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Many reactions within the cell occur only in specific intracel-
lular regions. Such local reaction networks give rise tomicrodo-
mains of activated signaling components. The dynamics of
microdomains can be visualized by live cell imaging. Computa-
tionalmodels using partial differential equations providemech-
anistic insights into the interacting factors that control
microdomain dynamics. The mathematical models show that,
formembrane-initiated signaling, the ratio of the surface area of
the plasmamembrane to the volumeof the cytoplasm, the topol-
ogyof the signalingnetwork, thenegative regulators, andkinetic
properties of key components together define microdomain
dynamics. Thus, patterns of locally restricted signaling reaction
systems can be considered an emergent property of the cell.

Homeostasis and regulated state change in the living cell
require many processes to function in a coordinated fashion.
Suchmultitasking is precisely orchestrated (1). For this, the cell
integrates information from many extracellular signals in a
timely and specific manner to evoke physiological processes.
Complex networks of interacting pathways and regulatory
mechanisms control and modulate information flow (2). Such
complex systems cannot be intuitively understood. Mathemat-
ical modeling has served as a powerful analytical and predictive
tool to understand how signals evoke responses and identify
emergent properties of networks (3) that create an ensemble of
output patterns that control cellular responsemachines. In this
review, we describe how computational models help us under-
stand the biochemical mechanisms underlying spatially
restricted signaling events within cells.

Functional Specificity from Spatially Restricted
Signaling

Organelles often spatially constrain cellular functions. Elec-
trical activity occurs at the plasmamembrane, ATP production
in the mitochondria, and transcription in the nucleus. It is
increasingly recognized that even when such organelle-based
barriers do not exist, much of the biochemistry in the cell func-
tions in a spatially restrictedmanner. The best examples of such

spatially restricted biochemical reaction systems come from
cell signaling pathways. Many receptors that evoke diverse cel-
lular responses activate a relatively smaller number of shared
intracellular signaling pathways, raising the question of how
signaling specificity is achieved. One mechanism for achieving
response specificity is the spatial separation of signaling reac-
tions. The notion that signalingwas spatially restrictedwas first
proposed for the cAMP system by Brunton et al. (4) over 20
years ago. Compartmentalizationwas skeptically received then,
given the popularity of the fluidmosaic membranemodel (5) at
the time and the prevalent idea that diffusible molecules would
be impossible to segregate.
An example of spatially restricted signaling is found in car-

diac myocytes, where elevation of cAMP levels regulates con-
tractility, electrical excitability, and carbohydrate metabolism
in a hormone-specific manner. For instance, �2-adrenergic
stimulation leads to an increase in myocyte contractibility due
to the PKA2-dependent modulation of L-type Ca2� channels
and troponin I (6), an actin-binding protein that regulates the
myosin ATPase activity via tropomyosin (7). In contrast, other
ligands such as prostaglandin E1 can induce similar temporal
increases in cAMP but are incapable of regulating cardiac
muscle contraction. These data suggested that cells spatially
and functionally compartmentalize intracellular signaling.
Advances in live cell imaging, new fluorescent probes, and
use of fluorescence resonance energy transfer for the visual-
ization of biochemical reactions have shown that, in the live
cell, spatially localized signaling is a common phenomenon.
Using these approaches, it has been shown in several cell types
that increases in cAMP levels are local (8, 9).
Local signaling can provide context specificity to cellular

responses to the MAPK pathway. Activation of Ras can lead to
differentiation or proliferation of PC12 cells. How these two
opposing cellular events can result from activation of the same
pathway has been explained by correlating the response with
duration of MAPK activation (10), which in turn depends on
the location of Ras activation. Ras is activated at two siteswithin
the cell: the plasma membrane and the Golgi membrane (11).
Activation of Ras at the Golgi is prolonged and leads to differ-
entiation, whereas brief plasma membrane activation leads to
proliferation. The determinant of the location of Ras activation
is the length of the intracellular Ca2� signal, as a prolonged
Ca2� signal leads to translocation of the Ras guanine nucleotide
exchange factor RasGRP1 to the Golgi membrane, where it
activates Ras (11).
During maturation, the fate of thymocytes is determined

either by their ability to recognize themselves (negative selec-
tion) or by the presence of a functional T-cell receptor (positive
selection). Both processes are dependent on the Ras-MAPK
pathway. Location of Ras activation determines whether a thy-
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mocytewill undergo negative or positive selection (12). Positive
selecting ligands induced the recruitment of RasGRP1 to the
Golgi membrane, leading to Ras activation at the Golgi,
whereas negative selecting ligands promoted Ras activation at
the plasma membrane. Selective activation of Ras in the Golgi,
but not the plasmamembrane, has been linked to T-cell activa-
tion (13).
Cdc42 activation is also spatially delimited (14). In a fibro-

blast spreading on a fibronectin-coated surface, Cdc42 regu-
lates Arp2/3 nucleation of actin at the leading edge. Visualiza-
tion of Cdc42 activation showed that the region of the cell
perimeter undergoing rapid spreading had an enhanced accu-
mulation of active Cdc42, whereas filopodia had little or no
active Cdc42 (14). These observations led to the concept of
“microdomains” defined as functional regions of regulated local
increases in concentrations of activated signaling components.

Intracellular Microdomains

What is amicrodomain, and how are its dynamics regulated?
A microdomain is a region of micron/submicron dimensions
within which increases in levels of signaling components are
controlled by the relative rates of its production, diffusion, and
destruction. The number of reactions underlying a microdo-
main can range from at least two, as in the simplest case of
Ca2�, to tens, as in the case of MAPK microdomains. A
microdomain has two defining characteristics: a point at which
the concentration of the activated signaling component is the
highest and a gradient that defines the change in concentration
of the active component from the highest point to the level
present in the surrounding milieu. The slope of the gradient
defines the boundaries of the microdomains. Both these char-
acteristics are dynamic, i.e. they are changing continually with
time. Hence, all microdomain views are snapshots in time, and
steady-state assumptions are mostly invalid.
The idea of signaling gradientswas first articulated byTuring

(15) more than 50 years ago in the context of developmental
biology, where extracellular morphogen gradients provide
positional cues for a developing tissue. These gradients can be
produced by the local synthesis of a diffusible molecule and its
slow degradation across space-creating gradients that may be
several microns long. Mechanisms underlying morphogen gra-
dients have been widely studied experimentally and computa-
tionally (16, 17). Analysis of intracellular gradients lagged
behind both theoretically and experimentally. Since its discov-
ery (18, 19), the use of green fluorescent protein (20) and similar
probes to track proteins and interactions in real timewithin live
cells has accelerated progress.
Among the first intracellular microdomains to be visualized

were those for Ca2� at the intracellular terminus of Ca2� chan-
nels because the speed of conductance of Ca2� channels is sev-
eral orders ofmagnitude higher than the diffusion coefficient of
Ca2� (21). Ca2�/calmodulin feedback inhibitory mechanisms
(22) tightly control the buildup of Ca2� within these microdo-
mains. Dissipation of these microdomains is due not only to
diffusion but also to multiple sequestration mechanisms
involving the endoplasmic reticulum stores and mitochondria.
Several other types of spatiotemporal patterns of intracellular
calcium regulation have been described (23).

Diffusible second messengers (24, 25), activated small
GTPases (14, 26–29), and protein kinases (8, 9, 30) exist within
microdomains. Factors underlying the formation and dissipa-
tion of these microdomains are complex. An integration of
experimental data and mathematical modeling is needed to
provide amechanistic understanding. Even though experimen-
tal approaches yield physical evidence for the existence of
microdomains, they offer only limited insight into origins.
Mathematical models can complement the empirical
approaches by probing possiblemechanistic bases of the obser-
vations. Simulation-derived hypotheses can then be validated
experimentally. The combination of experiments and mathe-
matical modeling has highlighted a number of factors that con-
tribute to the formation of microdomains. These factor are cell
shape, topology of the reaction network, diffusion coefficients,
and reaction kinetics (intrinsic properties of the components
involved). To further complicate matters, the factors are inter-
dependent. Thus, for a mechanistic understanding, it is neces-
sary to determine how interdependence among these factors
controls microdomain dynamics.

Computational Approaches to Modeling Spatially
Restricted Biochemical Reactions

Models of spatially restricted biochemical reactions can be
built using ODE-based compartmental models or PDE-based
spatial models. ODE models describe the rate of change in the
amount of molecules over time, and PDE models describe the
rate of change in the amount of a molecule over time and space
(36). Both approaches yield predictive models. Compartmental
models can be easily solved using commercial simulators such
as MATLAB. Modeling and running numerical simulations of
realistic spatial models aremore challenging, and there are very
few simulators that biological researchers can use. Virtual Cell
(37) is a freely available simulator useful for developing simula-
tions from cell imaging data using both ODE and PDE models.
Compartmental models disregard details of spatial organiza-

tion and the movement of molecules. The steps in setting up a
compartmental model are shown in supplemental Fig. S1. Spa-
tial information is abstracted to two entities, volume and sur-
face area, and within each compartment, all molecules are
assumed to be evenly distributed (i.e. fast diffusion). Even with
these simplifying assumptions, compartmental models provide
valuable insight into complex phenomena. A multicompart-
ment model of myocyte function integrating mitochondrial
biochemical reactionswith electrical activity (ion channel func-
tion) in the plasma membrane and excitation-contraction in
the sarcolemma provided valuable insight into how feedback
mechanisms between mitochondrial oxidative phosphoryla-
tion reactions (cellular biochemistry) and the electrical and
mechanical activities (cell physiology) drive metabolic regula-
tion of cardiac function (38).
Spatial models deal with cell shape explicitly. To understand

the regulatory insights spatial models provide, it is useful to
know how these models are developed and computed. The
steps involved in setting up amodel with a realistic geometry in
Virtual Cell are shown in supplemental Fig. S1. The reactions
are set up as anODE compartmentalmodel, and then compart-
ments are mapped onto a spatial geometry from a microscopic
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image.Mapping involves placing the components in the appro-
priate location at the appropriate concentration and defining
their diffusion coefficients.Numerical simulations are then car-
ried out using a finite volume regular grid solver, and results can
be displayed as color-coded concentrations within the geome-
try, allowing for a visually accessible comparison between
experiments and simulations.

Insights from Spatial Models

Spatial PDE models of cellular reactions are few because the
diffusion coefficients of few cellular components are known.
Although diffusion coefficients can be calculated from molec-
ular weights, it is likely that molecular crowding will affect dif-
fusion within the cell (39–41). With fluorescence recovery
after photobleaching experiments, it is becoming feasible to
obtain directmeasures of diffusion of cellular components. Sys-
tematic variation of the diffusion parameter can be used to
identify computationally parameters that are likely to yield
experimentally observed patterns of microdomain dynamics.
Despite these limitations, spatial models have yielded the first
mechanistic insights. Spatial models have shown that microdo-
main dynamics is a systems level property arising from the
interplay of several variables. Mathematical models have iden-
tified spatial information as an entity that is transmitted
through a signaling network separately from information
regarding activity states. Here, we describe spatial models of
microdomains inmyocytes and neurons to highlight the insight
obtained from these models.
An experimentally observed cAMP microdomain from the

studies of Zaccolo and Pozzan (9) is shown in Fig. 1A. Results
from a spatial model that simulate these observations are
shownFig. 1B. To understandwhat a computationalmodel tells
us, consider the schematic in Fig. 1C. A microdomain depends
on the localization of a key upstream component, in this case,
adenylyl cyclase, which is an intrinsic membrane protein.
Whereas cAMP-degrading phosphodiesterases are located
largely in the cytoplasm, some phosphodiesterase isoforms
are anchored to the endoplasmic reticulum or other mem-
branes through anchoring proteins. The spatial separation of
cAMP production and degradation results in a microdo-
main. The spatial gradient of cAMP is shown in Fig. 1D. In
the myocyte, there is an extensive, specialized endoplasmic
reticulum that forms a physical barrier for cAMP diffusion
and thus defines the observed shape of the microdomains.
Although contributing to microdomain characteristics, such
a barrier is not essential.
Many protein kinases and phosphatases have anchors and

scaffolds that create local signaling hubs. Prominent among
these are A-kinase anchoring protein for PKA, microtubule
affinity-regulating kinases for protein kinases C, JNK-interact-
ing proteins for JNK, and MP1 for MAPK. Microdomains
within the plasma membrane such as lipid rafts and caveolae
(31) also promote spatial organization and separate extracellu-
lar signals spatially before their transduction. Certain signaling
proteins such as lipid-linked non-receptor tyrosine kinases
appear to be preferentially localized to these intramembrane
structures (32). Intuitively, one would assume that such

anchors are essential for microdomains; however, mathemati-
cal analyses indicate they are not essential.
When the signal originates at themembrane and is degraded

in the cytoplasm, cell shape or the ratio of the surface area of the
plasma membrane to the cytoplasmic volume (surface/volume
ratio (S/V)) becomes important. The S/V of thin protrusions
like filapodia or dendrites is larger than that of thicker struc-
tures such as the cell body of a neuron. Models predict and
experiments show that, in regions of high S/V ratio, elevation of
cAMP is enhanced (33), as is activation of Cdc42 and protein
kinase C (34, 35). Because both amplitude and duration of a
signal are related to the numbers (moles) of signalingmolecules
along a pathway, increasing the surface area of the plasma
membrane relative to the volume of the cytoplasm decreases
the volumewithinwhich the signalingmolecule can diffuse and
the gradient dissipate. Inmost cases, as the concentration (mol-
ecules/volume) stays constant, increasing the S/V ratio
increases the signal source. This results in a buildup of the acti-
vated signaling component and the resultant microdomain.
Although computational analyses indicate that anchors and
scaffolds are not required for the formation of microdomains,
the role of signaling complexes in microdomain formation and
dynamics has not yet been extensively studied. An intriguing
hypothesis is that cytoplasmic anchors may help override some

FIGURE 1. cAMP microdomains in cardiac myocytes. A, experimental dem-
onstration of the cAMP microdomain in a study by Zaccolo and Pozzan (9)
reprinted with permission from AAAS. The fluorescence resonance energy
transfer ratio images are color-coded, with green signifying basal concentra-
tions of cAMP and yellow to red signifying high concentrations of cAMP. Scale
bar � 10 �m. The white arrow in the enlarged image points to a cAMP
microdomain (�1 �m). B, simulation in Virtual Cell of receptor-triggered
cAMP increases using the cell shape traced from the myocyte image in A. The
black arrow shows the corresponding cAMP microdomain in same region as
in A. C, schematic diagram of factors controlling cAMP microdomains in myo-
cytes: plasma membrane (PM) localization of adenylyl cyclase (AC), separation
of production and degradation (phosphodiesterase (PDE)) activities for
cAMP, and diffusion hindrance by intracellular organelles such as the sarco-
plasmic reticulum (SR, depicted as the black double dashed line). D, microdo-
main characteristics are defined by the highest concentration point within
the microdomain and the resulting gradient that extends to the periphery
and defines the microdomain boundary. These are represented as a function
of distance from the site of production. Arbitrary numbers are used for illus-
trative purposes.
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of the spatial constraints that low S/V areas impose on
microdomains. This hypothesis can be computationally
addressed.
Computational analyses show that S/V ratio is only one of

several factors regulating microdomains. Negative regulators
also play a critical role. Dependence of cAMPmicrodomains on
the activity of phosphodiesterases has been shown (9) as
depicted in Fig. 1C. At its core, this phenomenon is analogous
to Turing’s original description of a point source with a diffus-
ing signal and negative regulator resulting in a gradient, and a
signaling version of this phenomenon was described (42). The
toy graph in Fig. 1D shows this gradient. From S/V ratio con-
sideration, the notion arises that thin, elongated regions of a cell
(such as filopodia or dendrites in neurons) are favored for the
formation ofmicrodomains. This is shown in the simulations in
Fig. 2. Here, a cAMP-PKA-MAPK network in a neuronal den-

dritic arbor was modeled (Fig. 2A).
Although the receptor, Gs, and ad-
enylyl cyclase are uniformly distrib-
uted throughout the cell, the thin
dendrites (high S/V ratio) show the
highest levels of PKA activation
(Fig. 2B). Thus, cell shape becomes a
determinant of microdomain char-
acteristics (33, 34). When the phos-
phodiesterase is fully inhibited, then
irrespective of cell shape, PKA activa-
tion is uniformly elevated (Fig. 2C).
These observations indicate that the
biochemistry of the system can over-
ride the physical constraints.
Although S/V ratios, cell shape,

and negative regulators explain the
dynamics of microdomains of sig-
naling molecules such as cAMP,
Ca2�, and even some small GTPases
(34), these two factors do not explain
the gradients in downstream compo-
nents such asMAPKs. The computa-
tional analyses indicate that network
topology is also important (Fig. 2D).
The hierarchy of the negative regu-
lators within the network topology
determines microdomain charac-
teristics of the downstream compo-
nent. Both the upstream cAMP
phosphodiesterase anddownstream
PTP control the MAPK microdo-
main. This control is evident only
when S/V conditions are high; thus,
cell shape becomes an overall con-
straint within which the network
topology can be altered to deter-
mine downstream microdomains.
These computational studies
showed that themicrodomain char-
acteristics (i.e. gradient) of PKA are
transmitted to MAPK through PTP

but not through b-Raf and MEK. Nevertheless, the magnitude
of the increase in MAPK activity results from b-Raf and MEK
activation (Fig. 2D). Thus, information regarding position of
the activated component (i.e. spatial information) is handled
differently from information regarding activity state. These two
types of information can be transmitted through different paths
within a signaling network (Fig. 2D). This insight, originally
obtained from the computational model, was experimentally
verified by ablating the key component (PTP) utilized for spatial
information transfer. When PTP was ablated, information
regarding activation state was still transmitted, but the spatially
restricted activation of MAPK was lost, indicating that infor-
mation regarding activity state is distinct from spatial informa-
tion (33).
Separation of spatial information from activity information

raises an interesting question: what are the characteristics

FIGURE 2. Multiple factors regulate microdomain dynamics and the flow of spatial information. A, sche-
matic of the spatially specified network topology used in the simulations. B–D, simulations of microdomains of
signaling components in a dendritic arbor of a neuron. In all cases the signal originates at the plasma mem-
brane. B, S/V ratios regulate microdomains. Regions of high S/V ratios show increased levels of activated PKA
(PKA*) compared with regions with low S/V ratios. C, cytoplasmic negative regulators control microdomain
characteristics. Upper panel, uniform activation of PKA when the phosphodiesterase is inhibited; lower panel
(same image as in A), PKA microdomains when phosphodiesterase is active. D, network topology and kinetic
parameters control the transfer of microdomain characteristics (i.e. spatial information) from upstream to
downstream components. These simulations show that kinetic parameters are crucial factors in determining
the transfer of microdomain characteristics. In the model, PKA has a high Kcat for b-Raf, which leads to extensive
activation of b-Raf and loss of microdomains. In contrast, PKA has a low Kcat for PTPSL, resulting in microdo-
mains of phosphorylated PTPSL (PTPSLi) that are similar to those of PKA. The regulation of PTP by PKA* leads to
two populations of phosphatase activity, PKA*-inhibited activity (PTPSLi) and the active non-phosphorylated
enzyme (PTPSL*). Areas with a high concentration of PKA* have low PTP activity and consequently high phos-
pho-MAPK. Areas with a low concentration of PKA* have high PTP activity and low phospho-MAPK. This spatial
and activity heterogeneity of PTPSL results in recapitulating the PKA* microdomains as MAPK* microdomains.
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within a pathway that allow for the flow of spatial information?
Mathematical simulations reveal that the relationship between
the kinetic parameters of the upstream and downstream com-
ponents is an important determinant. If the upstream enzyme
extensively activates (high Kcat) the downstream component
(e.g. PKA3 b-Raf) (Fig. 2D), the microdomain characteristics
of the upstream component will not be preserved in the down-
stream component. Inversely, a low Kcat reaction such as the
phosphorylation of PTP by PKA results in the phosphorylated
form of PTP exhibiting microdomains similar to those of
upstreamPKA* (Fig. 2D). The non-homogenous distribution of
PKA* results in differing ratios of active (non-phosphorylated
PTPSL*) to inactive (phosphorylated PTPSLi), allowing for the
formation of activated MAPK1/2 microdomains (Fig. 2D).
Thus, the microdomains of PKA* are recapitulated in the
microdomains of phospho-MAPK. The extent towhich the sig-
nal controls the negative regulator becomes a critical factor.
Too much active PTP in all locations would result in a near-
complete loss of phospho-MAPK, and toomuchPTP inhibition
would result in high levels of phospho-MAPK and in the dissi-
pation of the microdomain. This is a Goldilocks relationship in
which the kinetic parameters and network topology need to be
tuned just right for the spatial information to be transmitted.
The balance between kinetic parameters and network topology
works only if the overall S/V ratios are in the correct range. For
spatial information to flow through the cell, the cell shape, sig-
naling network topology, and kinetic characteristics of the sig-
naling components need to be balanced. Hence, spatial infor-
mation flow is an emergent property that arises from the
functional organization of the cell within an optimized shape.

Perspective

Many questions regarding the role of scaffolds and anchors
in the dynamics of microdomains remain to be addressed. The
study by Fuller et al. (43) on the spatiotemporal dynamics of the
Aurora B kinase phosphorylation of its substrates during
anaphase highlights some of these questions. Interactions with
anchors and scaffolds are often regulated by signaling. This reg-
ulation introduces the possibility that dynamic scaffolding can
play a substantial role in controlling the flow of spatial informa-
tion. This is an area for future studies where computation and
experimentation can be effectively integrated.
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