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Abstract
Simulating the brain tissue deformation caused by tumor growth has been found to aid the deformable
registration of brain tumor images. In this paper we evaluate the impact that different biomechanical
simulators have on the accuracy of deformable registration. We use two alternative frameworks for
biomechanical simulations of mass effect in 3D MR brain images. The first one is based on a finite
element model of nonlinear elasticity and unstructured meshes using the commercial software
package ABAQUS. The second one employs incremental linear elasticity and regular grids in a
fictitious domain method. In practice, biomechanical simulations via the second approach may be at
least ten times faster. Landmarks error and visual examination of the co-registered images indicate
that the two alternative frameworks for biomechanical simulations lead to comparable results of
deformable registration. Thus, the computationally less expensive biomechanical simulator offers a
practical alternative for registration purposes.

Index Terms
biomechanical model; tumor growth simulation; deformable registration; brain tumor

I. Introduction
Statistical atlases of brain function and structure have been used extensively in the brain
imaging literature during the past decade [1–3] as means for integrating diverse information
about anatomical and functional variability into a canonical coordinate space, often called
stereotactic space, thereby better understanding, as well as diagnosing, brain diseases such as
early stages of Alzheimer’s disease, schizophrenia, and others. In the case of brain tumor
patients, such atlases can potentially assist in the surgical and radiotherapeutic treatment
planning. However, most available brain image registration methods come short when severe
deformities, such as mass effect caused by growing tumors, are present.

In order to improve the registration process, it is desirable to first construct a brain atlas that
has tumor and mass effect similar to the one of a patient at study. Subsequent deformable
registration is then more likely to accurately match the atlas with the patient’s images, since it
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has to solve a problem involving two brains that are relatively more similar, compared to
matching a normal atlas with a highly deformed brain [4–7].

The purpose of this paper is not to present a new methodology for modeling brain tumor mass
effect or for deformable registration of brain images. The goal is rather to compare two different
modeling frameworks for mass effect, from the perspective of the registration accuracy
ultimately achieved by the existing registration algorithms. The tumor growth modeling
frameworks we use for registration purposes are pressure-based biomechanical [8–11].

The first framework [8,9] models the brain tissue as a nonlinear material and approximates the
expansive force exerted by the growing tumor by an outward pressure acting on the tumor
boundary. This model is solved to estimate brain tissue displacements using a nonlinear finite
element (FE) formulation on unstructured meshes in ABAQUS. We shall refer to this
simulation framework as the Nonlinear Lagrangian (NL). Its potential advantages are: 1) more
complex constitutive laws for the brain tissue/ventricles modeled by ABAQUS; 2) higher
accuracy close to boundaries of interest (e.g. tumor boundary), since the underlying mesh is
conformal to the anatomy. The main draw-backs are that: 1) unstructured meshes deteriorate
significantly in the presence of large deformations induced by a growing brain tumor, thus
frequent remeshing may be needed [8,9]; 2) the method is computationally slow, since
construction of efficient solvers for the resulting algebraic system of equations is difficult.

The second approach tested herein [10,11] was proposed to bypass these inherent difficulties
associated with the NL simulator. An incremental pressure, linear elasticity, model was
developed in an Eulerian formulation, with a level-set based method for advancing fronts, and
solved using regular grids in a fictitious domain method. This approach circumvents the need
for mesh generation and remeshing. Thus, large deformations can be captured effortlessly and
efficient solvers can be employed. This results in a fast, robust and flexible (but potentially
less accurate [10,11]) simulation framework that we shall refer to as Piecewise Linear
Eulerian (PLE).

Since brain tumor images often exhibit large tumors, the biomechanical simulator needs to be
robust to large deformations and also computationally efficient, particularly for registration
purposes. It is therefore important to assess, if and how the differences between the two distinct
biomechanical simulators affect the subsequent registration results, and thereby to determine
whether potential gains in accuracy warrant the significant additional computational load
imposed by the NL framework. In this paper, we compare the performance of the NL and the
PLE biomechanical simulators in registering brain tumor images with a normal atlas using a
deformable registration method [5,12] based on the HAMMER algorithm [13]. For comparison
purposes, we register the 3D MR images of four brain tumor patients using both biomechanical
simulators and assess the registration accuracy based on landmark points manually placed by
an expert neuroradiologist, as well as by visual inspection of the co-registered images.

II. Methods
Fig. 1 illustrates the process for co-registering a normal (tumor-free) template and a tumor
patient’s image. This process involves (i) insertion of a small tumor seed in the template and
simulation of tumor growth, and (ii) registration of the template that is deformed by tumor
growth with the patient’s image. The biomechanical simulation is initialized with a 3D
segmented image of the normal brain atlas serving as template. The amount of tissue death is
simulated by replacing a part of the brain parenchyma with a small tumor mass, whose location
and size are parameters of the model. The initial tumor seed is expanded by the biomechanical
simulators until the size of the simulated tumor in the atlas becomes close to the size of the
tumor in the patient’s image. Biomechanical simulations of tumor growth are performed

Zacharaki et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



independently via the NL (Nonlinear Lagrangian) and PLE (Piecewise Linear Eulerian)
frameworks, as described in the following.

The NL biomechanical simulator is based on a nonlinear elastic FE formulation on tetrahedral
meshes in ABAQUS (Version 6.4, 2003) [14]. A tetrahedral mesh is generated that conforms
to the tumor boundary, ventricles and brain surface, respectively. The brain parenchyma is
regarded as a hyperelastic homogeneous material; the ventricles are assumed void. The
corresponding material properties are as in [4,15]. The strength of the bulk tumor mass effect
and the final tumor size are regulated by the pressure parameter. The imposed boundary
conditions allow sliding over the brain surface except for the intersecting points with the falx,
which is assumed pinned; traction is imposed on the tumor boundary, corresponding to a
prescribed pressure exerted by the growing tumor onto the surrounding brain parenchyma.
More details can be found in [9,15].

In the PLE simulator, the brain is approximated as an inhomogeneous isotropic linear elastic
medium, with different material properties in the white matter, gray matter and ventricles. In
this framework, ventricles are treated as a soft compressible elastic material [10,11]. For
simplicity, zero displacements are imposed at the skull. The target domain (brain) is embedded
in a larger computational cubic domain (box), with material properties and distributed forces
chosen so that the imposed boundary conditions on the true boundary (here consisting of the
brain surface and the tumor boundary, respectively) are approximated. An Eulerian formulation
is employed to capture large deformations, with a level-set based approach for evolving fronts.
The problem is solved using a regular grid discretization with a fast matrix-free multigrid solver
for the resulting algebraic system of equations. The methodology is described in detail in
[10,11]. For the simulations in this paper, the same material properties as in [10,11] are used.

For comparison purposes, we used the same tumor model parameters (tumor seed size and
location) in both simulators. These parameter values have been estimated in [12] for the patient
images used in this study via optimization of a criterion reflecting elastic stretching energy and
image similarity upon registration. Specifically, the optimality criterion is defined as the
combination of three normalized measures: (i) the residual volume of overlap of the co-
registered atlas and patient’s images, (ii) the distance of attribute (feature) vectors which are
defined similarly as in [5], and (iii) the Laplacian of the deformation field defined to reflect
smoothness properties.

After simulating tumor growth in the atlas, a deformable registration method is applied to
register the tumor-bearing images. The registration method is built upon the idea of the
HAMMER registration algorithm [13] and follows a deformation strategy that is robust to
confounded factors caused by the presence of a tumor, as described in [5].

III. Results
The registration accuracy was assessed using Magnetic Resonance (MR) images of brain tumor
patients. Four T1-weighted brain datasets were selected including tumors of different types,
grades and sizes. Specifically, for patient 1 to 4, the brain tumors were diagnosed as
oligodendroglioma (WHO grade II/IV), anaplastic oligoastocytoma (WHO grade III/IV),
anaplastic oligodendroglioma (WHO grade III/IV) and glioblastoma (WHO grade IV/IV), and
reached a size of 26.3, 18.5, 80.7 and 36.9 cc, respectively. All the images were segmented
and registered with a normal brain image serving as template, which consisted of 198 axial
scans with image dimensions 256×256 voxels and voxel size 1×1×1 mm3.
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A. Quantitative assessment based on landmarks
In order to quantitatively assess the registration accuracy, an expert neuroradiologist manually
placed landmark points in each patient’s image in anatomical regions that were displaced by
the tumor (13–14 landmarks) or were not displaced (7–10 landmarks). Similarly, the
corresponding landmarks were manually identified in the atlas. This set of landmarks is referred
to as the first set of landmarks. In order to ensure consistency in the identification of landmarks,
the reverse procedure was followed a few weeks later. The same expert first looked at the
selected landmarks locations in the atlas, and then identified the corresponding points in the
patient’s images. This set of landmarks is labeled as the second set of landmarks. The point
coordinates of manual landmarks defined in the patient’s images were mapped to the atlas
space through the resulting deformation maps obtained via each of the two biomechanical
simulations and registration. Then, the mapped landmarks were compared with the
corresponding manually placed landmarks in the atlas. The minimum (min), average (avg),
maximum (max), and standard deviation (stdev) of the landmarks error for the regions displaced
or not displaced by the tumor are shown in Table I and Table II, respectively. For each patient’s
image, the first row in the tables indicates the intra-rater variability in placing the two sets of
landmarks. The other two rows show left and right the error statistics for each of the first and
second set of landmarks, respectively.

The results summarized in Tables I and II indicate that the registration is not significantly
affected if a PLE simulation of tumor growth is performed, instead of a NL simulation. Thus,
the solution differences are minor in comparison to the inter-subject variation and the applied
registration method can compensate for them. In these tests, our current version of the PLE
simulator was about 10 times faster than the NL simulator: an average of around 3 minutes1

compared to an average of around 30 minutes. This is an important aspect to be taken into
account for the purpose of achieving fast integration with image registration.

In order to assess the importance of incorporating a biomechanical model of mass effect into
the registration process, the registration was also performed immediately after placing the
tumor seed (without modeling the mass effect). As expected, the landmark errors increased,
with the maximum increase exhibited in the case of the patient with the largest tumor volume
(patient 3). For this case, the average and maximum errors (averaged between the first and
second set of landmarks) increased to 11.1 and 20.7 mm, as compared to 8.7 and 17.0 mm for
the NL simulator and 9.4 and 16.2 mm for the PLE simulator, respectively.

B. Visual assessment
Complementary to calculating landmark errors, the registration accuracy of the proposed
framework was also visually assessed for all four patients. As an illustrative example, images
of the patient with the largest tumor (patient 3) are displayed in Fig.2. The tumor mass-effect
simulated on the template via the NL and PLE simulators is shown in Fig. 2c and 2d,
respectively. As expected, the two biomechanical simulators produce somewhat different
results. On the one hand, the NL and PLE simulators employ different material constitutive
laws and boundary conditions. On the other hand, the final tumor volume reached by each
simulator might be slightly different2.

1Computational timings via PLE can be further greatly improved with adaptivity via octree structures.
2In both methods, tumor growth is simulated by applying multiple pressure steps and tumor volume is monitored after each step. The
simulations are terminated when the tumor exceeds in volume the tumor in the patient image. In the final pressure step, the volume of
the simulated tumor will have a value that can not practically be the exact prescribed final tumor volume – but an approximation. Also,
volume estimation of the simulated tumor via PLE (regular/non-conformal grids) is inherently different than via NL (unstructured/
conformal mesh).
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The warping of the corresponding template images with simulated tumor growth to the patient’s
image is shown in Fig. 2f and 2g, respectively. Edges on the cortical and ventricular boundary
were extracted from the patient’s image and superimposed into the warped template with
different colors. The visualization of the results shows that, although the tumor growth
simulations did not produce identical images, after registration with the patient’s image, the
tumor-bearing templates become highly similar (Fig. 2f, 2g). Also, the visualization of the co-
registered images without the application of any biomechanical model (shown in Fig. 2e)
demonstrates that the mass effect has not been captured correctly by the registration method
alone and therefore the accuracy close to the tumor is poor, e.g. there is no midline shift and
the cingulate sulcus is not suppressed by the tumor.

IV. Discussion and Conclusions
The need to integrate diverse information about anatomical and functional variability into the
patient data space, for surgery and radiotherapy treatment planning, motivates the development
of a method that registers a brain tumor image to a normal template (stereotactic atlas).
However, most of the customary registration methods in neuroimaging fail around the tumor
region due to large deformations and lack of clear definition of anatomical detail in the brain
tumor images. Simulating the brain tissue deformation caused by tumor growth has been shown
to aid the deformable registration of normal brains with brain tumor images. In this study, we
use a pipeline consisting of two major components: simulation of tumor growth and image
registration. We compare two alternative elasticity-based frameworks for biomechanical
simulations of brain tumor mass effect in 3D MR images: Nonlinear Lagrangian (NL) and
Piecewise Linear Eulerian (PLE).

A direct comparison between the NL and the PLE approaches is difficult, since both the
modeling approaches and the numerical solution procedures are different. Regarding accuracy,
the two frameworks have been separately assessed in [9] and [10] for NL and PLE
respectively3, based on landmarks manually placed in some serial scans of a single brain tumor
subject, thus avoiding the need of inter-subject registration. The reported landmark errors
indicate that the NL framework can be more accurate. However, in the absence of sufficient
data pertinent to a more systematic study, it is difficult to ascertain clearly how much is due to
the model itself, i.e. material constitutive law (nonlinear vs. linear) and boundary conditions,
or the underlying numerics, i.e. structured vs. unstructured meshes. Regarding performance,
the NL approach is computationally slower and can cause significant mesh distortions and
simulation failure in the case of large tumors, as those frequently appearing in brain tumor
images.

Motivated by the need for a robust and computationally efficient simulator to be applied in
registration of brain tumor images, in this study we compare the two alternative frameworks
in respect to the final accuracy achieved. Landmark errors and visual examination of the co-
registered images indicate that the registration accuracy is not significantly affected by the
choice of the PLE simulator over the more complex NL simulator. The PLE biomechanical
simulations are in average about ten times faster than the corresponding NL simulations, which
is an important gain towards fast image registration.

Finally, it is important to note that the registration accuracy for images with tumor mass effect
is increased when any of the two biomechanical models is used for simulating the brain tissue
deformation prior to registration. Brain tumor images with small deformations caused by the
tumor show only modest improvement (~5%) in the landmarks error, while brain tumor images

3The NL framework in [9] included also a model for edema expansion in white matter by using analogy to thermal expansion, whereas
the PLE framework did not incorporate such a model in the particular application.
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exhibiting significant mass effect show significant improvement (~25%) upon using a
biomechanical model in the simulation pipeline. This is not surprising, since in the cases with
small mass effect, the initial tumor seed is a rough approximation of the final tumor. It must
be additionally noted, that reliable landmarks can seldom be placed in areas very close to the
tumor, because structure is generally not easily identifiable due to confounding effects and
large deformations. Particularly in these areas, where registration accuracy is difficult to assess,
physics-driven biomechanical simulators are important for simulating realistic deformation
fields.
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Fig. 1.
A flowchart summarizing the basic steps for registration of a normal template (brain atlas) with
a tumor patient’s image.
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Fig. 2.
Registration example of a normal template to a brain tumor image. The brain tumor image,
which corresponds to patient 3 from Tables I and II is shown in (a). The template with the
initial tumor seed is shown in (b). The template with simulated tumor using (c) the NL simulator
and (d) the PLE simulator is registered as shown in (f) and (g) respectively. The registration
of (b) to (a) without the application of any biomechanical model of mass effect is shown in (e).
The colored curves in (e–g) represent the edges of the patient’s image, overlaid on the warped
template.
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