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Graph theory has been a valuablemathematicalmodeling tool
to gain insights into the topological organization of biochemical
networks. There are two types of insights that may be obtained
by graph theory analyses. The first provides an overview of the
global organization of biochemical networks; the second uses
prior knowledge to place results frommultivariate experiments,
such as microarray data sets, in the context of known pathways
and networks to infer regulation. Using graph analyses, bio-
chemical networks are found to be scale-free and small-world,
indicating that these networks contain hubs, which are proteins
that interact withmany other molecules. These hubs may inter-
act with many different types of proteins at the same time and
location or at different times and locations, resulting in diverse
biological responses. Groups of components in networks are
organized in recurring patterns termed network motifs such as
feedback and feed-forward loops. Graph analysis revealed that
negative feedback loops are less commonand are presentmostly
in proximity to the membrane, whereas positive feedback loops
are highly nested in an architecture that promotes dynamical
stability. Cell signaling networks have multiple pathways from
some input receptors and few from others. Such topology is
reminiscent of a classification system. Signaling networks dis-
play a bow-tie structure indicative of funneling information from
extracellular signals and then dispatching information from a few
specific central intracellular signaling nexuses. These insights
showthatgraphtheory isavaluable tool forgaininganunderstand-
ing of global regulatory features of biochemical networks.

Progress in biochemistry over the past 40 years has allowed
us to develop an impressive parts list of cellular components
and their interactions. Such interactions give rise to functional
subcellular machines such as metabolic circuits, signaling net-
works, and cytoskeletal structures. Each of these systems con-
tains several hundreds to thousands of different types of com-
ponents. For example, a recent comprehensive study of
mitochondria in the mouse identified over 1000 different types
of proteins (1). Understanding the global topological organiza-
tion of such complex systems is a first step toward a holistic yet

detailed functional map of the entire cell. Graph theory, a sub-
field ofmathematics, has been a valuable tool in the past decade
to gain insights into the global organization of regulatory bio-
chemical networks aswell as to developmore informedhypoth-
eses for new experiments.
Euler’s famous publication from 1736 on the Seven Bridges

of Königsberg problem (2) initiated graph theory. Over 225
years later, in the late 1950s, a relevant historical develop-
ment in graph theory was the analysis of random networks by
Erdős and Rényi (ER graphs). In the late 1990s, it was recog-
nized that real networks are different from ER graphs. Real-
world complex systems abstracted to networks across disci-
plines, including biochemical networks, have a common
global architecture termed small-world (3) and scale-free
(4). Small-world indicates a relatively short distance from
any node to any other node and a relatively high level of
clustering. Clustering means that groups of nodes have many
interactions with one another. Scale-free denotes a connec-
tivity distribution that fits a power law. These two seminal
observations initiated a new approach to modeling systems
of biochemical reactions in a cell. Instead of viewing reac-
tions in pathways as substrates acted upon by enzymes to
produce products or as mass-action binding reactions, bio-
chemical interactions in biochemical networks can be
abstracted to nodes and links forming a graph (5). Graphs are
mathematical structures that have been successfully applied
to model complex systems from computer science, electrical
engineering, physics, and social sciences and in recent years
to represent biological networks.
There are two fundamental approaches in applying graph

theory to analyze biochemical regulatory networks. The first is
an attempt to understand the global organization of these net-
works. For this, properties and attributes computed for individ-
ual nodes, links, and/or groups of nodes and links are averaged,
or the distribution of such properties is analyzed and compared
with the distributions found in shuffled networks. The second
approach is more practical. By using prior knowledge about
biomolecules and their interactions, it is possible to place
results from multivariate experiments that produce lists of
genes, shown to be altered under different experimental condi-
tions, in the context of known pathways and networks. Here, I
describe a few applications and insights fromgraph theory anal-
yses applied to study biochemical networks in combination
with an introduction to concepts and definitions from graph
theory.

Nodes and Links

Graphs are mathematical structures made of a few related
sets. The first set represents entities.Whenmodeling biochem-
ical networks, these entities typically represent genes, proteins,
or other type of biomolecules. These entities are formally called
vertices and less formally nodes or components. The second set
in a graph describes the relations between the entities. The
elements of this set are formally termed edges for undirected
graphs and arcs for directed graphs. Directed graphs, termed
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digraphs, can be used to represent systems in which the causal
relationship between vertices is known. For example, if A is
upstreamofB, then there is an arc (arrow) pointing fromA toB.
Other less formal names to describe edges and arcs are links or
interactions. In biochemical regulatory networks, these can be
direct physical interactions between proteins, transcription
factors binding to promoter sites, other indirect gene regula-
tion effects, or enzymatic reactions inwhich enzymes are linked
to their substrates. Throughout the text, the terms graph/net-
work, vertices/nodes/components, and edges/links/interac-
tions are used interchangeably but mostly have the same
meaning.
There are different types of graphs used to represent differ-

ent types of biochemical networks (6). For example, mixed
graphs are graphs that are both directed and undirected. These
graphs have two or more sets of relations. Typically, edges are
separated from arcs. Cell signaling pathways are commonly
represented usingmixed graphs in which arcs represent activa-
tion or inhibition relations, whereas edges represent physical
protein-protein interactions without a clear-cut directionality
such as binding to anchors and scaffolds (7). Other sets in cell
signaling graphs can represent other properties of edges such as
interaction weights. Weights of arcs can be used to represent
the kinetics of biochemical reactions (8).
Having two types of arcs, such as activation versus inhibition

relations, is an example of edge coloring. Coloring is the assign-
ment of labels to vertices or edges with some defined con-
straints. For example, vertex coloring can be used to distinguish
transcription factors from other proteins in a protein-protein
interaction graph. TheGeneOntology Consortium can be con-
sidered a graph-coloring undertaking for labeling genes and
proteins based on their function, location in the cell, and
involvement in biological processes (9). The Gene Ontology
data set itself is stored in a hierarchical tree graph data structure
in which different levels represent the detailed specific descrip-
tion of terms recounting properties of genes. The Gene Ontol-
ogy hierarchical tree is an example of a specialized type of graph
in which specific rules are used to connect vertices.

Types of Graphs

Another example of a specialized graph in which rules are
used to restrict possible connections between vertices is a
bipartite graph. These graphs have two sets of vertices where
edges can connect only nodes in different sets, not nodeswithin
a set. Bipartite networks are used, for example, to represent
metabolic networks separating enzymes from their substrates
and products, disease gene networks connecting diseases
with disease genes (10), and drug networks connecting drugs
with their known biomolecular targets (11, 12) or to inte-
grate different “omics” data sets (13). Another type of graph,
the planar graph, can be drawn on a plane with no edge cross-
ings. Planar graphs are important for visualization. Acyclic
graphs are graphs with no cycles. Bayesian networks recon-
structed from time-series or perturbation high-throughput
microarrays (14) or proteomics studies (15) are typically repre-
sented as acyclic graphs. An acyclic graph is also called a forest
because it comprises a collection (union) of trees. A tree is a
graph in which any two vertices are connected by only one

possible path. A graph can be partitioned or cut into subgraphs
or subnetworks based on different rules. Subnetworks of bio-
chemical networks are often used to represent pathways, mod-
ules, or protein complexes. One example of a subgraph is a
spanning tree. A spanning tree is a subgraph tree that connects
all nodes in a networkwithout using all links. Aminimum span-
ning tree is a spanning tree that is formedwith aminimum cost,
where the “cost” is typically the total number of edges. Steiner
trees are similar to minimum spanning trees but extra interme-
diate vertices and edges may be used to reduce the overall
length/cost of the minimum spanning tree. Steiner trees can be
used to connect lists of “seed” genes that were found to be
altered under different experimental conditions using known
protein-protein, cell signaling, and gene regulatory networks
(16).
Most biochemical networks are not fully characterized. In

many of them, there are interactions and components that are
not connected with the rest of the network. Such networks typ-
ically have a giant connected component. It is important to con-
sider that graphs can be alternately represented as a symmetric
adjacency matrix where vertices are represented as identical
row and column labels, and the matrix contents consist of the
presence or absence of edges (0s and 1s) and/or the strength
and/or direction between interacting biochemical entities. The
matrix formulation of graphs allows manipulation and analysis
using powerful tools from linear algebra.

Properties of Nodes

Vertices and edges in networks can have an assortment of
attributes or properties. Two vertices are considered adjacent
or connected if there is an edge that links them. Such vertices are
also called neighbors. An important attribute/property of verti-
ces is their vertex degree (also called valence), which is com-
monly denoted with k. This means that k is also the number of
neighbors a vertex has. In digraphs, it is important to distin-
guish between in-degree and out-degree. Different types of bio-
chemical networks across different specieswere found to have a
connectivity degree distribution that fits a power-law function
(4, 17, 18). This means that most nodes have few neighbors but
that a substantial number of nodes have high degree (Fig. 1A).
The power-law connectivity distribution observation can be
explained by the fact the proteins in the cell are heterogeneous,
serving many and different functions. Power-law distributions
are commonly observed in highly heterogeneous complex sys-
tems. Vertices with high degree are informally called hubs.
Analysis of protein-protein interaction networks demonstrated
that hubs can be classified into “party” hubs and “date” hubs
(Fig. 1B) (19). Party hubs are proteins that interact with their
neighbors in the same place at the same time, whereas date
hubs are proteins that interact at different times in different
places within the cell. Another classification of hubs showed
that hubs can be divided into single-domain or multidomain
hubs (20) (Fig. 1C). Some examples of single-domain date hubs
are protein kinases A and C and the phosphatase PP2A, which
have many known substrates. CASK is an example of a party
hub with multiple domains. Assortative mixing is when the
probability for interactions between nodes is biased due to
nodes’ properties. For example, assortativemixing by valence is
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when hubs are frequently connected to one another (21). Bio-
chemical networks in general were found not to display assor-
tative mixing by valence as compared with other networks, for
example, brain networks constructed from functionalmagnetic
resonance images (22). On the other hand, assortative mixing
by function, location, or biological process is obviously highly
pervasive in regulatory biochemical networks.

Paths in Biochemical Networks

A path in a graph represents a sequence of alternating neigh-
boring nodes and links with no repeating nodes. Some of graph
theory’smost famed algorithms are those developed byDijkstra
(23) and Floyd (24) to find the shortest path (geodesic path)

between two vertices in a network. Finding the shortest path
between a cell-surface receptor and downstream transcription
factors in a cell signaling network can be used to identify impor-
tant new signaling pathways. Such an approach was useful to
hypothesize potential signaling mechanisms in Neuro2A cells
downstream of CB1R receptors. Cells were stimulated with a
CB1R agonist, and assessment of activity for hundreds of
canonical transcription factors was performed. It was found
that after 20 min, CB1R activation modulates the activity of
23 transcription factors (25). Using known cell signaling and
protein-protein interactions extracted from published experi-
mental studies, new biological roles for pathways and co-regu-
lators were identified. In another study, a global analysis of
paths from receptors to effectors in a literature-based mam-
malian cell signaling network showed that from some recep-
tors, e.g. the N-methyl-D-aspartate receptor, there are many
paths to effectors, e.g. the transcription factor cAMP-re-
sponsive element-binding protein (CREB), whereas from
other receptors, there are only a few (Fig. 1D) (26). This
topological feature can be due to biased research (most data
from popular proteins and pathways) but can also indicate a
design that is commonly observed in learning classifier sys-
tems implemented in computer programs.
The topology of signaling networks also displays a bow-tie

structure, in which signals from many receptors converge on
the same intermediate components and then are directed to
regulate different transcription factor effectors (Fig. 1E). This
type of organization is common for Toll-like receptors sharing
adaptor proteins such asMyD88 (27),Gprotein-coupled recep-
tors sharing G� and G�� (28), and growth factor receptors
sharing adaptor proteins such as SOS1 and GRB2. The shortest
path algorithm can be used to find automatically and display
previously characterized interactions that “connect” genes and
proteins (29) or to compute global network properties such as
characteristic path length (3) or network diameter. Network
diameter is simply the longest of the shortest paths among all
possible shortest paths between all pairs of nodes in a network.
The characteristic path length is the average shortest path
across all possible pairs of nodes.

Network Motifs

Biochemical networks contain many three-node cliques. A
clique is a complete subgraph in which all possible links
between a subset of nodes are operational. Completing “defec-
tive cliques” was used to predict not yet observed interactions
using the known protein-protein interactions of a yeast net-
work (30). Small cliques in biochemical networks are only one
kind of a possible set of small biochemical circuits. The differ-
ent kinds of small biochemical circuits are collectively termed
network motifs. More precisely, network motifs are subgraphs
that are over-represented in real networks relative to the same
subgraphs in shuffled networks (31). Shuffled networks are net-
works in which the edges of real networks are systematically
randomizedwhile keeping intact some general properties of the
original topology such as the connectivity degree (32).
Biochemical networks such as signal transduction networks

and gene regulatory networks show similar patterns of network
motifs. For example, the bifan motif (33, 34) is made of two

FIGURE 1. Schematics representing properties of cell signaling networks
identified using the graph theory. A, the connectivity distribution of net-
works fits a power law (straight line on a log-log plot). B, networks consist of
party and date hubs, where multiple colors represent different locations and
times. C, hubs are either multisite or single-site. D, there are many pathways
from some receptors to some effectors and few from most receptors to most
effectors. E, signals from many receptors are converging into few cytosolic
components and then fanning out to regulate many transcription factors in a
“bow-tie” structure. F, the bifan motif is shown. G, negative feedback loops
are more often observed in loops that include receptors; positive feedback
loops are more common a few steps downstream from receptors. H, feed-
forward loops are mostly coherent (positive) where negative and less regu-
lated outgoing hubs are used to shut off signals. I, positive feedback loops are
more abundant than negative feedback loops and are highly nested.
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upstream regulators both regulating the same two downstream
effectors (Fig. 1F). This dual regulation structure was identified
statistically as themost over-represented networkmotif in gene
regulatory networks of yeast (31) andEscherichia coli (31, 35) as
well as in amammalian neuronal cell signaling network (7).One
example of a bifan motif in cell signaling networks is the regu-
lation of transcription factors ATF2 and Elk by the kinases JNK
(c-Jun N-terminal kinase) and p38 (33). The abundance of
bifans is most likely due to a large number of isoforms gener-
ated through gene duplication-divergence evolution. The bifan
motif and othermotifs such as feedback and feed-forward loops
were found to act as noise filters (33, 36, 37). Two types of
network motifs, namely feedback and feed-forward loops, are
very important for characterizing the dynamics of biochemical
networks (38, 39). Graph analysis of a large cell signaling net-
work suggested that negative feedback loops are more preva-
lent than positive feedback loops near the cell surface (7), a
design that could be helpful for dampening noise while ampli-
fying persistent extracellular signals (Fig. 1G).

A paucity of negative feedback and feed-forward loops in
yeast, E. coli, and mammalian cell signaling networks was also
observed (40). This feature of the topology suggests that nega-
tive loops have not been favored through evolution because of
their potential to introduce dynamical instabilities. Hence, it
appears that negative regulators are less regulated outgoing
hubs, examples of which are known in cell signaling networks.
For instance, phosphatases such as PP1 and PP2A are enzymes
that deactivate most of their effectors through dephosphoryla-
tion (Fig. 1H). On the other hand, positive feedback loops are
highly nested, where the same proteins function in many posi-
tive feedback loops, a topology that also favors dynamical sta-
bility (Fig. 1I) (41). Some regulatory motifs in biochemical net-
works have long been known, e.g. the negative feedback loop in
the synthesis of branched chain amino acid from threonine to
isoleucine (42). The concept of network motifs is illustrated by
several examples from cell signaling (Fig. 2).
The presence of network motifs that are dense in links, like

the bifan, points to the fact that biochemical networks typically
have high clustering coefficients (3). A clustering coefficient
measures the level of density in local connectivity around the
neighborhood of a node. High clustering also suggests that bio-
chemical networks are organized into modules. Such modules
can be identified using network clustering algorithms. A popu-
lar measure for identifying clusters in networks is the between-
ness centralitymeasure. Betweenness centrality is computed for
each vertex or edge by counting the number of times the short-
est paths pass through the vertex or the edge (43). If many short
paths go through a vertex and if the vertex has a relatively low
degree, the vertex must be connecting different modules. Such
a vertex can be removed for the purpose of isolating and iden-
tifying modules/clusters.

Conclusions

One of the limitations of graph theory applications in analyz-
ing biochemical networks is the static quality of graphs. Bio-
chemical networks are dynamical, and the abstraction to graphs
can mask temporal aspects of information flow. The nodes and
links of biochemical networks change with time. Static graph

representation of a system is, however, a prerequisite for build-
ing detailed dynamical models (44). Most dynamical modeling
approaches, e.g. Boolean networks (45), Petri nets (46), and
event ontologies (INOH Pathway Database), can be used to
simulate network dynamics while using the graph representa-
tion as the skeleton of the model. Modeling the dynamics of
biochemical networks provides closer to reality recapitulation
of the system’s behavior in silico, which can be useful for devel-
oping more quantitative hypotheses.
The challenge with building dynamical models of biochemi-

cal networks is that they require kinetic and quantity parame-
ters, which are difficult to obtain experimentally. Another
obstacle in both graph theory and dynamical modeling is that
most applications are NP-hard. This means that time for exe-
cution grows exponentially withN, whereN can be the number
of steps in a path or the number of nodes in a graph. This
computational challenge places practical limitations on calcu-
lating static and dynamical properties of large regulatory bio-
chemical networks. To overcome this challenge, sampling (47)
and parallelization of algorithms (48) can be applied.
In summary, graph analysis of biochemical networks has

been useful for obtaining an overview of the organizations of
different types of biochemical networks across species. In gen-
eral, most networks have a connectivity distribution that fits a
power law, high clustering coefficients, and relatively short
average path lengths; the networks are organized in hierarchi-
cal modularity, where hubs serve as party or date hubs and can
be divided into multisite or single-site hubs, and assortative
mixing by valence is not common, whereas assortative mixing
by function, location, or biological process is evident. Biochem-
ical network motifs are enriched in dense substructures where
the bifan motif is the most over-represented, probably due to
duplication-divergence, and where negative feedback and feed-
forward loops are less common than positive loops. Cell signal-
ing networks have many paths from some input receptors and

FIGURE 2. Example of network motifs within cell signaling networks. PFBL,
positive feedback loop; NFBL, negative feedback loop; PFFL, positive feed-
forward loop; NFFL, negative feed-forward loop; CaM, calmodulin; CaN, cal-
cineurin; AC1, adenylyl cyclase I; AA, arachidonic acid; B2AR, �2-adrenergic
receptor; I1, inhibitor-1; PKA, protein kinase A; PKC, protein kinase C; PP1,
protein phosphatase-1; MAPK, mitogen-activated protein kinase; PLA2, phos-
pholipase A2; CaMKII, Ca2�/calmodulin-dependent kinase II. Gray arrows rep-
resent the components in these motifs that signal to other biomolecules that
are not part of the motif.
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few from others, a topology reminiscent of a classification sys-
tem. Signaling networks also display a bow-tie structure. These
are only a handful of topological patterns out of many. Such
topological properties are likely to have consequences for the
dynamical behavior of a system. Initial dynamical analyses of
these properties are consistent with an architecture that sup-
ports stability, noise filtering, modularity, redundancy, and
robustness to failure as well as variations of kinetic rates and
concentrations.
We are just starting to understand the intricate dynamics of

large and complex biochemical systems in which graph theory
plays an important role in organizing the accumulated knowl-
edge. Graph theory is also useful for the analysis of multivariate
data when lists of genes or proteins can be placed in the context
of prior knowledge to developmore informedhypotheses about
how multiple factors cooperate to produce complex pheno-
types. In the new world of Big Data (massively abundant data)
and Cloud Computing (data can be accessed from everywhere
and processed anywhere), graph theory plays an increasingly
important role in the transition from the classical approach of
hypothesizing and testing experimentally to hypothesizing,
modeling, and testing to measure everything, identify patterns,
model, and modify (manipulate) input-output relationships
(49).
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