transient receptor potential vanil-

loid 4 is essential in chemotherapy-induced neuropathic pain in the 
rat. J. Neurosci., 24, 4444-52. Erratum in: J. Neurosci., 24, 5457. 

[5] Alessandri-Haber, N., Joseph, E., Dina, O.A., Liedtke, W., Levine, 
J.D. (2005) TRPV4 mediates pain-related behavior induced by mild 

hypertonic stimuli in the presence of inflammatory mediator. Pain,
118, 70-9. 

[6] Alessandri-Haber, N., Yeh, J.J., Boyd, A.E., Parada, C.A., Chen, 
X., Reichling, D.B., Levine, J.D. (2003) Hypotonicity induces 

TRPV4-mediated nociception in rat. Neuron, 39(3), 497-511. 
[7] Allchorne, A.J., Broom, D.C., Woolf, C.J. (2005) Detection of cold 

pain, cold allodynia and cold hyperalgesia in freely behaving rats. 
Mol. Pain, 1, 36. 

[8] Andrade, E.L., Ferreira, J., Andre, E., Calixto, J.B. (2006) Contrac-
tile mechanisms coupled to TRPA1 receptor activation in rat uri-

nary bladder. Biochem. Pharmacol., 72, 104-14. 

[9] Andre, E., Campi, B., Trevisani, M., Ferreira, J., Malheiros, A., 
Yunes, R.A., Calixto, J.B., Geppetti, P. (2006) Pharmacological 

characterisation of the plant sesquiterpenes polygodial and drima-
nial as vanilloid receptor agonists. Biochem. Pharmacol., 71, 1248-

54.  
[10] Asakawa, M., Yoshioka, T., Matsutani, T., Hikita, I., Suzuki, M., 

Oshima, I., Tsukahara, K., Arimura, A., Horikawa, T., Hirasawa, 
T., Sakata, T. (2006) Association of a mutation in TRPV3 with de-

fective hair growth in rodents. J. Invest. Dermatol., 126, 2664-72. 
[11] Bandell, M., Story, G.M., Hwang, S.W., Viswanath, V., Eid, S.R., 

Petrus, M.J., Earley, T.J., Patapoutian, A. (2004) Noxious cold ion 
channel TRPA1 is activated by pungent compounds and bradyki-

nin. Neuron, 41, 849-57. 
[12] Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., 

Poblete, J, Yamoah, E.N., Basbaum, A.I., Julius, D. (2006) TRPA1 
mediates the inflammatory actions of environmental irritants and 

proalgesic agents. Cell, 124, 1269-82. 
[13] Bautista, D.M., Siemens, J., Glazer, J.M., Tsuruda, P.R., Basbaum, 

A.I., Stucky, C.L., Jordt, S.E., Julius D. (2007) The menthol recep-
tor TRPM8 is the principal detector of environmental cold. Nature,

May 30. (Epub ahead of print). 
[14] Behrendt, H.J., Germann, T., Gillen, C., Hatt, H., Jostock R. (2004) 

Characterization of the mouse cold-menthol receptor TRPM8 and 
vanilloid receptor type-1 VR1 using a fluorometric imaging plate 

reader (FLIPR) assay. Br. J. Pharmacol., 141, 737-45.  
[15] Benedikt, J., Teisinger, J., Vyklicky, L., Vlachova, V. (2007) Etha-

nol inhibits cold-menthol receptor TRPM8 by modulating its inter-
action with membrane phosphatidylinositol 4,5-bisphosphate. J. 

Neurochem., 100, 211-24.  
[16] Bhave, G., Zhu, W., Wang, H., Brasier, D.J., Oxford, G.S., Gereau, 

R.W. 4th. (2002) cAMP-dependent protein kinase regulates desen-
sitization of the capsaicin receptor (VR1) by direct phosphoryla-

tion. Neuron, 35, 721-31. 
[17] Boels, K., Glassmeier, G., Herrmann, D., Riedel, I.B., Hampe, W., 

Kojima, I., Schwarz, J.R., Schaller, H.C. (2001) The neuropeptide 
head activator induces activation and translocation of the growth-

factor-regulated Ca(2+)-permeable channel GRC. J. Cell Sci., 114,
3599-606. 

[18] Bonnington, J.K., McNaughton, P.A. (2003) Signalling pathways 
involved in the sensitisation of mouse nociceptive neurones by 

nerve growth factor. J. Physiol., 551, 433-46. 
[19] Brauchi, S., Orio, P., Latorre, R. (2004) Clues to understanding 

cold sensation: thermodynamics and electrophysiological analysis 
of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA, 101,

15494-9. 
[20] Calixto, J.B., Kassuya, C.A., Andre, E., Ferreira, J. (2005) Contri-

bution of natural products to the discovery of the transient receptor 
potential (TRP) channels family and their functions. Pharmacol. 

Ther., 106, 179-208.  
[21] Calixto, J.B., Scheidt, C., Otuki, M., Santos A.R. (2001) Biological 

activity of plant extracts: novel analgesic drugs. Expert. Opin. 
Emerg. Drugs, 6, 261-79. 

[22] Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J., Julius, D. 
(1999) A capsaicin-receptor homologue with a high threshold for 

noxious heat. Nature, 398, 436-41. 
[23] Caterina, M.J. (2003) Vanilloid receptors take a TRP beyond the 

sensory afferent. Pain, 105, 5-9. 
[24] Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, 

J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., Julius, D. 
(2000) Impaired nociception and pain sensation in mice lacking the 

capsaicin receptor. Science, 288, 306-13. 
[25] Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., 

Levine, J.D., Julius, D. (1997) The capsaicin receptor: a heat-
activated ion channel in the pain pathway. Nature, 389, 816-24. 

[26] Caterina, M.J. Transient receptor potential ion channels as partici-
pants in thermosensation and thermoregulation. (2007) Am. J. 

Physiol. Regul. Integr. Comp. Physiol., 292, R64-76. 
[27] Chen, J., Lake, M.R., Sabet, R.S., Niforatos, W., Pratt, S.D., Cassar, 

S.C., Xu, J., Gopalakrishnan, S., Pereda-Lopez, A., Gopalakrishnan, 
M., Holzman, T.F., Moreland, R.B., Walter, K.A., Faltynek, C.R., 

Warrio, U., Scott, V.E. (2006) Utility of Large Scale Transiently 
Transfected Cells for Cell-Based High-Throughput Screens to Identify 

Transient Receptor Potential Channel A1 (TRPA1) Antagonists. J. 
Biomol. Screen.,  



ThermoTRP Channels in Nociceptors Current Neuropharmacology, 2008, Vol. 6, No. 1    33

[28] Chu, C.J., Huang, S.M., De Petrocellis, L., Bisogno, T., Ewing, 
S.A., Miller, J.D., Zipkin, R.E., Daddario, N., Appendino, G., Di 

Marzo, V., Walker, J.M. (2003) N-oleoyldopamine, a novel en-
dogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. 

Chem., 278, 13633-9. 
[29] Chuang, H.H., Neuhausser, W.M., Julius, D. (2004) The super-

cooling agent icilin reveals a mechanism of coincidence detection 
by a temperature-sensitive TRP channel. Neuron, 43, 859-69. 

[30] Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., 
Basbaum, A.I., Chao, M.V., Julius, D. (2001) Bradykinin and nerve 

growth factor release the capsaicin receptor from PtdIns(4,5)P2-
mediated inhibition. Nature, 411, 957-62. 

[31] Chung, M.K., Lee, H., Caterina, M.J. (2003) Warm temperatures 
activate TRPV4 in mouse 308 keratinocytes. J. Biol. Chem., 278,

32037-46. 
[32] Chung, M.K., Lee, H., Mizuno, A., Suzuki, M., Caterina, M.J. 

(2004) TRPV3 and TRPV4 mediate warmth-evoked currents in 
primary mouse keratinocytes. J. Biol. Chem., 279, 21569-75. 

[33] Chung, M.K,, Guler, A.D., Caterina, M.J. (2005) Biphasic currents 
evoked by chemical or thermal activation of the heat-gated ion 

channel, TRPV3. J. Biol. Chem., 280, 15928-41. 
[34] Clapham, D.E., Julius, D., Montell, C., Schultz, G. (2005) Interna-

tional Union of Pharmacology. XLIX. Nomenclature and Structure-
Function Relationships of Transient Receptor Potential Channels. 

Pharmacol. Rev., 57, 427-50.  
[35] Colburn, R.W., Lubin, M.L., Stone, D.J. Jr., Wang, Y., Lawrence, 

D., D'Andrea, M.R., Brandt, M.R., Liu, Y., Flores, C.M., Qin, N. 
(2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron,

54, 379-86. 
[36] Corey, D.P., Garcia-Anoveros, J., Holt, J.R., Kwan, K.Y., Lin, 

S.Y., Vollrath, M.A., Amalfitano, A., Cheung, E.L., Derfler, B.H., 
Duggan, A., Geleoc, G.S., Gray, P.A., Hoffman, M.P., Rehm, H.L., 

Tamasauskas, D., Zhang, D.S. (2004).TRPA1 is a candidate for the 
mechanosensitive transduction channel of vertebrate hair cells. Na-

ture, 432, 723-30. 
[37] Cortright, D.N., Szallasi, A. (2004) Biochemical pharmacology of 

the vanilloid receptor TRPV1. An update. Eur. J. Biochem., 271,
1814-9. 

[38] Cruz, F. (2004) Mechanisms involved in new therapies for overac-
tive bladder. Urology, 63, 65-73. 

[39] Cuajungco, M.P., Grimm, C., Oshima, K., D'hoedt, D., Nilius, B., 
Mensenkamp, A.R., Bindels, R.J., Plomann, M., Heller, S. (2006) 

PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates 
the subcellular localization of TRPV4. J. Biol. Chem., 281, 18753-

62. 
[40] Culshaw, A.J., Bevan, S., Christiansen, M., Copp, P., Davis, A., 

Davis, C., Dyson, A., Dziadulewicz, E.K., Edwards, L., Eggelte, 
H., Fox, A., Gentry, C., Groarke, A., Hallett, A., Hart, T.W., 

Hughes, G.A., Knights, S., Kotsonis, P., Lee, W., Lyothier, I., 
McBryde, A., McIntyre, P., Paloumbis, G., Panesar, M., Patel, S., 

Seiler, M.P., Yaqoob, M., Zimmermann, K. (2006) Identification 
and biological characterization of 6-aryl-7-isopropylquinazolinones 

as novel TRPV1 antagonists that are effective in models of chronic 
pain. J. Med. Chem., 49, 471-4. 

[41] Cuypers, E., Yanagihara, A., Karlsson, E., Tytgat, J. (2006) Jelly-
fish and other cnidarian envenomations cause pain by affecting 

TRPV1 channels. FEBS Lett., 580, 5728-32.  
[42] Dai, Y., Wang, S., Tominaga, M., Yamamoto, S., Fukuoka, T., 

Higashi, T., Kobayashi, K., Obata, K., Yamanaka, H., Noguchi, K. 
(2007) Sensitization of TRPA1 by PAR2 contributes to the sensa-

tion of inflammatory pain. J. Clin. Invest., (in press) 
[43] Dedov, V.N., Tran, V.H., Duke, C.C., Connor, M., Christie, M.J., 

Mandadi, S., Roufogalis, B.D. (2002) Gingerols: a novel class of 
vanilloid receptor (VR1) agonists. Br. J. Pharmacol., 137, 793-8. 

[44] Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, 
L.A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., Mech-

oulam, R. (1992) Isolation and structure of a brain constituent that 
binds to the cannabinoid receptor. Science, 258, 1946-9. 

[45] Dhaka, A., Viswanath, V., Patapoutian, A. (2006) Trp ion channels 
and temperature sensation. Annu. Rev. Neurosci., 29, 135-61.  

[46] Dhaka, A., Murray, A.N., Mathur, J., Earley, T.J., Petrus, M.J., 
Patapoutian, A.(2007) TRPM8 is required for cold sensation in 

mice. Neuron, 54, 371-8. 
[47] Dinis, P., Charrua, A., Avelino, A., Cruz, F. (2004) Intravesical 

resiniferatoxin decreases spinal c-fos expression and increases 

bladder volume to reflex micturition in rats with chronic inflamed 
urinary bladders. BJU Int., 94, 153-7. 

[48] Diogenes, A., Patwardhan, A.M., Jeske, N.A., Ruparel, N.B., Gof-
fin, V., Akopian, A.N., Hargreaves, K.M. (2006) Prolactin modu-

lates TRPV1 in female rat trigeminal sensory neurons. J. Neurosci.,
26, 8126-36. 

[49] Docherty, R.J., Yeats, J.C., Bevan, S., Boddeke, H.W. (1996) Inhi-
bition of calcineurin inhibits the desensitization of capsaicin-

evoked currents in cultured dorsal root ganglion neurones from 
adult rats. Pflugers Arch., 431, 828-37. 

[50] Doerner, J.F., Gisselmann, G., Hatt, H., Wetzel, C.H. (2007) Tran-
sient receptor potential channel A1 is directly gated by calcium 

ions. J. Biol. Chem., 282, 13180-9. 
[51] Dougherty, P.M., Palecek, J., Paleckova, V., Sorkin, L.S., Willis, 

W.D. (1992) The role of NMDA and non-NMDA excitatory amino 
acid receptors in the excitation of primate spinothalamic tract neu-

rons by mechanical, chemical, thermal, and electrical stimuli. J. 
Neurosci., 12, 3025-41. 

[52] Dougherty, P.M., Palecek, J., Paleckova, V., Willis, W.D. (1994) 
Neurokinin 1 and 2 antagonists attenuate the responses and NK1 

antagonists prevent the sensitization of primate spinothalamic tract 
neurons after intradermal capsaicin. J. Neurophysiol., 72, 1464-75. 

[53] Dougherty, P.M., Willis, W.D. (1992) Enhanced responses of spi-
nothalamic tract neurons to excitatory amino acids accompany cap-

saicin-induced sensitization in the monkey. J. Neurosci., 12, 883-
94. 

[54] Dragoni, I., Guida, E., McIntyre, P. (2006) The cold and menthol 
receptor TRPM8 contains a functionally important double cysteine 

motif. J. Biol. Chem., 281, 37353-60. 
[55] Drizin, I., Gomtsyan, A., Bayburt, E.K., Schmidt, R.G., Zheng, 

G.Z., Perner, R.J., DiDomenico, S., Koenig, J.R., Turner, S.C., 
Jinkerson, T.K., Brown, B.S., Keddy, R.G., McDonald, H.A., 

Honore, P., Wismer, C.T., Marsh, K.C., Wetter, J.M., Polakowski, 
J.S., Segreti, J.A., Jarvis, M.F., Faltynek, C.R., Lee, C.H. (2006) 

Structure-activity studies of a novel series of 5,6-fused heteroaro-
matic ureas as TRPV1 antagonists. Bioorg. Med. Chem., 14, 4740-

9. 
[56] El Kouhen, R., Surowy, C.S., Bianchi, B.R., Neelands, T.R., 

McDonald, H.A., Niforatos, W., Gomtsyan, A., Lee, C.H., Honore, 
P., Sullivan, J.P., Jarvis, M.F., Faltynek, C.R. (2005) A-425619 [1-

isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and se-
lective transient receptor potential type V1 receptor antagonist, 

blocks channel activation by vanilloids, heat, and acid. J. Pharma-
col. Exp. Ther., 314, 400-9. 

[57] Elitt, C.M., McIlwrath, S.L., Lawson, J.J., Malin, S.A., Molliver, 
D.C., Cornuet, P.K., Koerber, H.R., Davis, B.M., Albers, K.M. 

(2006) Artemin overexpression in skin enhances expression of 
TRPV1 and TRPA1 in cutaneous sensory neurons and leads to be-

havioral sensitivity to heat and cold. J. Neurosci., 26, 8578-87. 
[58] Erler, I., Al-Ansary, D.M., Wissenbach, U., Wagner, T.F., Flock-

erzi, V., Niemeyer, B.A. (2006) Trafficking and assembly of the 
cold-sensitive TRPM8 channel. J. Biol. Chem., 281, 38396-404. 

[59] Evans, W.J., Ansari, M.A., Ziller, J.W. (1999) Synthesis of Zirco-
nium Aryloxide Complexes Containing Pendent Vinyl Groups. 

Inorg. Chem., 38, 1160-64. 
[60] Facer, P., Casula, M.A., Smith, G.D., Benham, C.D., Chessell, I.P., 

Bountra, C., Sinisi, M., Birch, R., Anand, P. (2007) Differential 
expression of the capsaicin receptor TRPV1 and related novel re-

ceptors TRPV3, TRPV4 and TRPM8 in normal human tissues and 
changes in traumatic and diabetic neuropathy. BMC Neurol., 7, 11. 

[61] Ferreira, J., da Silva, G.L., Calixto, J.B. (2004) Contribution of 
vanilloid receptors to the overt nociception induced by B2 kinin re-

ceptor activation in mice. Br. J. Pharmacol., 141, 787-94. 
[62] Fleming, G.F., Waggoner, S.E., Rotmensch, J., Skoog, L.A., Lang-

hauser, C. (1997) Phase II study of 96-hr continuous-infusion 
etoposide and doxorubicin with bolus cyclophosphamide in refrac-

tory epithelial ovarian cancer. Gynecol. Oncol., 65, 42-5. 
[63] Fu, Y., Subramanya, A., Rozansky, D., Cohen, D.M. (2006) WNK 

kinases influence TRPV4 channel function and localization. Am. J. 
Physiol. Renal Physiol., 290, F1305-14. 

[64] Fusco, B.M., Giacovazzo, M. (1997) Peppers and pain. The prom-
ise of capsaicin. Drugs, 53, 909-14. 

[65] Gaudet, A.D., Williams, S.J., Hwi, L.P., Ramer, M.S. (2004) Regu-
lation of TRPV2 by axotomy in sympathetic, but not sensory neu-

rons. Brain Res., 1017, 155-62. 



34    Current Neuropharmacology, 2008, Vol. 6, No. 1 Mandadi and Roufogalis 

[66] Gavva, N.R., Tamir, R., Qu, Y., Klionsky, L., Zhang, T.J., Immke, 
D., Wang, J., Zhu, D., Vanderah, T.W., Porreca, F., Doherty, E.M., 

Norman, M.H., Wild, K.D., Bannon, A.W., Louis, J.C., Treanor, 
J.J. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydro-

benzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 
(TRPV1) antagonist with antihyperalgesic properties. J. Pharma-

col. Exp. Ther., 313, 474-84. 
[67] Ghilarducci, D.P., Tjeerdema, R.S. (1995) Fate and effects of ac-

rolein. Rev. Environ. Contam. Toxicol., 144, 95-146. 
[68] Gopinath, P., Wan, E., Holdcroft, A., Facer, P., Davis, J.B., Smith, 

G.D., Bountra, C., Anand P. (2005) Increased capsaicin receptor 
TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 

and TRPV4 in keratinocytes in human breast pain. BMC Womens 
Health, 5, 2. 

[69] Green, B.G., Schoen, K.L. (2007) Thermal and nociceptive sensa-
tions from menthol and their suppression by dynamic contact. 

Behav. Brain Res., 176, 284-91. 
[70] Guatteo, E., Chung, K.K., Bowala, T.K., Bernardi, G., Mercuri, 

N.B., Lipski, J. (2005) Temperature sensitivity of dopaminergic 
neurons of the substantia nigra pars compacta: involvement of tran-

sient receptor potential channels. J. Neurophysiol., 94, 3069-80.  
[71] Guler, A.D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., Caterina, 

M. (2002) Heat-evoked activation of the ion channel, TRPV4. J. 
Neurosci., 22, 6408-14. 

[72] Hales, C.A., Barkin, P.W., Jung, W., Trautman, E., Lamborghini, 
D., Herrig, N., Burke, J. (1988) Synthetic smoke with acrolein but 

not HCl produces pulmonary edema. J. Appl. Physiol., 64, 1121-33. 
[73] Hales, C.A., Musto, S.W., Janssens, S., Jung, W., Quinn, D.A., 

Witten, M. (1992) Smoke aldehyde component influences pulmo-
nary edema. J. Appl. Physiol., 72, 555-61. 

[74] Hellwig, V., Nopper, R., Mauler, F., Freitag, J., Ji-Kai, L., Zhi-Hui, 
D., Stadler, M. (2003) Activities of prenylphenol derivatives from 

fruitbodies of Albatrellus spp. on the human and rat vanilloid re-
ceptor 1 (VR1) and characterisation of the novel natural product, 

confluentin. Arch. Pharm. (Weinheim), 336, 119-26. 
[75] Hicks, G.A. (2006) TRP channels as therapeutic targets: hot prop-

erty, or time to cool down? Neurogastroenterol. Motil., 18, 590-4. 
[76] Holzer, P. (2004) Vanilloid receptor TRPV1: hot on the tongue and 

inflaming the colon. Neurogastroenterol. Motil., 16, 697-9. 
[77] Honore, P., Wismer, C.T., Mikusa, J., Zhu, C.Z., Zhong, C., Gau-

vin, D.M., Gomtsyan, A., El Kouhen, R., Lee, C.H., Marsh, K., 
Sullivan, J.P., Faltynek, C.R., Jarvis, M.F. (2005) A-425619 [1-

isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel tran-
sient receptor potential type V1 receptor antagonist, relieves patho-

physiological pain associated with inflammation and tissue injury 
in rats. J. Pharmacol. Exp. Ther., 314, 410-21.  

[78] Hu, C.P., Xiao, L., Deng, H.W., Li, Y.J. (2002) The cardioprotec-
tion of rutaecarpine is mediated by endogenous calcitonin related-

gene peptide through activation of vanilloid receptors in guinea-pig 
hearts. Planta Med., 68, 705-9. 

[79] Hu, H.J., Bhave, G., Gereau, R.W 4th. (2002) Prostaglandin and 
protein kinase A-dependent modulation of vanilloid receptor func-

tion by metabotropic glutamate receptor 5: potential mechanism for 
thermal hyperalgesia. J. Neurosci., 22, 7444-52. 

[80] Hu, H.Z., Gu, Q., Wang, C., Colton, C.K., Tang, J., Kinoshita-
Kawada M., Lee, L.Y., Wood, J.D., Zhu, M.X. (2004) 2-

aminoethoxydiphenyl borate is a common activator of TRPV1,
TRPV2, and TRPV3. J. Biol. Chem., 279, 35741-8. 

[81] Hu, H.Z., Xiao, R., Wang, C., Gao, N., Colton, C.K., Wood, J.D., 
Zhu, M.X. (2006) Potentiation of TRPV3 channel function by un-

saturated fatty acids. J. Cell Physiol., 208, 201-12. 
[82] Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petro-

cellis, L., Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, 
C.J., Miller, J.D., Davies, S.N., Geppetti, P., Walker, J.M., Di 

Marzo, V. (2002) An endogenous capsaicin-like substance with 
high potency at recombinant and native vanilloid VR1 receptors. 

Proc. Natl. Acad. Sci. USA, 99, 8400-5. 
[83] Huang, J., Zhang, X., McNaughton, P.A. (2006) Modulation of 

temperature-sensitive TRP channels. Semin. Cell Dev. Biol., 17,
638-45. 

[84] Hui, K., Guo, Y., Feng, Z.P. (2005) Biophysical properties of men-
thol-activated cold receptor TRPM8 channels. Biochem. Biophys. 

Res. Commun., 333, 374-82. 
[85] Hwang, S.W., Cho, H., Kwak, J., Lee, S.Y., Kang, C.J., Jung, J., 

Cho, S., Min, K.H., Suh, Y.G., Kim, D., Oh, U. (2000) Direct acti-

vation of capsaicin receptors by products of lipoxygenases: en-
dogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA,

97, 6155-60. 
[86] Ichikawa, H., Fukunaga, T., Jin, H.W., Fujita, M., Takano-

Yamamoto, T., Sugimoto, T. (2004) VR1-, VRL-1- and P2X3 re-
ceptor-immunoreactive innervation of the rat temporomandibular 

joint. Brain Res., 1008, 131-6. 
[87] Ichikawa, H., Sugimoto, T. (2002) Co-expression of VRL-1 and 

calbindin D-28k in the rat sensory ganglia. Brain Res., 924, 109-12. 
[88] Iida, T., Moriyama, T., Kobata, K., Morita, A., Murayama, N., 

Hashizume, S., Fushiki, T., Yazawa, S., Watanabe, T., Tominaga, 
M. (2003) TRPV1 activation and induction of nociceptive response 

by a non-pungent capsaicin-like compound, capsiate. Neurophar-
macology, 44, 958-67. 

[89] Inoue, R., Jensen, L.J., Shi, J., Morita, H., Nishida, M., Honda, A., 
Ito, Y. (2006) Transient receptor potential channels in cardiovascu-

lar function and disease. Circ. Res., 99, 119-31. 
[90] Iwata, Y., Katanosaka, Y., Arai, Y., Komamura, K., Miyatake, K., 

Shigekawa, M. (2003) A novel mechanism of myocyte degenera-
tion involving the Ca2+-permeable growth factor-regulated chan-

nel. J. Cell Biol., 161, 957-67. 
[91] Izzo, A.A., Capasso, R., Pinto, L., Di Carlo, G., Mascolo, N., 

Capasso, F. (2001) Effect of vanilloid drugs on gastrointestinal 
transit in mice. Br. J. Pharmacol., 132, 1411-6. 

[92] Jaquemar, D., Schenker, T., Trueb, B. (1999) An ankyrin-like pro-
tein with transmembrane domains is specifically lost after onco-

genic transformation of human fibroblasts. J. Biol. Chem., 274, 25-
33. 

[93] Ji, R.R., Samad, T.A., Jin, S.X., Schmoll, R., Woolf, C.J. (2002) 
p38 MAPK activation by NGF in primary sensory neurons after in-

flammation increases TRPV1 levels and maintains heat hyperalge-
sia. Neuron, 36, 57-68. 

[94] Jordt, S.E., Bautista, D.M., Chuang, H.H., McKemy, D.D., Zyg-
munt, P.M., Hogestatt, E.D., Meng, I.D., Julius, D. (2004) Mustard 

oils and cannabinoids excite sensory nerve fibres through the TRP 
channel ANKTM1. Nature, 427, 260-5.  

[95] Julius, D. (2006) Spider toxins activate the capsaicin receptor to 
produce inflammatory pain. Nature, 444, 208-12. 

[96] Julius, D., Basbaum, A.I. (2001) Molecular mechanisms of noci-
ception. Nature, 413, 203-10. 

[97] Jung, J., Shin, J, S., Lee, S.-Y., Hwang, S, W., Koo, J., Cho, H., 
Oh, U. (2004) Phosphorylation of vanilloid receptor 1 by 

Ca2+/calmodulin-dependent kinase II regulates its vanilloid bind-
ing. J. Biol. Chem., 279, 7048-54. 

[98] Kang, D.W., Ryu, H., Lee, J., Lang, K.A., Pavlyukovets, V.A., 
Pearce, L.V., Ikeda, T., Lazar, J., Blumberg, P.M. (2007) Halo-

genation of 4-hydroxy-3-methoxybenzyl thiourea TRPV1 agonists 
showed enhanced antagonism to capsaicin. Bioorg. Med. Chem.

Lett., 17, 214-9.  
[99] Kanzaki, M., Zhang, Y.Q., Mashima, H., Li, L., Shibata, H., 

Kojima, I. (1999) Translocation of a calcium-permeable cation 
channel induced by insulin-like growth factor-I. Nat. Cell Biol., 1,

165-70. 
[100] Kashiba, H., Uchida, Y., Takeda, D., Nishigori, A., Ueda, Y., Ku-

ribayashi, K., Ohshima, M. (2004) TRPV2-immunoreactive intrin-
sic neurons in the rat intestine. Neurosci. Lett., 366, 193-6. 

[101] Katsura, H., Obata, K., Mizushima, T., Yamanaka, H., Kobayashi, 
K., Dai, Y., Fukuoka, T., Tokunaga, A., Sakagami, M., Noguchi, 

K. (2006) Antisense knock down of TRPA1, but not TRPM8, alle-
viates cold hyperalgesia after spinal nerve ligation in rats. Exp. 

Neurol., 200, 112-23. 
[102] Katsura, H., Tsuzuki, K., Noguchi, K., Sakagami, M. (2006) Dif-

ferential expression of capsaicin-, menthol-, and mustard oil-
sensitive receptors in naive rat geniculate ganglion neurons. Chem. 

Senses, 31, 681-8. 
[103] Katsura, H., Obata, K., Mizushima, T., Sakurai, J., Kobayashi, K., 

Yamanaka, H., Dai, Y., Fukuoka, T., Sakagami, M., Noguchi, K. 
(2007) Activation of extracellular signal-regulated protein kinases 

5 in primary afferent neurons contributes to heat and cold hyperal-
gesia after inflammation. J. Neurochem., (in press) 

[104] Kobata, K., Sutoh, K., Todo, T., Yazawa, S., Iwai, K., Watanabe, 
T. (1999) Nordihydrocapsiate, a new capsinoid from the fruits of a 

nonpungent pepper, capsicum annuum. J. Nat. Prod., 62, 335-6. 
[105] Kobayashi, K., Fukuoka, T., Obata, K., Yamanaka, H., Dai, Y., 

Tokunaga, A., Noguchi, K. (2005) Distinct expression of TRPM8, 



ThermoTRP Channels in Nociceptors Current Neuropharmacology, 2008, Vol. 6, No. 1    35

TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with 
adelta/c-fibers and colocalization with trk receptors. J. Comp. Neu-

rol., 493, 596-606. 
[106] Kobayashi, Y. (2003).The nociceptive and anti-nociceptive effects 

of evodiamine from fruits of Evodia rutaecarpa in mice. Planta 
Med., 69, 425-8. 

[107] Kobayashi, Y., Hoshikuma, K., Nakano, Y., Yokoo, Y., Kamiya T. 
(2001) The positive inotropic and chronotropic effects of evodia-

mine and rutaecarpine, indoloquinazoline alkaloids isolated from 
the fruits of Evodia rutaecarpa, on the guinea-pig isolated right 

atria: possible involvement of vanilloid receptors. Planta Med., 67,
244-8. 

[108] Kobayashi, Y., Nakano, Y., Hoshikuma, K., Yokoo, Y., Kamiya, T. 
(2000) The bronchoconstrictive action of evodiamine, an indolo-

quinazoline alkaloid isolated from the fruits of Evodia rutaecarpa, 
on guinea-pig isolated bronchus: possible involvement on vanilloid 

receptors. Planta Med., 66, 526-30. 
[109] Kobayashi, Y., Nakano, Y., Kizaki, M., Hoshikuma, K., Yokoo, Y., 

Kamiya, T. (2001) Capsaicin-like anti-obese activities of evodia-
mine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. 

Planta Med., 67, 628-33. 
[110] Koplas, P.A., Rosenberg, R.L., Oxford, G.S. (1997) The role of 

calcium in the desensitization of capsaicin responses in rat dorsal 
root ganglion neurons. J. Neurosci., 17, 3525-37. 

[111] Krause, J.E., Chenard, B.L., Cortright, D.N. (2005) Transient re-
ceptor potential ion channels as targets for the discovery of pain 

therapeutics. Curr. Opin. Investig. Drugs, 6, 48-57. 
[112] Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., 

Zhang, D.S., Woolf, C.J., Corey, D.P. (2006) TRPA1 contributes to 
cold, mechanical, and chemical nociception but is not essential for 

hair-cell transduction. Neuron, 50, 277-89. 
[113] LaMotte, R.H., Shain, C.N., Simone, D.A., Tsai, E.F. (1991) Neu-

rogenic hyperalgesia: psychophysical studies of underlying mecha-
nisms. J. Neurophysiol., 66, 190-211. 

[114] Lee, H., Caterina, M.J. (2005) TRPV channels as thermosensory 
receptors in epithelial cells. Pflugers Arch., 451, 160-7.  

[115] Lewinter, R.D., Skinner, K., Julius, D., Basbaum, A.I. (2004) Im-
munoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in 

the spinal cord of the rat. J. Comp. Neurol., 470, 400-8. 
[116] Liapi, A., Wood, J.N. (2005) Extensive co-localization and het-

eromultimer formation of the vanilloid receptor-like protein 
TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral 

cortex. Eur. J. Neurosci., 22, 825-34. 
[117] Liedtke, W., Choe, Y., Marti-Renom, M.A., Bell, A.M., Denis, 

C.S., Sali, A., Hudspeth, A.J., Friedman, J.M., Heller, S. (2000) 
Vanilloid receptor-related osmotically activated channel (VR-

OAC), a candidate vertebrate osmoreceptor. Cell, 103, 525-535. 
[118] Liedtke, W., Friedman, J.M. ( 2003) Abnormal osmotic regulation 

in trpv4-/- mice. PNAS, 100, 13698-703. 
[119] Liu, B., Qin, F. (2005) Functional control of cold- and menthol-

sensitive TRPM8 ion channels by phosphatidylinositol 4,5-
bisphosphate. J. Neurosci., 25, 1674-81. 

[120] Liu, H., Mantyh, P.W., Basbaum, A.I. (1997) NMDA-receptor 
regulation of substance P release from primary afferent nocicep-

tors. Nature, 386, 721-4. 
[121] Liu, L., Simon, S.A. (1997) Capsazepine, a vanilloid receptor an-

tagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal 
ganglia. Neurosci. Lett., 228, 29-32.  

[122] Liu, X., Bandyopadhyay, B., Nakamoto, T., Singh, B., Liedtke, W., 
Melvin, J.E., Ambudkar, I. (2006) A role for AQP5 in activation of 

TRPV4 by hypotonicity: concerted involvement of AQP5 and 
TRPV4 in regulation of cell volume recovery. J. Biol. Chem., 281,

15485-95. 
[123] Macpherson, L.J., Geierstanger, B.H., Viswanath, V., Bandell, M., 

Eid, S.R., Hwang, S., Patapoutian, A. (2005) The pungency of gar-
lic: activation of TRPA1 and TRPV1 in response to allicin. Curr. 

Biol., 15, 929-34. 
[124] Macpherson, L.J., Hwang, S.W., Miyamoto, T., Dubin, A.E., Pata-

poutian, A., Story, G.M. (2006) More than cool: promiscuous rela-
tionships of menthol and other sensory compounds. Mol. Cell Neu-

rosci., 32, 335-43. 
[125] Maia, J.L., Lima-Junior, R.C., Melo, C.M., David, J.P., David, 

J.M., Campos, A.R., Santos, F.A., Rao, V.S. (2006) Oleanolic acid, 
a pentacyclic triterpene attenuates capsaicin-induced nociception in 

mice: possible mechanisms. Pharmacol. Res., 54, 282-6. 

[126] Malcangio, M., Garrett, N.E., Cruwys, S., Tomlinson, D.R. (1997) 
Nerve growth factor- and neurotrophin-3-induced changes in noci-

ceptive threshold and the release of substance P from the rat iso-
lated spinal cord. J. Neurosci., 17, 8459-67. 

[127] Mandadi, S., Numazaki, M., Tominaga, M., Bhat, M.B., Armati, P. 
J., Roufogalis, B, D. (2004) Activation of Protein Kinase C re-

verses capsaicin-induced calcium dependent desensitization of 
TRPV1 ion channels. Cell Calcium, 35, 471-8. 

[128] Mandadi, S., Tominaga, T., Numazaki, M., Murayama, N., Saito, 
N., Armati, P.J., Roufogalis, B.D., Tominaga, M. (2006) Increased 

sensitivity of desensitized TRPV1 via PKC -mediated phosphory-
lation at Serine residue S800. Pain, 123, 106-16. 

[129] McCarson, K., Krause, J. (1994) NK-1 and NK-3 type tachykinin 
receptor mRNA expression in the rat spinal cord dorsal horn is in-

creased during adjuvant or formalin- induced nociception. J. Neu-
rosci., 14, 712-720. 

[130] McKemy, D.D., Neuhausser, W.M., Julius, D. (2002) Identification 
of a cold receptor reveals a general role for TRP channels in ther-

mosensation. Nature, 416, 52-8. 
[131] McKenna, K.E., Nadelhaft, I. (1986) The organization of the pu-

dendal nerve in the male and female rat. J. Comp. Neurol., 248,
532-49. 

[132] McMahon, S.B., Wood, J.N. (2006) Increasingly irritable and close 
to tears: TRPA1 in inflammatory pain. Cell, 124, 1123-5. 

[133] Mechoulam, R., Parker, L.A., Gallily, R. (2002) Cannabidiol: an 
overview of some pharmacological aspects. J. Clin. Pharmacol.,

42, 11S-19S. 
[134] Mizushima, T., Obata, K., Katsura, H., Yamanaka, H., Kobayashi, 

K., Dai, Y., Fukuoka, T., Tokunaga, A., Mashimo, T., Noguchi, K. 
(2006) Noxious cold stimulation induces mitogen-activated protein 

kinase activation in transient receptor potential (TRP) channels 
TRPA1- and TRPM8-containing small sensory neurons. Neuro-

science, 140, 1337-48.  
[135] Mizushima, T., Obata, K., Katsura, H., Sakurai, J., Kobayashi, K., 

Yamanaka, H., Dai, Y., Fukuoka, T., Mashimo, T., Noguchi, K. 
(2007) Intensity-dependent activation of extracellular signal-

regulated protein kinase 5 in sensory neurons contributes to pain 
hypersensitivity. J. Pharmacol. Exp. Ther., 321, 28-34. 

[136] Mizushima, T., Obata, K., Yamanaka, H., Dai, Y., Fukuoka, T., 
Tokunaga, A., Mashimo, T., Noguchi, K. (2005).Activation of p38 

MAPK in primary afferent neurons by noxious stimulation and its in-
volvement in the development of thermal hyperalgesia. Pain, 113, 51-

60. 
[137] Mohapatra, D.P., Nau, C. (2003) Desensitization of capsaicin-

activated currents in the vanilloid receptor TRPV1 is decreased by 
the cyclic AMP-dependent protein kinase pathway. J. Biol. Chem., 

278, 50080-90. 
[138] Mohapatra, D.P., Nau, C. (2005) Regulation of Ca2+-dependent 

desensitization in the vanilloid receptor TRPV1 by calcineurin and 
cAMP-dependent protein kinase. J. Biol. Chem., 280, 13424-32. 

[139] Montell, C. (2003) Thermosensation: hot findings make TRPNs 
very cool. Curr. Biol., 13, R476-8.  

[140] Montell, C., Birnbaumer, L., Flockerzi. V. (2002) The TRP Chan-
nels, a Remarkably Functional Family. Cell, 108, 595-8.  

[141] Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, 
A.N., Spencer, K.S., Andahazy, M., Story, G.M., Patapoutian, A. 

(2005) Impaired thermosensation in mice lacking TRPV3, a heat 
and camphor sensor in the skin. Science, 307, 1468-72. 

[142] Morenilla-Palao, C., Planells-Cases, R., Garcia-Sanz, N., Ferrer-
Montiel, A. (2004) Regulated exocytosis contributes to protein 

kinase C potentiation of vanilloid receptor activity. J. Biol. Chem., 
279, 25665-72. 

[143] Munns, C., AlQatari, M., Koltzenburg, M. (2007) Many cold sensi-
tive peripheral neurons of the mouse do not express TRPM8 or 

TRPA1. Cell Calcium, 41, 331-42. 
[144] Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., 

Shigekawa, M., Imaizumi, Y. (2003) TRPV2 is a component of 
osmotically sensitive cation channels in murine aortic myocytes. 

Circ. Res., 93, 829-38. 
[145] Nagata, K., Duggan, A., Kumar, G., Garcia-Anoveros, J. (2005) 

Nociceptor and hair cell transducer properties of TRPA1, a channel 
for pain and hearing. J. Neurosci., 25, 4052-61. 

[146] Nagy, I., Santha, P., Jancso, G., Urban, L. (2004) The role of the 
vanilloid (capsaicin) receptor (TRPV1) in physiology and pathol-

ogy. Eur. J. Pharmacol., 500, 351-69. 



36    Current Neuropharmacology, 2008, Vol. 6, No. 1 Mandadi and Roufogalis 

[147] Nealen, M.L., Gold, M.S., Thut, P.D., Caterina, M.J. (2003) 
TRPM8 mRNA is expressed in a subset of cold-responsive tri-

geminal neurons from rat. J. Neurophysiol., 90, 515-20. 
[148] Negri, L., Lattanzi, R., Giannini, E., Colucci, M., Margheriti, F., 

Melchiorri, P., Vellani, V., Tian, H., De Felice, M., Porreca, F. 
(2006) Impaired nociception and inflammatory pain sensation in 

mice lacking the prokineticin receptor PKR1: focus on interaction 
between PKR1 and the capsaicin receptor TRPV1 in pain behavior. 

J. Neurosci., 26, 6716-27. 
[149] Nicol, D. (2002) Cyclophosphamide and the urinary tract. Intern. 

Med. J., 32, 199-201. 
[150] Niforatos, W., Zhang, X.F., Lake, M.R., Walter, K.A., Neelands, 

T., Holzman, T.F., Scott, V.E., Faltynek, C.R., Moreland, R.B., 
Chen, J. (2007) Activation of TRPA1 channels by the fatty acid 

amide hydrolase inhibitor 3'-carbamoylbiphenyl-3-yl cyclohexyl-
carbamate (URB597) Mol. Pharmacol., 71, 1209-16. 

[151] Nilius, B., Talavera, K., Owsianik, G., Prenen, J., Droogmans, G., 
Voets, T. (2005) Gating of TRP channels: a voltage connection? J. 

Physiol., 567, 35-44. 
[152] Nilius, B., Voets, T., Peters, J. (2005) TRP channels in disease. Sci. 

STKE, 295, re8. 
[153] Nocerino, E., Izzo, A.A., Borrelli, F., Capasso, F., Capasso, R., 

Pinto, A., Sautebin, L., Mascolo, N. (2002) Relaxant effect of cap-
sazepine in the isolated rat ileum. Naunyn Schmiedebergs Arch. 

Pharmacol., 365, 187-92. 
[154] Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., 

Toyooka, H., Tominaga, M. (2003) Structural determinant of 
TRPV1 desensitization interacts with calmodulin. PNAS, 100,

8002-6. 
[155] Obata, K., Katsura, H., Mizushima, T., Yamanaka, H., Kobayashi, 

K., Dai, Y., Fukuoka, T., Tokunaga, A., Tominaga, M., Noguchi, 
K. (2005) TRPA1 induced in sensory neurons contributes to cold 

hyperalgesia after inflammation and nerve injury. J. Clin. Invest.,
115, 2393-401. 

[156] Ognyanov, V.I., Balan, C., Bannon, A.W., Bo, Y., Dominguez, C., 
Fotsch, C., Gore, V.K., Klionsky, L., Ma, V.V., Qian, Y.X., Tamir, 

R., Wang, X., Xi, N., Xu, S., Zhu, D., Gavva, N.R., Treanor, J.J., 
Norman, M.H. (2006) Design of potent, orally available antagonists 

of the transient receptor potential vanilloid 1. Structure-activity re-
lationships of 2-piperazin-1-yl-1H-benzimidazoles. J. Med. Chem.,

49, 3719-42. 
[157] Ohkubo, T., Kitamura, K. (1997) Eugenol activates Ca(2+)-

permeable currents in rat dorsal root ganglion cells. J. Dent. Res.,
76, 1737-44. 

[158] Ohkubo, T., Shibata, M. (1997) The selective capsaicin antagonist 
capsazepine abolishes the antinociceptive action of eugenol and 

guaiacol. J. Dent. Res., 76, 848-51. 
[159] Okano, H., Koike, S., Bamba, H., Toyoda, K., Uno, T., Hisa, Y. 

(2006) Participation of TRPV1 and TRPV2 in the rat laryngeal sen-
sory innervation. Neurosci. Lett., 400, 35-8. 

[160] O'Neil, R.G., Brown, R.C. (2003) The vanilloid receptor family of 
calcium-permeable channels: molecular integrators of microenvi-

ronmental stimuli. News Physiol. Sci., 18, 226-31. 
[161] O'Neil, R.G., Heller, S. (2005) The mechanosensitive nature of 

TRPV channels. Pflugers Arch., 451, 193-203. 
[162] Pan, H.L., Chen, S.R. (2004) Sensing tissue ischemia: another new 

function for capsaicin receptors? Circulation, 110, 1826-31. 
[163] Patwardhan, A.M., Jeske, N.A., Price, T.J., Gamper, N., Akopian, 

A.N., Hargreaves, K.M. (2006) The cannabinoid WIN 55,212-2 in-
hibits transient receptor potential vanilloid 1 (TRPV1) and evokes 

peripheral antihyperalgesia via calcineurin. Proc. Natl. Acad. Sci. 
USA, 103, 11393-8. 

[164] Pearce, L.V., Petukhov, P.A., Szabo, T., Kedei, N., Bizik, F., 
Kozikowski, A.P., Blumberg, P.M. (2004) Evodiamine functions as 

an agonist for the vanilloid receptor TRPV1. Org. Biomol. Chem., 
2, 2281-6.  

[165] Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Anders-
son, D.A., Story, G.M., Earley, T.J., Dragoni, I., McIntyre, P., 

Bevan, S., Patapoutian, A. (2002) A TRP channel that senses cold 
stimuli and menthol. Cell, 108, 705-15. 

[166] Peier, A.M., Reeve, A.J., Andersson, D.A., Moqrich, A., Earley, 
T.J., Hergarden, A.C., Story, G.M., Colley, S., Hogenesch, J.B., 

McIntyre, P., Bevan, S., Patapoutian, A. (2002) A heat-sensitive 
TRP channel expressed in keratinocytes. Science, 296, 2046-9. 

[167] Piper, A.S., Yeats, J.C., Bevan, S., Docherty, R.J. (1999) A study 
of the voltage dependence of capsaicin-activated membrane cur-

rents in rat sensory neurones before and after acute desensitization. 
J. Physiol., 518, 721-33. 

[168] Proudfoot, C.J., Garry, E.M., Cottrell, D.F., Rosie, R., Anderson, 
H., Robertson, D.C., Fleetwood-Walker, S.M., Mitchell, R. (2006) 

Analgesia mediated by the TRPM8 cold receptor in chronic neuro-
pathic pain. Curr. Biol., 16, 1591-605. 

[169] Rami, H.K., Thompson, M., Stemp, G., Fell, S., Jerman, J.C., Ste-
vens, A.J., Smart, D., Sargent, B., Sanderson, D., Randall, A.D., 

Gunthorpe, M.J., Davis, J.B. (2006) Discovery of SB-705498: a po-
tent, selective and orally bioavailable TRPV1 antagonist suitable 

for clinical development. Bioorg. Med. Chem. Lett., 16, 3287-91. 
[170] Ramsey, I.S., Delling, M., Clapham, D.E. (2006) An introduction 

to TRP channels. Annu. Rev. Physiol., 68, 619-47. 
[171] Rashid, M.H., Inoue, M., Bakoshi, S., Ueda, H. (2003) Increased 

expression of vanilloid receptor 1 on myelinated primary afferent 
neurons contributes to the antihyperalgesic effect of capsaicin 

cream in diabetic neuropathic pain in mice. J. Pharmacol. Exp. 
Ther., 306, 709-17. 

[172] Reid, G., Flonta, M.L. (2002) Ion channels activated by cold and 
menthol in cultured rat dorsal root ganglion neurones. Neurosci. 

Lett., 324, 164-8. 
[173] Rohacs, T., Nilius, B. (2007) Regulation of transient receptor po-

tential (TRP) channels by phosphoionositides. Plugers Arch., (in 
press). 

[174] Rohacs, T., Lopes, C.M., Michailidis, I., Logothetis, D.E. (2005) 
PI(4,5)P2 regulates the activation and desensitization of TRPM8 

channels through the TRP domain. Nat. Neurosci., 8, 626-34. 
[175] Roufogalis, B.D., Dedov, V.N. (1999) Capsaicin receptor mecha-

nism and future trends for analgesics. (In) Herbal medicinal prod-
ucts for the treatment of pain. (ed. Chrubasik, S., Roufogalis, B.D.) 

Lismore: Southern Cross University Press, pp. 94-98. 
[176] Saghatelian, A., McKinney, M.K., Bandell, M., Patapoutian, A., 

Cravatt, B.F. (2006) A FAAH-regulated class of N-acyl taurines 
that activates TRP ion channels. Biochemistry, 45, 9007-15. 

[177] Sakurada, T., Sugiyama, A., Sakurada, C., Tanno, K., Sakurada, S., 
Kisara, K., Hara, A., Abiko, Y. (1996) Involvement of nitric oxide 

in spinally mediated capsaicin- and glutamate-induced behavioural 
responses in the mouse. Neurochem. Int., 29, 271-8. 

[178] Saunders, C.I., Kunde, D.A., Crawford, A., Geraghty, D.P. (2007) 
Expression of transient receptor potential vanilloid 1 (TRPV1) and 

2 (TRPV2) in human peripheral blood. Mol. Immunol., 44, 1429-
35. 

[179] Schafer, M.K., Nohr, D., Krause, J.E., Weihe, E. (1993) Inflamma-
tion-induced upregulation of NK1 receptor mRNA in dorsal horn 

neurones. Neuroreport, 4, 1007-1010. 
[180] Schroder, H.D. (1984) Somatostatin in the caudal spinal cord: an 

immunohistochemical study of the spinal centers involved in the 
innervation of pelvic organs. J. Comp. Neurol., 223, 400-14. 

[181] Sherrington S.C. (1906) The integrative action of the nervous sys-
tem. Yale University Press, New Haven. 

[182] Shibasaki, K., Suzuki, M., Mizuno, A., Tominaga, M. (2007) Ef-
fects of body temperature on neural activity in the hippocampus: 

regulation of resting membrane potentials by transient receptor po-
tential vanilloid 4. J. Neurosci., 27, 1566-75. 

[183] Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., 
Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., Haber, N.A., Reichling, 

D.B., Khasar, S., Levine, J.D., Oh, U. (2002) Bradykinin-12-
lipoxygenase-VR1 signaling pathway for inflammatory hyperalge-

sia. Proc. Natl. Acad. Sci. USA, 99, 10150-5. 
[184] Shu, X.Q., Llinas, A., Mendell, L.M. (1999) Effects of trkB and 

trkC neurotrophin receptor agonists on thermal nociception: a be-
havioral and electrophysiological study. Pain, 80, 463-70. 

[185] Shu, X., Mendell, L.M. (2001) Acute sensitization by NGF of the 
response of small-diameter sensory neurons to capsaicin. J. Neuro-

physiol., 86, 2931-8. 
[186] Sidhaye, V.K., Guler, A.D., Schweitzer, K.S., D'Alessio, F., 

Caterina, M.J., King, L.S. (2006) Transient receptor potential vanil-
loid 4 regulates aquaporin-5 abundance under hypotonic condi-

tions. Proc. Natl. Acad. Sci. USA, 103, 4747-52.  
[187] Siemens, J., Zhou, S., Piskorowski, R., Nikai, T., Lumpkin, E.A., 

Basbaum, A.I., King, D., Silva, C., Rio, M.E., Cruz, F. (2000) De-
sensitization of bladder sensory fibers by intravesical resinifera-



ThermoTRP Channels in Nociceptors Current Neuropharmacology, 2008, Vol. 6, No. 1    37

toxin, a capsaicin analog: long-term results for the treatment of de-
trusor hyperreflexia. Eur. Urol., 38, 444-52. 

[188] Simone, D.A., Baumann, T.K., LaMotte, R.H. (1989) Dose-
dependent pain and mechanical hyperalgesia in humans after in-

tradermal injection of capsaicin. Pain, 38, 99-107. 
[189] Simone, D.A., Ngeow, J.Y., Putterman, G.J., LaMotte, R.H. (1987) 

Hyperalgesia to heat after intradermal injection of capsaicin. Brain 
Res., 418, 201-3. 

[190] Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, 
P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ooi, L., Eger-

ton, J., Charles, K.J., Smart, D., Randall, A.D., Anand, P., Davis, 
J.B. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-

like protein. Nature, 418, 186-90.  
[191] Smith, M.P., Beacham, D., Ensor, E., Koltzenburg, M. (2004) 

Cold-sensitive, menthol-insensitive neurons in the murine sympa-
thetic nervous system. Neuroreport, 15, 1399-403. 

[192] Smith, P.L., Maloney, K.N., Pothen, R.G., Clardy, J., Clapham, 
D.E. (2006) Bisandrographolide from Andrographis paniculata ac-

tivates TRPV4 channels. J. Biol. Chem., 281, 29897-904. 
[193] Steenland, H.W., Ko, S.W., Wu, L.J., Zhuo, M. (2006) Hot recep-

tors in the brain. Mol. Pain, 8, 2-34. 
[194] Stein, A.T., Ufret-Vincenty, C.A., Hua, L., Santana, L.F., Gordon, 

S.E. (2006) Phosphoinositide 3-kinase binds to TRPV1 and medi-
ates NGF-stimulated TRPV1 trafficking to the plasma membrane. 

J. Gen. Physiol., 128, 509-22. 
[195] Stein, R.J., Santos, S., Nagatomi, J., Hayashi, Y., Minnery, B.S., 

Xavier, M., Patel, A.S., Nelson, J.B., Futrell, W.J., Yoshimura, N., 
Chancellor, M.B., De Miguel, F. (2004) Cool (TRPM8) and hot 

(TRPV1) receptors in the bladder and male genital tract. J. Urol., 
172, 1175-8. 

[196] Sterner, O., Szallasi, A. (1999) Novel natural vanilloid receptor 
agonists: new therapeutic targets for drug development. Trends 

Pharmacol. Sci., 20, 459-65. 
[197] Stokes, A.J., Shimoda, L.M., Koblan-Huberson, M., Adra, C.N., 

Turner, H. (2004) A TRPV2-PKA signaling module for transduc-
tion of physical stimuli in mast cells. J. Exp. Med., 200, 137-47. 

[198] Stokes, A., Wakano, C., Koblan-Huberson, M., Adra, C.N., Fleig, 
A., Turner, H. (2006) TRPA1 is a substrate for de-ubiquitination by 

the tumor suppressor CYLD. Cell Signal., 18, 1584-94.  
[199] Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., 

Hricik, T.R., Earley, T.J., Hergarden, A.C., Andersson, D.A., 
Hwang, S.W., McIntyre, P., Jegla, T., Bevan, S., Patapoutian, A. 

(2003) ANKTM1, a TRP-like channel expressed in nociceptive 
neurons, is activated by cold temperatures. Cell, 112, 819-29. 

[200] Story, G.M., Gereau, R.W. 4th. (2006) Numbing the senses: role of 
TRPA1 in mechanical and cold sensation. Neuron, 50, 177-80. 

[201] Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., 
Plant, T.D. (2000) OTRPC4, a nonselective cation channel that 

confers sensitivity to extracellular osmolarity. Nat. Cell Biol., 2,
695-702. 

[202] Suzuki, M., Hirao, A., Mizuno, A. (2003) Microtubule-associated 
[corrected] protein 7 increases the membrane expression of tran-

sient receptor potential vanilloid 4 (TRPV4). J. Biol. Chem., 278,
51448-53. Erratum in: J. Biol. Chem., 280, 25948. 

[203] Suzuki, M., Mizuno, A., Kodaira, K., Imai, M. (2003) Impaired 
pressure sensation in mice lacking TRPV4. J. Biol. Chem., 278,

22664-8. 
[204] Symanowicz, P.T., Gianutsos, G., Morris, J.B. (2004) Lack of role 

for the vanilloid receptor in response to several inspired irritant air 
pollutants in the C57Bl/6J mouse. Neurosci. Lett., 362, 150-3. 

[205] Szallasi, A., Cortright, D.N., Blum, C.A., Eid, S.R. (2007) The 
vanilloid receptor TRPV1: 10 years from channel cloning to an-

tagonist proof-of-concept. Nat. Rev. Drug Discov., 6, 357-72. 
[206] Szallasi, A. (2006) Small molecule vanilloid TRPV1 receptor an-

tagonists approaching drug status: can they live up to the expecta-
tions? Naunyn Schmiedebergs Arch. Pharmacol., 373, 273-86. 

[207] Szallasi, A., Appendino, G. (2004) Vanilloid receptor TRPV1 an-
tagonists as the next generation of painkillers. Are we putting the 

cart before the horse? J. Med. Chem., 47, 2717-23. 
[208] Szallasi, A., Biro, T., Szabo, T., Modarres, S., Petersen, M., 

Klusch, A., Blumberg, P.M., Krause, J.E., Sterner, O. (1999) A 
non-pungent triprenyl phenol of fungal origin, scutigeral, stimu-

lates rat dorsal root ganglion neurons via interaction at vanilloid re-
ceptors. Br. J. Pharmacol., 126, 1351-8. 

[209] Szallasi, A., Cruz, F., Geppetti, P. (2006) TRPV1: a therapeutic 
target for novel analgesic drugs? Trends Mol. Med., 12, 545-54. 

[210] Takashima, Y., Daniels, R.L., Mckemy, D.D. (2006) Generation of 
BAC-transgenic mice expressing eGFP under control of the 

TRPM8 promoter. Abstract 628.17/D49, SfN meeting, Atlanta. 
[211] Tamura, S., Morikawa, Y., Senba, E. (2005) TRPV2, a capsaicin 

receptor homologue, is expressed predominantly in the neurotro-
phin-3-dependent subpopulation of primary sensory neurons. Neu-

roscience, 130, 223-8. 
[212] Tominaga, M. (2006) Gating, Sensitization, and Desensitization of 

TRPV1. Curr. Top. Mem., 57, 181-197. 
[213] Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, 

V., Nilius, B. The principle of temperature-dependent gating in 
cold- and heat-sensitive TRP channels. Nature, 430, 748-54. 

[214] Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A., Suzuki, M. (2004) 
Warm temperature-sensitive transient receptor potential vanilloid 4 

(TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. 
Chem., 279, 35133-8. 

[215] Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., 
Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., Julius, D. 

(1998) The cloned capsaicin receptor integrates multiple pain-
producing stimuli. Neuron, 21, 531-543. 

[216] Torebjork, H.E., Lundberg, L.E., LaMotte, R.H. (1992) Central 
changes in processing of mechanoreceptive input in capsaicin-

induced secondary hyperalgesia in humans. J. Physiol., 448, 765-
80. 

[217] Tsavaler, L., Shapero, M.H., Morkowski, S., Laus, R. (2001) Trp-
p8, a novel prostate-specific gene, is up-regulated in prostate can-

cer and other malignancies and shares high homology with tran-
sient receptor potential calcium channel proteins. Cancer Res., 61,

3760-9. 
[218] Valenzano, K.J., Sun, Q. (2004) Current perspectives on the thera-

peutic utility of VR1 antagonists. Curr. Med. Chem., 11(24), 3185-
202.  

[219] Van Der Stelt, M., Di Marzo, V. (2004) Endovanilloids. Putative 
endogenous ligands of transient receptor potential vanilloid 1 chan-

nels. Eur. J. Biochem., 271, 1827-34. 
[220] Vanden Abeele, F., Zholos, A., Bidaux, G., Shuba, Y., Thebault, 

S., Beck, B., Flourakis, M., Panchin, Y., Skryma, R., Prevarskaya, 
N. (2006) Ca2+-independent phospholipase A2-dependent gating 

of TRPM8 by lysophospholipids. J. Biol. Chem., 281, 40174-82. 
[221] Vellani, V., Colucci, M., Lattanzi, R., Giannini, E., Negri, L., 

Melchiorri, P., McNaughton, P.A. (2006) Sensitization of transient 
receptor potential vanilloid 1 by the prokineticin receptor agonist 

Bv8. J. Neurosci., 26, 5109-16. 
[222] Vogt-Eisele, A.K., Weber, K., Sherkheli, M.A., Vielhaber, G., 

Panten, J., Gisselmann, G., Hatt, H. Monoterpenoid agonists of 
TRPV3. (2007) Br. J. Pharmacol., 151, 530-40.  

[223] Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., 
Voets, T., Morisseau, C., Hammock, B.D., Fleming, I., Busse, R., 

Nilius, B. (2005) Modulation of the Ca2 permeable cation channel 
TRPV4 by cytochrome P450 epoxygenases in vascular endothe-

lium. Circ. Res., 97, 908-15. 
[224] Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., 

Nilius, B. (2004) Proc. Natl. Acad. Sci. USA, 101, 396-401. 
[225] Vriens, J., Owsianik, G., Janssens, A., Voets, T., Nilius, B. (2007) 

Determinants of 4 alpha-phorbol sensitivity in transmembrane do-
mains 3 and 4 of the cation channel TRPV4. J. Biol. Chem., 282,

12796-803.  
[226] Wainwright, A., Rutter, A.R., Seabrook, G.R., Reilly, K., Oliver, 

K.R. (2004) Discrete expression of TRPV2 within the hypo-
thalamo-neurohypophysial system: Implications for regulatory ac-

tivity within the hypothalamic-pituitary-adrenal axis. J. Comp. 
Neurol., 474, 24-42. 

[227] Wasner, G., Schattschneider, J., Binder, A., Baron, R. (2004) Topi-
cal menthol--a human model for cold pain by activation and sensi-

tization of C nociceptors. Brain, 127, 1159-71. 
[228] Watanabe, H., Davis, J.B., Smart, D., Jerman, J.C., Smith, G.D., 

Hayes, P., Vriens, J., Cairns, W., Wissenbach, U., Prenen, J., 
Flockerzi, V., Droogmans, G., Benham, C.D., Nilius, B. (2002) Ac-

tivation of TRPV4 channels (hVRL-2/mTRP12) by phorbol deriva-
tives. J. Biol. Chem., 277, 13569-77. 

[229] Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., 
Nilius, B. (2003) Anandamide and arachidonic acid use epoxyei-

cosatrienoic acids to activate TRPV4 channels. Nature, 424, 434-8. 



38    Current Neuropharmacology, 2008, Vol. 6, No. 1 Mandadi and Roufogalis 

[230] Watanabe, H., Vriens, J., Janssens, A., Wondergem, R., Droogmans, 
G., Nilius, B. (2003) Modulation of TRPV4 gating by intra- and 

extracellular Ca2+. Cell Calcium, 33, 489-95. 
[231] Weil, A., Moore, S.E., Waite, N.J., Randall, A., Gunthorpe, M.J. 

(2005) Conservation of functional and pharmacological properties 
in the distantly related temperature sensors TRVP1 and TRPM8. 

Mol. Pharmacol., 68, 518-27. 
[232] Werkheiser, J.L., Rawls, S.M., Cowan, A. (2007) Nalfurafine, the 

kappa opioid agonist, inhibits icilin-induced wet-dog shakes in rats 
and antagonizes glutamate release in the dorsal striatum. Neuro-

pharmacology, 52, 925-30. 
[233] Westaway, S.M., Chung, Y.K., Davis, J.B., Holland, V., Jerman, 

J.C., Medhurst, S.J.,Rami,H.K., Stemp,G., Stevens,A.J.,Thompson, 
M., Winborn, K.Y., Wright, J. (2006) N-Tetrahydroquinolinyl, N-

quinolinyl and N-isoquinolinyl biaryl carboxamides as antagonists 
of TRPV1. Bioorg. Med. Chem. Lett., 16, 4533-6. 

[234] Willis, W.D. (2001) Role of neurotransmitters in sensitization of 
pain responses. Ann. N. Y. Acad. Sci., 933, 142-56. 

[235] Wissenbach, U., Bodding, M., Freichel, M and Flockerzi, V. (2000) 
Trp12, a novel Trp related protein from kidney. FEBS Lett., 485,

127-134. 
[236] Xu, F., Satoh, E., Iijima, T. (2003) Protein kinase C-mediated Ca2+ 

entry in HEK 293 cells transiently expressing human TRPV4. Br. 
J. Pharmacol., 140, 413-21. 

[237] Xu, H., Delling, M., Jun, J.C., Clapham, D.E. (2006) Oregano, 
thyme and clove-derived flavors and skin sensitizers activate spe-

cific TRP channels. Nat. Neurosci., 9, 628-35. 
[238] Xu, H., Fu, Y., Tian, W., Cohen, D.M. (2006) Glycosylation of the 

osmoresponsive transient receptor potential channel TRPV4 on 
Asn-651 influences membrane trafficking. Am. J. Physiol. Renal 

Physiol., 290, F1103-9.  
[239] Xu, H., Ramsey, I.S., Kotecha, S.A., Moran, M.M., Chong, J.A., 

Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., DiStefano, 
P.S., Curtis, R., Clapham, D.E. (2002) TRPV3 is a calcium-

permeable temperature-sensitive cation channel. Nature, 418, 181-
6. 

[240] Zhang, L., Barritt, G.J. (2006) TRPM8 in prostate cancer cells: a 
potential diagnostic and prognostic marker with a secretory func-

tion? Endocr. Relat. Cancer, 13, 27-38.  
[241] Zhang, L., Jones, S., Brody, K., Costa, M., Brookes, S.J. (2004) 

Thermosensitive transient receptor potential channels in vagal af-
ferent neurons of the mouse. Am. J. Physiol. Gastrointest. Liver 

Physiol., 286, G983-91. 
[242] Zhang, X., Huang, J., McNaughton, P.A. (2005) NGF rapidly in-

creases membrane expression of TRPV1 heat-gated ion channels. 
EMBO J., 24, 4211-23.  

[243] Zheng, X., Hodgetts, K.J., Brielmann, H., Hutchison, A., Burkamp, 
F., Brian Jones, A., Blurton, P., Clarkson, R., Chandrasekhar, J., 

Bakthavatchalam, R., De Lombaert, S., Crandall, M., Cortright, D., 
Blum, C.A. (2006) From arylureas to biarylamides to aminoquina-

zolines: discovery of a novel, potent TRPV1 antagonist. Bioorg. 
Med. Chem. Lett., 16, 5217-21. 

[244] Zhuang, Z.Y., Xu, H., Clapham, D.E., Ji, R.R. (2004) Phosphatidy-
linositol 3-kinase activates ERK in primary sensory neurons and 

mediates inflammatory heat hyperalgesia through TRPV1 sensitiza-
tion. J. Neurosci., 24, 8300-9. 

[245] Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O., Heppenstall, 
P.A. (2007) Direct activation of the ion channel TRPA1 by Ca2+.

Nat. Neurosci., 10, 277-9. 
[246] Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H., Sor-

gard, M., Di Marzo, V., Julius, D., Hogestatt, E.D. (1999) Vanilloid 
receptors on sensory nerves mediate the vasodilator action of anan-

damide. Nature, 400, 452-7. 
[247] Zygmunt, P.M., Andersson, D.A., Hogestatt, E.D. (2002) Delta 9-

tetrahydrocannabinol and cannabinol activate capsaicin-sensitive 
sensory nerves via a CB1 and CB2 cannabinoid receptor-

independent mechanism. J. Neurosci., 22, 4720-7. 

Received: February 21, 2007 Revised: April 27, 2007 Accepted: July 15, 2007 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


