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Conspectus

Noble-metal nanocages represent a novel class of nanostructures with hollow interiors and porous
walls. They are prepared using the remarkably simple galvanic replacement reaction between
solutions containing metal precursor salts and Ag nanostructures prepared by polyol reduction. The
electrochemical potential difference between the two species drives the reaction, with the reduced
metal depositing on the surface of the Ag nanostructure. In our most studied example involving
HAuCl4 as the metal precursor, the resultant Au epitaxially deposits on the surface of the Ag
nanocubes, adopting their cubic structure. Concurrent with this deposition, the interior Ag is oxidized
and removed, together with alloying and dealloying, to produce hollow and eventually porous
structures that we commonly refer to as Au nanocages. This approach has proven versatile, with a
wide range of morphologies – including nanorings, prism-shaped nanoboxes, nanotubes, and
multiple-walled nanoshells or nanotubes – being produced by changing the shape of the initial Ag
template. Besides Au-based structures, Pt- and Pd-containing hollow nanostructures have been
prepared by switching the metal salt precursors to Na2PtCl4 or Na2PdCl4, respectively.

Additionally, we have found it easy to tune both the composition and localized surface plasmon
resonance (LSPR) of the metal nanocages by simply changing the amount of metal precursor added
to the suspension of Ag nanocubes. In this way, we are developing these structures for biomedical
and catalytic applications. As the Au nanocages are predicted by discrete dipole approximations
(DDA) to have large absorption cross-sections and their LSPR can be tuned into the near-infrared
where the attenuation of light by blood and soft tissue is greatly reduced, they are attractive for
biomedical applications in which the selective absorption of light at great depths is desirable. For
example, we have explored their use as contrast enhancement agents for both optical coherence
tomography (OCT) and photoacoustic tomography (PAT), with improvements being observed in
each case. As the Au nanocages have large absorption cross-sections, they are also effective
photothermal transducers, which when targeted to cancer cells could provide a therapeutic effect by
selectively killing them by hyperthermia. Our in vitro work illustrates the feasibility of this technique
as a less invasive form of cancer treatment.
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Introduction
Owing to the unique and tunable optical, electronic, and catalytic properties of noble-metal
nanostructures, the synthesis and utilization of such structures in various applications have
been reported widely.1-5 The properties of metal nanostructures can be tailored by controlling
their composition, size, shape, and structure (hollow vs. solid).6-9 This notion has led to single-
component metal nanostructures being synthesized as nanowires,10 nanorods,11-13
nanospheres,14 nanoplates,15-17 and nanocubes,18-20 among others.21-23 To introduce
compositional and structural complexity, we use galvanic replacement reactions as a general
route to hollow, multi-metal nanostructures.24 Here, we highlight advances from our
laboratory on the synthesis and use of gold-based nanocages – hollow, porous structures with
dimensions < 100 nm.

The galvanic replacement reaction represents a simple means of preparing multi-metal hollow
structures. The electrochemical potential difference between two metals drives the reaction,
with one serving as the cathode and the other as the anode. The classic example is of a zinc
strip in a solution containing Cu2+ ions. As the Zn2+/Zn reduction potential is more negative
than the Cu2+/Cu potential (−0.76 V and 0.34 V vs. the standard hydrogen electrode, SHE,
respectively), Zn is oxidized to Zn2+ while Cu2+ is reduced to Cu. Significantly, this
phenomenon is extendable to other systems, and as we found, the metal strip can be replaced
with metal nanostructures.

Regarding the preparation of Au-based nanocages, the reduction potential of AuCl4−/Au (0.99
V vs. SHE) is more positive than that of AgCl/Ag (0.22 V vs. SHE).25 Thus, Ag
nanocubes18,26 can serve as a template for reaction, being oxidized by HAuCl4 according to:

(1)

The produced Au is confined to the nanocube surface, growing on it and adopting its
morphology as interior Ag is oxidized to produce a hollow structure. In principle, this Ag
template-engaged replacement reaction can be applied to any metal whose redox potential is
more positive than the AgCl/Ag pair, although morphology differences have been observed in
other systems. We begin by describing the mechanism for nanocage formation, followed by a
discussion of their properties and potential uses.

Formation of Au-Based Nanocages
The Ag template-engaged galvanic replacement reaction is run like a titration, with HAuCl4
solution (for Au-based nanocages) being controllably added to a boiling suspension of Ag
nanocubes. The morphological and compositional changes at various stages of replacement
were monitored using scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and elemental analysis. The results provide insight into the formation of hollow, porous
nanostructures.27 These results also contrast with those obtained when Ag nanocubes with
rounded corners were used.28

After Ag nanocubes with sharp corners (Figure 1A) react with a small amount of HAuCl4
solution, a pinhole is observed on one of the six faces of each cube (Figure 1B), indicating that
the reaction is initiated locally at a high-energy site (e.g., surface step, point defect, or hole in
capping layer)29 rather than over the entire cube surface. As the reaction proceeds, this pinhole
serves as the anode, where Ag is oxidized and electrons are stripped. The released electrons
migrate to the nanocube faces and are captured by AuCl4−, generating Au atoms that epitaxially
grow on the nanocube. As the Au layer forms, the initial pinhole serves as the site for Ag
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dissolution, facilitating the conversion of the nanocube into a nanobox (Figure 1B, upper inset).
In later stages of reaction, the pinhole closes (Figure 1C), presumably through mass diffusion
processes and/or direct deposition of Au near the pinhole. TEM of a microtomed sample reveals
the hollow interior of the nanobox (Figure 1C, upper inset).

Characterization of these nanostructures by electron diffraction and TEM indicates that they
are single-crystalline, composed of a homogeneous Au/Ag alloy and not a heterogeneous,
mosaic structure. This observation is unsurprising given the mutual solubility of Ag and Au
and the high diffusion rates expected at the reaction temperature.30,31 In the later stages of
reaction, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicates that
the atomic ratio of Au and Ag in the structures deviates from the relationship described by
Equation 1, with more HAuCl4 solution being necessary to oxidize the Ag nanocubes. We
attribute this discrepancy to the higher potential required to oxidize Ag atoms comprised in a
Ag/Au alloy (i.e., dealloying). As dealloying occurs, defects are introduced into the structure
due to reaction stoichiometry: three Ag atoms are removed with deposition of one Au atom.
32 Thus, to minimize the total energy of the structure, the nanobox corners become truncated.
With the addition of more HAuCl4 solution, pitting is observed, resulting in Au/Ag nanocages.
These porous, alloyed structures are commonly referred to as Au nanocages (Figure 1D), and
the overall process is represented in Figure 1E. Please note that complete dealloying to only
Au results in cage fragmentation.

In contrast, for Ag nanocubes with rounded corners (Figure 2A), Ag dissolution occurs at all
cube corners (Figure 2B).28 This difference is attributed to poly(vinyl pyrrolidone) (PVP) –
the stabilizing polymer present during reaction – which interacts most strongly with {100}
facets of Ag.33 For Ag nanocubes with sharp corners, all surfaces are passivated equally with
PVP; however, for Ag nanocubes with rounded corners, the {111} corners are poorly
passivated in comparison to the {100} faces. These unprotected corners become primary sites
for Ag dissolution, while Au deposition still occurs at the {100} faces. Thus, cubic nanocages
with pores at all corners (Figure 2, C and D) are produced. This process is illustrated in Figure
2E.

Pt- and Pd-Based Nanocages
Both Na2PtCl4 and Na2PdCl4 have redox potentials (0.76 V and 0.59 V vs. SHE, respectively)
more positive than the AgCl/Ag pair (0.22 V vs. SHE), indicating that Pt/Ag and Pd/Ag hollow
structures can be prepared with this approach. The morphological details, however, differ from
the Au system.34 For the Pt system, nanoboxes are obtained from reaction between Ag
nanocubes and Na2PtCl4 solution; however, the nanobox walls are composed of Pt
nanoparticles, not a smooth single-crystal alloy (Figure 3A).34 We attribute this difference to
the lack of solid-solid interdiffusion between Pt and Ag at the reaction temperature.35 Rather,
when Ag nanocube pitting is initiated, Pt nanoparticles nucleate and grow on the surface
without alloying, producing bumpy walls. For the Pd system, solid-solid interdiffusion is
possible, resulting in Pd/Ag alloyed nanoboxes from reaction between Ag nanocubes and
Na2PdCl4 solution (Figure 3B).34 However, pore formation through dealloying with excess
Na2PdCl4 is blocked, indicating that the electrochemical driving force disappears with Pd/Ag
alloy formation.

Recently, we prepared porous Pd-containing nanocages by adding HAuCl4 (Figure 3C).36 In
this case, Na2PdCl4 and HAuCl4 solutions were added sequentially to the Ag nanocube
suspension. The observation of pores in the final structures indicates that HAuCl4 can dealloy
Pd/Ag nanoboxes. Interestingly, if HAuCl4 solution is administered first followed by
Na2PdCl4, only pinholes are observed, indicating that Na2PdCl4 is unable to dealloy Au/Ag
nanoboxes (Figure 3D). These trimetallic Pd/Au/Ag nanostructures were employed as a
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catalyst for the decolorization of methyl red. Interestingly, the order in which the metal
precursors were added to the Ag nanocube suspension influenced the catalytic performance of
the product. In this way, galvanic replacement reactions could provide a useful means of tuning
the composition of bi- and trimetallic catalysts.

Separation of Dealloying from Au Deposition
As discussed, the galvanic replacement reaction between Ag nanocubes and HAuCl4 solution
produces Au-containing nanocages, with much of the observed morphology attributable to
reaction stoichiometry: one Au atom deposited on the template surface for every three interior
Ag atoms oxidized. This relationship is also true for wall dealloying. This coupling of
dealloying and Au deposition limits our control over wall thickness and nanocage porosity. It
is thus desirable to de-couple these processes to achieve tighter control over these properties.
By using the wet etchant Fe(NO3)3 to selectively dissolve Ag from Au/Ag alloyed nanoboxes
or nanocages formed via galvanic replacement, we achieved this control.37 Unlike dealloying
with HAuCl4 which involves Au deposition, the reaction between Au/Ag nanoboxes and Fe
(NO3)3 is only a dealloying process:38

(2)

Figure 4A illustrates the steps of this protocol, which combines galvanic replacement and wet
chemical etching. We obtain Au/Ag nanoboxes, Au/Ag nanocages, or Au cubic nanoframes,
depending on the amount of etchant added to the suspension of Au/Ag nanostructures.
Typically, the galvanic replacement reaction is used first to form nanoboxes (Au/Ag alloy
shells with un-reacted Ag inside). Then, Fe(NO3)3 is added to dissolve remaining Ag and
introduce porosity, with nanocage porosity being determined by the amount of Fe(NO3)3
added. When all the Ag is nearly removed, the central portion of each nanocage wall disappears,
producing a nanoframe composed almost entirely of Au. Figure 4, B-E, shows TEM and SEM
(insets) of the nanostructures obtained at each step.

Multiple-Walled Nanoshells and Nanorattles
As our approach to Au nanocages developed, it became apparent that other hollow Au-
containing nanostructures could be prepared by replacing the Ag nanocubes with other Ag
nanostructures. This observation has led to the synthesis of nanorings,39 triangular nanorings,
16 prism-shaped nanoboxes,16,40,41 and single-walled nanotubes.40,41 Multiple-walled
nanoshells and nanorattles (i.e., nanostructures consisting of shells and movable solid cores)
were also demonstrated.42 To prepare these nanostructures, a Ag layer is deposited on Au/Ag
nanoshells (or solid Au/Ag particles for nanorattles) synthesized by galvanic replacement.
These coated nanostructures then undergo a second galvanic replacement reaction to generate
another shell. In this way, hollow Matrioshka-like structures can be prepared. The preparation
of nanorattles and multiple-walled nanoshells is schematically shown in Figure 5, A and B,
respectively, with corresponding TEMs in Figure 5, C and D.

Optical Properties of Au Nanocages
In addition to the compositional and morphological changes induced by the galvanic
replacement reaction (or a wet etchant), the localized surface plasmon resonance (LSPR) of
Au nanocages is altered and can be tuned. In Figure 6 (upper panel) are vials of Au nanocages
prepared by reaction between Ag nanocubes (edge length ≈ 40 nm) and different volumes of
HAuCl4 solution (0.1 mM).26,27 As the photograph and corresponding absorbance spectra
(Figure 6, lower panel) indicate, the LSPR peak position of the Au nanocages is tunable
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throughout the visible and into the near-infrared. This observation makes Au nanocages
attractive for colorimetric sensing and biomedical applications.43-45

The LSPR of metal nanostructures results from incident light being scattered and absorbed at
a resonant frequency due to the collective oscillation of conduction electrons.46 The relative
intensity of the scattering and absorption cross-sections of Au nanocages can be tuned by
varying their size. Discrete dipole approximations (DDA) indicate that when Au nanocages
are small (edge length < 45 nm), light absorption predominates; however, light scattering
prevails with larger Au nanocages.44 Thus, one must consider their size and the magnitude of
their scattering and absorption cross-sections, in addition to LSPR position, when engineering
nanocages for a particular application. For Au nanocages with an inner edge length of 30 nm
and a wall thickness of 5 nm, the absorption cross-section is estimated as ∼20 × 10−15 m2 when
tuned to 710 nm, which is much greater than traditional organic dyes (e.g., Indocyanine Green:
2.9 × 10−20 m2 at 800 nm).44 With such large absorption cross-sections in the near-infrared,
we are engineering these nanocages for biomedical applications where the absorption of light
in vivo could be beneficial.

Biomedical Applications of Au Nanocages
A. Targeting Cancer Cells with Au Nanocages

To be useful in biomedical applications such as cancer diagnosis and treatment, the Au
nanocages must have long body circulation times and accumulate at sites of interest.
Conveniently, their compact size and relative bio-inertness makes them ideal for nanomedicine
applications. Additionally, their surfaces are readily modified with coatings such as poly
(ethylene glycol) (PEG) or cancer-targeting moieties (e.g., antibodies or peptides) using
Authiolate chemistry.47 As an initial demonstration, Au nanocages were modified with anti-
HER2 antibodies to target the epidermal growth factor receptor 2 (EGFR2 or HER2), which
is over-expressed by the breast cancer cell line SK-BR-3. This bioconjugation is achieved in
two-steps: i) Au nanocages are PEGylated by breaking the internal disulfide bond of
succinimidyl propionyl poly(ethylene glycol) disulfide to form a Au-S linkage then ii) a PEG-
antibody complex is formed through carbodiimide coupling chemistry.48 SEM of SK-BR-3
cells incubated with antibody-modified Au nanocages confirmed their accumulation on cell
surfaces. Each surface contains 460±130 Au nanocages, as determined by flow cytometry,
elemental analysis, and microscopy. When incubated with unmodified Au nanocages, few Au
nanocages are observed, indicating the selectivity of this approach. The bioconjugated
nanocages are referred to as immuno Au nanocages.

B. Au nanocages as Contrast Enhancement Agents
The development of new and early cancer diagnostic techniques is contributing to an increase
in cancer survival rates.49 Still, for this trend to continue, new or improved methods for early
detection must continue to be explored. Thus, scientists are both improving the resolution of
conventional imaging techniques and developing new imaging modalities. The value of these
platforms could be increased through integration with appropriate contrast enhancement
agents, and our Au nanocages, with their large and tunable absorption/scattering cross-sections,
represent a new class of contrast enhancement agents for optical imaging.

Optical coherence tomography (OCT) and spectroscopic optical coherence tomography
(SOCT) are promising diagnostic tools for noninvasive, in vivo imaging, providing the
micrometer resolution necessary to distinguish differences between cancerous and healthy
tissues.50,51 These systems are based on a Michelson interferometer which measures the
interference signal between the backscattered light of a sample and a reference. Thus, image
contrast arises primarily from the intrinsic scattering and absorption of light by tissue, but our
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Au nanocages, with their large absorption/scattering cross-sections, could enhance this effect.
In an initial demonstration, a tissue phantom was prepared to which Au nanocages (LSPR tuned
to 716 nm) were incorporated to one half at a nM concentration.48,52 OCT and SOCT were
conducted using a 7-fs Ti:Sapphire laser with a center wavelength of 825 nm and a bandwidth
of 155 nm. Imaging revealed greater light attenuation from the side containing Au nanocages.
These results demonstrate the potential utility of Au nanocages as OCT contrast enhancement
agents. In vivo studies are underway.

Recently, we demonstrated the in vivo use of Au nanocages as contrast enhancement agents
for photoacoustic tomography (PAT).53 PAT combines optical and ultrasonic imaging,
measuring the ultrasonic waves that result from the thermoelastic expansion of tissue due to
the absorption of light. It provides greater resolution than purely optical imaging in deep tissues
while overcoming the disadvantages of ultrasonic imaging regarding biochemical contrast and
speckle artifact.54,55 In our initial study, PAT was used to image the cerebral cortex of a rat
before and after three successive administrations of PEGylated Au nanocages. An enhancement
of the brain vasculature, up to 81%, was observed (Figure 7, A and B). A difference image
(Figure 7C) confirms the enhancement achieved with Au nanocage administration. A
photograph of the open skull (Figure 7D) reveals that the anatomical features of the vasculature
match well with those revealed by PAT. Moreover, when compared to Au nanoshells, the Au
nanocages appear to be more effective contrast enhancement agents for PAT, which is likely
related to their larger absorption cross-section and more compact size.56 With their unique
properties, Au nanocages should find use in other systems, such as two-photon luminescence
imaging where their resistance to photobleaching is attractive.57,58

C. Au Nanocages for Photothermal Therapy
Au nanocages, when engineered to have large absorption cross-sections, should also display a
large photothermal effect, with absorbed photons being converted into phonons (i.e., lattice
vibrations) that in turn produce a localized temperature increase. We are interested in targeting
this photothermal response to cancer cells as a means of cancer therapy.59 As an initial
demonstration of this photothermal effect, Au nanocages were deposited on a carbon-coated
TEM grid and exposed to camera flashes. Imaging afterwards revealed that the Au nanocages
had melted into spherical droplets.60 In this case, the generated heat could not dissipate from
the Au surface to the surrounding air due to poor thermal conductivity. In biological systems
where thermal conductivity is greater, the generated heat should dissipate into the surroundings,
rather then contribute to cage melting, thus providing a therapeutic effect when targeted to
cancer cells.

We recently demonstrated in vitro photothermal destruction of breast cancer cells targeted with
immuno Au nanocages.61 Au nanocages 45 nm in edge length were selected because of their
predicted large absorption cross-section. Their LSPR was tuned to 810 nm. SK-BR-3 cells
were treated with these immuno Au nanocages then irradiated with an 810 nm laser at a power
density of 1.5 W/cm2 for 5 min. The treated cells were stained with calcein-AM and ethidium
homodimer-1 so that live cells fluoresce green and dead cells fluoresce red, respectively. This
analysis revealed a well-defined zone of cellular death consistent with the laser spot size (Figure
8, A and B). Cells irradiated under the same conditions but without immuno Au nanocages
treatment maintained viability (Figure 8, C and D). At power densities less than 1.5 W/cm2,
the cells treated with immuno Au nanocages maintained viability. This threshold for cellular
destruction is lower than that reported for Au nanoshells (35 W/cm2) and Au nanorods (10 W/
cm2), which is likely due to the larger absorption cross-section of Au nanocages and/or their
greater concentration on cell surfaces.
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Concluding Remarks
The galvanic replacement reaction is a general phenomenon that can be exploited to prepare
noble-metal nanocages with unique and tunable properties. We are excited about the prospected
use of our Au nanocages in various biomedical applications. Owing to their relative bio-
inertness, ability to be surface modified, and tunable LSPR, Au nanocages represent a new
class of nanoscale agents for applications involving cancer diagnosis and treatment. Their
potential use as optical contrast enhancement agents has been demonstrated, including their
recent in vivo enhancement of PAT images. In vitro photothermal destruction of targeted breast
cancer cells was also demonstrated with Au nanocages serving as photothermal transducers.
Work is underway to expand the in vivo applications of the Au nanocages.
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FIGURE 1.
(A) SEM of Ag nanocubes. Inset: electron diffraction indicates they are single-crystals. (B)
SEM of product after 0.30 mL of 1 mM HAuCl4 solution was added to a 5-mL 0.8 mM Ag
nanocube suspension; a pinhole (lower inset) is observed on the exposed face of ∼1 in 6
nanocubes. Upper inset: TEM of a microtomed sample reveals early hollowing out. (C) SEM
of product after 0.50 mL of HAuCl4 solution was added. Inset: TEM of a microtomed sample
reveals the hollow interior of the nanobox. (D) SEM of product after 2.25 mL of HAuCl4
solution was added. Porous nanocages produced. (E) Illustration summarizing morphological
changes. Coloration indicates the conversion of a Ag nanocube into a Au/Ag nanobox then a
predominately Au nanocage.27
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FIGURE 2.
SEM and TEM (inset) (A) of Ag nanocubes with rounded corners and (B-D) product after
reaction with 0.6, 1.6, and 3.0 mL of 0.1 mM HAuCl4 solution, respectively. (E) Illustration
summarizing morphological changes. Coloration indicates conversion of a Ag nanocube into
a Au/Ag nanocage then a predominately Au nanocage.28
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FIGURE 3.
(A) TEM of Pt/Ag nanoboxes from the galvanic replacement reaction between Ag nanocubes
and Na2PtCl4 solution. (B) SEM and TEM (inset) of Pd/Ag nanoboxes from the galvanic
replacement reaction between Ag nanocubes and Na2PdCl4 solution. (C) and (D) SEM and
TEM (inset) of Ag/Au/Pd nanocages from the galvanic replacement reaction between Ag
nanocubes and (C) Na2PdCl4 solution, followed by HAuCl4 solution and (D) HAuCl4 solution,
followed by Na2PdCl4 solution. Inset scale bars = 40 nm.34,36
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FIGURE 4.
(A) Illustration summarizing cubic Au nanoframe formation. Beginning with Ag nanocubes,
Au/Ag nanoboxes are prepared by galvanic replacement (step 1). Then a wet etchant removes
remaining Ag to form a porous nanocage (step 2), which with more etchant, evolves into a
cubic nanoframe (step 3). (B-E) TEM and SEM (inset) of (B) 50 nm Ag nanocubes, (C) Au/
Ag nanoboxes prepared by galvanic replacement, and (D) nanocages and (E) nanoframes
prepared with Fe(NO3)3 as a Ag etchant. Coloration indicates the conversion of a Ag nanocube
into a Au/Ag nanocage then a predominately Au nanocage.37
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Figure 5.
(A) Schematic illustrating the multi-step preparation of nanorattles. To a Au/Ag (in orange)
nanoparticle, Ag (in blue) is deposited on its surface; the galvanic replacement reaction with
HAuCl4 then transforms the Ag layer into a Au/Ag shell. (B) Schematic illustrating the multi-
step preparation of multiple-walled nanoshells, beginning with a Ag nanoparticle. (C) TEM of
nanorattles. (D) TEM of multiple-walled Au/Ag nanoshells.42
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FIGURE 6.
Top panel: vials containing Au nanocages prepared by reacting 5 mL of a ∼0.2 nM Ag nanocube
(edge length: 40 nm) suspension with different volumes of a 0.1 mM HAuCl4 solution. Lower
panel: the corresponding UV-visible absorbance spectra of Ag nanocubes and Au nanocages.
26
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FIGURE 7.
PAT of a rat's cerebral cortex (A) before and (B) ∼2 h after the final injection of PEGylated
Au nanocages (the peak enhancement point). (C) A differential PAT image. (D) A open-skull
photograph of the rat's cerebral cortex, revealing features of the vasculature.53
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FIGURE 8.
(A) and (B) SK-BR-3 breast cancer cells treated with immuno Au nanocages then irradiated
with 810 nm light at a power density of 1.5 W/cm2 for 5 min. A well-defined zone of cellular
death revealed by (A) calcein AM (green fluorescence indicates live cells) and (B) ethidium
homodimer-1 (EthD-1, red fluorescence indicates dead cells) assays. (C) and (D) SKBR-3 cells
irradiated under the same conditions but without immuno Au nanocages treatment. The cells
maintained viability, indicated by (C) calcein AM and (D) EthD-1 assays.61
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