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Abstract
Efficient segmentation of globally optimal surfaces representing object boundaries in volumetric
data sets is important and challenging in many medical image analysis applications. We have
developed an optimal surface detection method capable of simultaneously detecting multiple
interacting surfaces, in which the optimality is controlled by the cost functions designed for individual
surfaces and by several geometric constraints defining the surface smoothness and interrelations.
The method solves the surface segmentation problem by transforming it into computing a minimum
s-t cut in a derived arc-weighted directed graph. The proposed algorithm has a low-order polynomial
time complexity and is computationally efficient. It has been extensively validated on more than 300
computer-synthetic volumetric images, 72 CT-scanned data sets of different-sized plexiglas tubes,
and tens of medical images spanning various imaging modalities. In all cases, the approach yielded
highly accurate results. Our approach can be readily extended to higher-dimensional image
segmentation.
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1 INTRODUCTION
The task of optimally identifying 3D surfaces representing object boundaries is important in
segmentation and quantitative analysis of volumetric medical images. Many computer-based
methods have been developed for optimal segmentation of 2D medical image data. Two-
dimensional boundary-based segmentation utilizing graph-searching principles [1], [2], [3],
[4], [5], [6], [7] has become one of the best understood and frequently utilized medical image
segmentation tools. As a result, 3D medical images were usually analyzed as sequences of 2D
image slices forming the 3D data. There are many essential problems associated with this
approach—the most fundamental ones stem from the lack of contextual slice-to-slice
information when analyzing sequences of adjacent 2D images. Obviously, performing the
segmentation directly in the 3D space promises to produce more consistent segmentation
results, yielding object surfaces instead of sets of individual contours. Previous attempts [8],
[9], [10], [11], [12] on extending the graph-searching segmentation methods to higher
dimensions either resulted in computationally intractable solutions or traded global optimality
for efficiency, greatly limiting their utility.

In medical images, many surfaces that need to be identified appear in mutual interactions.
These surfaces are “coupled” in a way that their topology and relative positions are usually
known and the distances between them are within some specific range. Clearly, incorporating
this surface-interrelation information into the segmentation will further improve its accuracy
and robustness. Simultaneous segmentation of coupled surfaces in volumetric medical images
is an underexplored topic, especially when more than two surfaces are involved.

Recently, we developed and validated a polynomial time method for d-D (d ≥ 3) optimal
hypersurface detection with hard smoothness constraints, making globally optimal surface
segmentation in volumetric images practical [13], [14]. By modeling the problem with a
weighted geometric graph (a graph whose nodes and arcs are embedded in a geometric space),
the method transforms the segmentation problem into computing a minimum s-t cut in a derived
directed graph, which simplifies the problem and, consequently, solves it in a polynomial time.
While the detection of a single optimal surface can be modeled by a 3D geometric graph
[13], our novel method attempts to approach the simultaneous detection of k (k ≥ 2) interrelated
surfaces by modeling the problem in a 4D geometric graph (or simply graph), where the fourth
dimension consists of special arcs that control the interrelations between pairs of the sought
surfaces. The apparently daunting combinatorial explosion in computation can be avoided by
transforming the problems into computing minimum s-t cuts.

The main contribution of our work is that it extended the optimal graph-searching techniques
to 3D and higher dimensions, while the backbone of our approach, graph cut, is radically
different from traditional graph searching. This extension remains fully compatible with graph
searching, i.e., in 2D, it produces identical result when the same objective function and hard
constraints are employed. Consequently, many existing problems that were tackled using
graph-searching in a slice-by-slice manner can be migrated to our new framework with little
or no change to the underlying objective function formulation. The proposed method is limited
to handling terrain-like (height-field) and cylindrical surfaces. This limitation seems severe at
first sight. However, as we will demonstrate, the guarantee of global optimality and the freedom
to design a problem-specific objective function allow the method to be applied to a variety of
medical image segmentation problems. In the context, the method is referred to as a 3D
approach regardless of the dimension of the graph being used, as opposed to the slice-by-slice
(2D) approaches. Note that the preliminary results related to this research have been presented
in a conference paper [15].
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2 BACKGROUND AND RELATED WORK
2.1 Graph-Based Image Segmentation

Graph-based approaches have been playing an important role in image segmentation over the
past several years. The general theme of these approaches is the formation of a weighted graph
G = (V, E) with node set V and arc set E. The nodes v ∈ V correspond to image pixels (or
voxels) and arcs 〈vi, vj 〉 ∈ E connect the nodes vi,vj according to some neighborhood system.
Every arc 〈vi,vj〉 ∈E has a cost (or weight) representing some measure of preference that the
corresponding pixels belong to the object of interest.

Depending on the specific application and the graph algorithm being used, the constructed
graph can be directed or undirected. In a directed graph (or digraph), the arcs 〈vi,vj〉 and
〈vj,vi〉 (i ≠ j) are considered distinct and they may have different costs. If a directed arc 〈
vi,vj〉 exists, the node vj is called a successor of vi. A sequence of consecutive directed arcs 〈
v0, v1〉, 〈v1, v2〉,…,〈 vk−1, vk〉 form a directed path (or dipath) from v0 to vk.

Typical graph algorithms that were exploited for image segmentation include minimum
spanning trees [16], [17], [18], [19], [20], shortest paths [7], [12], [21], [22], [23], [24], [25],
[26], [27], and graph-cuts [28], [29], [30], [31], [32], [33], [34], [35], [36], [37]. Graph-cuts
are relatively new and arguably the most powerful among all graph-based mechanisms for
image segmentation. They provide a clear and flexible global optimization tool with
considerably good computational efficiency.

The introduction of graph-cuts into medical image analysis happened only recently [14],
[33], [38]. Classic optimal boundary-based techniques (e.g., dynamic programming, A* graph
search, etc.) were used on 2D problems [27]. However, their 3D generalization, though highly
desirable, has been unsuccessful for over a decade [8], [9], [10]. As a partial solution, region-
based techniques such as region growing or watershed transforms were used. However, they
suffer from an inherent problem of “leaking.” Advanced region growing approaches
incorporated various knowledge-based or heuristic improvements (e.g., fuzzy connectedness)
[21], [22]. The underlying shortest-path formulation of all these approaches has been revealed
and generalized by the Image Foresting Transform (IFT) proposed by Falcão et al. [24]. Yet
another class of powerful approaches to multi-dimensional image segmentation is based on
level sets [39], [40].

2.2 Energy Minimization Using Graph-Cuts
The work most relevant to the method presented here is the energy minimization framework
using minimum s-t cuts established by Boykov et al. [36], [41] and Kolmogorov et al. [42].
The cost function follows the “Gibbs” model [43]:

where f is a labeling of the image pixels. To minimize ε(f), a special class of arc-weighted
directed graphs Gst =(V∪{s, t}, E) was employed. In addition to the nodes corresponding to
image pixels (voxels), the node set of Gst contains two special terminal nodes, namely, the
source s and the sink t. In image segmentation, the terminals typically correspond to the labels
(e.g., object, background) that can be assigned to pixels. The arcs in Gst can be classified into
two categories: n-links and t-links. n-links connect pairs of neighboring pixels whose costs are
derived from the smoothness term εsmooth(f). t-links connect pixels with terminals, whose costs
are derived from the data term εdata(f). An s-t cut (briefly, a cut) in Gst is a set of arcs whose
removal partitions the nodes into two disjoint subsets S and T, such that s ∈ S and t ∈ T and
no dipath can be established from s to t. The cost of a cut is the total cost of arcs in the cut. A
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minimum s-t cut is a cut whose cost is the minimum. The minimum s-t cut problem and its
dual, the maximum flow problem, are classic combinatorial problems that can be solved by
various polynomial-time algorithms [44], [45], [46].

It was proven that, if the arcs of Gst are properly constructed and their costs properly assigned,
a minimum s-t cut in Gst can be used to exactly or approximately minimize ε(f) of certain forms
in an efficient way. In turn, if an energy function is appropriately designed, a minimum s-t cut
can segment an image into objects and background as desired. Several medical image
segmentation techniques based on this framework were developed by Boykov and Jolly [33],
[34] and Kim and Zabih [38]. Kim and Zabih’s method was designed specifically for contrast-
enhanced MR images. Boykov and Kolmogorov’s algorithm [47] is flexible and shares some
elegance with the level set methods. However, it needs the selection of object and background
seed points, which is difficult to achieve for many applications. Besides, without taking
advantage of the prior shape knowledge of the objects to be segmented, the results are topology-
unconstrained and may be sensitive to initial seed point selections.

2.3 Segmentation of Coupled Surfaces
Due to the imperfections of medical imaging techniques, insufficient image-derived
information may be available for defining an object boundary or surface. This insufficiency
can be remedied by using clues from the other mutually related boundaries or surfaces.
Cooptimization of multiple coupled surfaces thus frequently yields superior results compared
to the traditional single-surface detection approaches.

Several methods for handling coupled surfaces have been proposed in recent years [48], [49],
[50], [51]. None of them, however, guarantees a globally optimal solution. The method in
[51] is essentially 2D and needs a precise manual initialization. The method in [49] is based
on coupled parametric deformable models with self-intersection avoidance, which requires a
complex objective function and is computationally expensive. The methods in [48], [50] utilize
level-set formulations that can take advantage of efficient time-implicit numerical schemes
[52]. They are, unfortunately, not topology-preserving [49], [53]. Further, the local boundary-
based formulation in [48] can be trapped in a local minimum that is arbitrarily far away from
the global optimum; while the introduction of a weighted balloon-force term may alleviate this
difficulty [50], it exposes the model to a more hazardous “leaking” problem. Finally, the
feasibility of extending these methods to handling more than two surfaces is unverified.

Active shape model (ASM) [54] and active appearance model (AAM) [55] implicitly take into
account the geometric relations between surfaces due to the statistical shape constraints. Again,
the frequently used iterative gradient descent methods may end at a local optimum [56].
Additionally, this model-based approach requires that point correspondence be established
among instances of the training samples. Such 3D landmarking is difficult to achieve in general
cases.

3 GRAPH CONSTRUCTION
A key innovation of our method is its nontrivial graph construction, aiming to transform the
surface segmentation problem into computing a minimum closed set in a node-weighed
digraph. A closed set C in a digraph is a subset of nodes such that all successors of any nodes
in C are also contained in C. The cost of a closed set is the total cost of the nodes in the set.
The minimum closed set problem is to search for a closed set with the minimum cost, which
can be solved in polynomial time by computing a minimum s-t cut in a derived arc-weighted
digraph [57].
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3.1 Single Surface
A volumetric image can be viewed as a 3D matrix ℐ (x, y, z). Suppose a terrain-like surface
in ℐ is oriented as shown in Fig. 1a. Let X, Y, and Z denote the image sizes in x, y, and z
directions, respectively. The surface is defined by a function  : (x, y) →  (x, y), where x
∈ x = {0,…,X − 1}, y ∈ y = {0,…, Y − 1}, and  (x, y) ∈ z = {0,…, Z − 1}. Thus, any surface
in ℐ intersects with exactly one voxel of each column (of voxels) parallel to the z-axis, and it
consists of exactly X × Y voxels. We refer to this model as a multicolumn model.

A surface is regarded feasible if it satisfies some application-specific smoothness constraint
defined by two smoothness parameters, Δx and Δy. The smoothness constraint guarantees
surface connectivity in 3D. More precisely, if ℐ (x, y, z) and ℐ (x + 1, y, z′) are two voxels on
a feasible surface, then |z − z′| ≤ Δx. Likewise, if ℐ (x, y, z) and ℐ (x, y + 1, z′) are two voxels
on a feasible surface, then |z − z′| ≤ Δy. If Δx (Δy) is small, any feasible surface is stiff along
the x (y) direction, and the stiffness decreases with larger Δx (Δy).

By defining a cost function, a cost value is computed for each voxel ℐ (x, y, z) of ℐ, denoted
by c(x, y, z). Generally, c(x, y, z) is an arbitrary real value that is inversely related to the
likelihood that the desired surface contains the voxel ℐ (x, y, z). The cost of a surface is the
total cost of all voxels on the surface. An optimal surface is the surface with the minimum cost
among all feasible surfaces definable in the 3D volume.

A node-weighted directed graph G = (V,E) is constructed according to ℐ as follows: Every
node V(x, y, z) ∈ V represents one and only one voxel ℐ(x, y, z) ∈ ℐ, whose cost w(x, y, z) is
assigned according to:

(1)

A node V(x, y, z) is above (respectively, below) another node V(x′, y′, z′) if z > z′ (respectively,
z < z′). For each (x, y) pair with x ∈ x and y ∈ y, the node subset {V(x, y, z)|z ∈ z} is called
the (x, y)-column of G, denoted by Col(x, y). Two (x, y)-columns are adjacent if their (x, y)
coordinates are neighbors under a given neighborhood system. For instance, under the 4-
neighbor setting, the column Col(x, y) is adjacent to Col(x + 1, y), Col(x − 1, y), Col(x, y + 1),
and Col(x, y − 1). In the rest of this paper, the 4-neighbor system is assumed. The arcs of G
consist of two types, intracolumn arcs and intercolumn arcs, constructed as follows. The goal
of our construction is to transform the segmentation problem into a minimum closed set
problem (Section 4.1).

Intracolumn arcs Ea—Along each column Col(x, y), every node V(x, y, z) (z > 0) has a
directed arc to the node V(x, y, z − 1), i.e.,

(2)

Intercolumn arcs Er—Consider any two adjacent columns, Col(x, y) and Col(x + 1, y).
Along the x-direction and for any x ∈ x, a directed arc is constructed from each node V(x, y,
z) ∈2 Col(x, y) to node V(x + 1, y, max(0, z − Δx)) ∈ Col(x + 1, y). Similarly, a directed arc is
connected from V(x + 1, y, z) ∈ Col(x + 1, y) to V(x, y, max(0, z − Δx)) ∈ Col(x, y). The same
construction is done for the y-direction. These arcs enforce the smoothness constraints. In
summary:
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(3)

Intuitively, the intercolumn arcs guarantee that, if voxel ℐ(x, y, z) is on a feasible surface ,
then its neighboring voxels on  along the x-direction, ℐ (x + 1, y, z′), and ℐ (x − 1, y, z″),
must be no “lower” than voxel ℐ (x, y, max(0, z − Δx)) (i.e., z′, z″ ≥ max(0, z − Δx)). The same
rule applies to the y-direction. The intercolumn arcs make the node set V(x, y, 0) strongly
connected, meaning that, in V(x, y, 0), every node is reachable from every other node through
some dipath. V(x, y, 0) also forms the “lowest” feasible surface that can be defined inG. Because
of this, the node set V(x, y, 0)is given a special name called the base set, denoted by VB.

Sometimes, the desired surface is required to be wraparound along the x (or y) direction. This
is common when segmenting a cylindrical surface, which is first unfolded into a terrain-like
surface using cylindrical coordinate transform [27] before applying our algorithm (Fig. 2).
Then, the first and last rows along the unfolding plane should satisfy the smoothness constraints
as well. In the x-wraparound case, each node V(0, y, z) (respectively, V(X − 1, y, z)) also connects
to V(X − 1, y, max(0, z − Δx)) (respectively, V(0, y, max(0, z − Δx))). The same rule applies to
the y-wraparound case.

3.2 Multiple Surfaces
For simultaneously segmenting k (k ≥ 2) distinct but interrelated surfaces, the optimality is not
only determined by the inherent costs and smoothness properties of the individual surfaces,
but also confined by their interrelations.

If surface interactions are not considered, the k surfaces i can be detected in k separate 3D

graphs.  Each Gi is constructed in the way presented
above. The node costs are computed utilizing k cost functions (not necessarily distinct), each
of which is designed for detecting one surface. Taking the surface interrelations into account,
another set of arcs Es is needed, forming a directed graph G(V,E) in 4D space with

 The arcs in Es are called intersurface arcs, which model the
pairwise relations between surfaces. For each pair of the surfaces, our approach defines their
relations using two parameters, δl ≥ 0 and δu ≥ 0, representing the surface separation
constraint.

The construction of Es for double-surfaces segmentation is detailed below by examples. The
ideas can easily be generalized to handling more than two surfaces.

In many practical problems, the surfaces are expected not to intersect or overlap. For instance,
the inner and outer tissue walls should be noncrossing, and the distance between them should
be within some expected range in the medical images. Suppose that, for two surfaces 1 and

2 to be detected, the prior knowledge requires 2 to be below 1. Let the minimum distance
between them be δl voxel units and the maximum distance be δu voxel units. Let the 3D graphs
used for the search of 1 and 2 be G1 and G2, respectively, and let Col1(x, y) and Col2(x,
y) denote two corresponding columns in G1 and G2.
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For any node V1(x, y, z) in Col1(x, y) with z ≥ δu, a directed arc in Es connecting V1(x, y, z) to
V2(x, y, z − δu) is constructed. Also, for each node V2(x, y, z) in Col2(x, y) with z < Z − δl, a
directed arc in Es connecting V2(x, y, z) to V1(x, y, z + δl) is introduced. This construction is
applied to every pair of corresponding columns of G1 and G2.

Because of the separation constraint ( 2 is at least δl voxel units below 1), any node V1(x,
y, z) with z < δl cannot be on surface 1. Otherwise, no node in Col2(x, y) could be on surface

2. Likewise, any node V2(x, y, z) with z ≥ Z − δl cannot belong to surface 2. These nodes
that are impossible to appear in any feasible solution for the problem are called deficient nodes.
Hence, for each column Col1(x, y) ∈ G1, it is safe to remove all nodes V1(x, y, z) with z < δl

and their incident arcs in E1. Similarly, for each column Col2(x, y) ∈ G2, we safely eliminate
all nodes V2(x, y, z) with z ≥ Z − δl and their incident arcs in E2.

Due to the removal of deficient nodes, the base set of G1 becomes V1(x, y, δl). Correspondingly,
the cost of each node V1(x, y, δl) is modified as w1(x, y, δl) = c1(x, y, δl), where c1(x, y, δl) is
the original cost of voxel ℐ (x, y, δl) for surface 1. The intercolumn arcs of G1 are modified
to make V1(x, y, δl) strongly connected. The base set of G then becomes VB = V1(x, y, δl) ∪
V2(x, y, 0). The directed arc 〈V1(0, 0, δl); V2(0, 0, 0)〉 is introduced to Es to make VB strongly
connected.

In summary, the intersurface arc set Es for modeling two noncrossing surfaces is constructed
as:

(4)

In other situations, we may allow the two interacting surfaces to cross each other. This is
encountered when tracking a moving surface over time. For these problems, instead of
modeling the minimum and maximum distances between them, δl and δu specify the maximum
distances that a surface can vary below and above the other surface, respectively. The
intersurface arcs for this case consist of the following: 〈V1(x, y, z), V2(x, y, max(0, z − δl))〉 and
〈V2(x, y, z), V1(x, y, max(0, z − δu))〉 for all x ∈ x, y ∈ y, and z ∈ z. A summary of all cases is
illustrated in Fig. 3.

4 SURFACE DETECTION ALGORITHM
The segmentation of multiple coupled surfaces is formulated as computing a minimum closed
set in a 4D geometric graph constructed from ℐ. The time bound of our algorithm is independent
of both the smoothness parameters (Δxi and Δyi, i = 1, …, k) and the surface separation
parameters (δl i,i+1 and δu i,i+1, i = 1,…,k − 1). In general, we refer to the smoothness constraints
and surface separation constraints altogether as geometric constraints.

Note that improper specifications of the geometric constraints may lead to an infeasible
problem, i.e., the constraints are self-conflicting and, thus, no k surfaces satisfying all the
constraints exist in ℐ. The feasibility of the problem is easy to determine. Hence, we assume
that the problem is feasible.

4.1 The Minimum Closed Set
In Section 3, the construction of a node-weighted directed graph G = (V,E) from the volumetric
data set ℐ (x, y, z) was described.
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In the single-surface case, for any feasible surface  in ℐ, the subset of nodes on or below
 in G, namely, C = {V(x, y, z)|z ≤ (x, y)} forms a closed set in G. It can be observed that,

if V(x, y, z) is in the closed set C, then all nodes below it on Col(x, y) are also in C. Moreover,
due to the node cost assignments in (1), the costs of  and C are equal. In fact, as proven in
[13], any feasible  in ℐ uniquely corresponds to a nonempty closed set C in G with the same
cost. This is a key observation to transforming the optimal surface problem into seeking a
minimum closed set in G.

For concurrent segmentation of k coupled surfaces, the graph G consists of k disjoint 3D
subgraphs {Gi = (Vi, Ei)|i = 1,…,k}, each of which is dedicated to searching for one surface.
The separation constraints between any two surfaces are enforced in G by arcs between the
corresponding subgraphs. By a similar argument as in the single-surface case, the construction
of G establishes the following lemmas:

Lemma 1. Any k feasible surfaces in ℐ correspond to a nonempty closed set in G with
the same total cost.

Lemma 2. Any nonempty closed set in G defines k feasible surfaces in ℐ with the same
total cost.

In general, we are able to prove the following lemma, showing that computing the optimal k
surfaces in ℐ is equivalent to finding a minimum nonempty closed set C* in G.

Lemma 3. A minimum nonempty closed set C* in G specifies the optimal k surfaces in
ℐ.

Note that a closed set C in a graph can be empty (with a cost zero). If the minimum closed set
C* in G is empty, C* gives little useful information for defining the optimal k surfaces in ℐ.
Fortunately, our careful construction of G still enables us to overcome this difficulty. If the
minimum closed set in G is empty, it implies that the cost of any nonempty closed set in G is
nonnegative. Since the base set VB of G is strongly connected and it forms the “lowest” k
feasible surfaces, it is always contained in any nonempty closed set in G. Therefore, to
guarantee that the minimum closed set in G has a negative cost (and, thus, is nonempty), the
costs of any nodes in VB are reassigned to an arbitrary negative value (e.g., −1). This operation
translates the cost of any nonempty closed set in G by a negative constant and is called the
translation operation. After translation, we can simply find a minimum closed set C* in G, and
C* is the minimum nonempty closed set in G before the translation.

Since the base set VB is always contained in any nonempty closed set in G, the directed arcs
connecting nodes not in VB to the nodes in VB (shown as dashed lines in Fig. 1b and Fig. 3)
are optional. This gives rise to a very interesting observation: The graph is actually getting
smaller (i.e., with fewer arcs) as the geometric constraints are relaxed (i.e., Δ and/or δ become
larger). This behavior is just the opposite of the traditional graph-search-based algorithms for
the problem.

4.2 Computing Optimal k Surfaces
Based on Lemma 3, we need to compute a minimum-cost nonempty closed set C* in G, which
is a well studied problem in graph theory. As in [13], [57], and [58], we compute C* in G by
computing a minimum s-t cut in a related graph Gst.

Let V+ and V− denote the sets of nodes in G with nonnegative and negative costs, respectively.
Define a new directed graph Gst = (V ∪ {s, t}, E ∪ Est). The node set of Gst is the node set V
of G plus a source s and a sink t. The arc set of Gst is the arc set E of G plus a new arc set
Est. We assign an infinity cost to each arc in E. Est consists of the following arcs: The source
s is connected to each node v ∈ V− by a directed arc of cost −w(v); every node v ∈ V+ is
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connected to the sink t by a directed arc of cost w(v). Let (S, T) denote a finite-cost s-t cut in
Gst and c(S, T) denote the total cost of the cut. It was proved that

where w(V−) is fixed and is the cost sum of all nodes with negative costs in G. Since S − {s}
is a closed set in G [57], [58], the cost of a cut (S, T) in Gst and the cost of the corresponding
closed set in G differ by a constant. Hence, the source set S* − {s} of a minimum cut in Gst
corresponds to a minimum closed set C* in G.

Because the graph Gst has (kn) nodes and  (kn) arcs, the minimum closed set C* in G can
be computed in (kn, kn) time, herein, (kn, kn) is the time for finding a minimum s-t cut in
an arc-weighted directed graph with (kn) nodes and (kn) arcs.

The optimal k surfaces correspond to the upper envelope of the minimum closed set C*. They
can be recovered in the following way: For each i (i = 1,…,k), recall that the subgraph Gi is
used to search for the target surface Ni. For every x ∈ x and y ∈ y, let Vi

B (x, y) be the subset
of nodes in both C* and the (x, y)-column Coli(x, y) of Gi, i.e., Vi

B (x, y) = C* ∩ Coli(x, y).
Denote by Vi(x, y, z*) the node in Vi

B (x, y) with the largest z-coordinate. Then, voxel ℐ(x, y,
z*) is on the ith optimal surface  In this way, the minimum closed set C* of G uniquely

defines the optimal k surfaces in ℐ.

To sum up, we have the following theorem:

Theorem 1. The optimal k surfaces in a 3D image ℐ (x, y, z) with n voxels can be computed
in  (kn, kn) time.

Finally, the outline of the algorithm is:
• Input: k, Δx, Δy, δl, δu, and the cost function(s).
• Construct the graph Gst (= (V ∪ {s, t}, E ∪ Est)).
• Compute the minimum s-t cut (S*, T*) in Gst.
• Recover the k optimal surfaces from S* − {s}.

5 COST FUNCTIONS
Designing appropriate cost functions is of paramount importance for any graph-based
segmentation method. In real-world problems, the cost function usually reflects either a region-
based or edge-based property of the surface to be identified.

5.1 Edge-Based Cost Functions
A typical edge-based cost function aims to accurately position the boundary surface in the
volumetric image. Such a cost function may, e.g., utilize a combination of the first and second
derivatives of the image intensity function [59], and may consider the preferred direction of
the identified surface.

Let the analyzed volumetric image be ℐ (x, y, z). Then, the cost c(x, y, z) assigned to the image
voxel ℐ(x, y, z) can be constructed as:

(5)
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where e(x, y, z) is a raw edge response derived from the first and second derivatives of the
image and ϕ(x, y, z) denotes the edge orientation at location (x, y, z) that is reflected in the cost
function via an orientation penalty p(ϕ (x, y, z)). 0 < p < 1 when ϕ(x, y, z) falls outside of a
specific range around the preferred edge orientation; otherwise, p = 1. A position penalty term
q(x, y, z) > 0 may be incorporated so that a priori knowledge about expected border position
can be modeled:

(6)

The +˙ operator stands for a pixel-wise summation, and * is a convolution operator. The
weighting coefficient −1 ≤ ω ≤ 1 controls the relative strength of the first and second derivatives,
allowing accurate edge positioning. The values of ω, p, and q may be determined from a desired
boundary surface positioning information in a training set of images (Section 6.2).

5.2 Nonedge-Based Cost Functions
The object boundaries do not have to be defined by gradients. For example, a piecewise constant
minimal variance criterion based on the Mumford-Shah functional [60] was proposed by Chan
and Vese [61] to deal with such situations:

(7)

The two constants a1 and a2 are the mean intensities in the interior and exterior of the surface
S, respectively. The energy ε(S, a1, a2) is minimized when S coincides with the object boundary
and best separates the object and background with respect to their mean intensities.

The variance functional can be approximated using our per-voxel cost model and, in turn, can
be minimized using our graph-based algorithm. Since the application of the Chan-Vese cost
functional may not be immediately obvious, let us consider a single-surface segmentation
example. Any feasible surface uniquely bipartitions the graph into two disjoint subgraphs. One
subgraph consists of all nodes that are on or below the surface, and the other subgraph consists
of all nodes that are above the surface. Without loss of generality, let a node on or below a
feasible surface be considered as being inside the surface; otherwise, let it be outside the
surface. Then, if a node V(x′, y′, z′) is on a feasible surface , then the nodes V(x′, y′, z′) in
Col(x′, y′) with z ≤ z′ are all inside , while the nodes V(x′, y′, z′) with z > z′ are all outside

. Hence, the voxel cost c(x′, y′, z′) is assigned as the sum of the inside and outside variances
computed in the column Col(x′, y′) as follows:

(8)

Then, the total cost of  will be equal to ε( , a1; a2) (discretized on the grid (x, y, z)).
However, the constants a1 and a2 are not easily obtained since the surface is not well-defined
before the global optimization is performed. Therefore, the knowledge of which part of the
graph is inside and outside is unavailable. Fortunately, our graph construction guarantees that,
if V(x′, y′, z′) is on , then the nodes V(x, y, z1) with z1 ≡ {z|z ≤ max(0, z′ − |x − x′|Δx − |y −
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y′|Δy)} are in the closed set C corresponding to . Accordingly, the nodes V(x, y, z2) with
z2 ≡ {z|z′ + |x − x′|Δx + |y − y′|Δy < z < Z} must not be in C. This implies that, if the node V(x
′, y′, z′) is on a feasible surface , then the nodes V(x, y, z1) are inside , while the nodes V
(x, y, z2) are outside .

Consequently, â1(x′, y′,z′) and â2(x′, y′, z′) can be computed that are approximations of the
constants a1 and a2 for each voxel ℐ(x′, y′, z′):

(9)

(10)

The estimates are then used in (8) instead of a1 and a2.

6 EXPERIMENTAL METHODS
The experiments were carried out on phantoms and 3D medical images from CT, MR, and
ultrasound scanners, including single and multiple-surfaces detection tasks. Assessments of
both terrain-like surface segmentation and tubular surface segmentation were performed.

6.1 Data
6.1.1 Phantoms—For validating the correctness of the proposed geometric modeling
techniques and evaluating the execution times of several implementations of the algorithm,
computer phantoms were produced that contained two or more noncrossing surfaces with
various shapes and mutual positions (Fig. 5a and Fig. 6a, sizes ranging from 30 × 30 × 30 to
266 × 266 × 266 voxels, blurred (σ = 3.0), and with Gaussian noise of σ = 0.001 to 0.2).

To verify the effectiveness of various cost function formulations, a second group of phantoms
was used containing differently textured regions or shapes (Fig. 7a, Fig. 8a, 8b, and 8c, sizes
100 × 100 × 3 to 400 × 400 × 3 voxels).

6.1.2 CT Images of Pulmonary Airway Trees—To demonstrate the utility of our method
in segmentation and quantitative analysis of human pulmonary CT images, the algorithm was
incorporated into an automated system for pulmonary airway segmentation [62]. The inner and
outer wall surfaces of the intrathoracic airways were determined in 12 in vivo CT scans of six
human subjects. For each subject, a scan close to total lung capacity (TLC) was acquired (at
85 percent lung volume) and a scan close to functional residual capacity (FRC) was acquired
(at 55 percent lung volume). The images had a nearly isotropic resolution of 0.7 × 0.7 × 0.6
mm3 and consisted of 500–600 image slices, 512 × 512 pixels each.

The wall surfaces of intrathoracic airways (inner and outer) need to be unfolded before applying
the proposed segmentation method. To facilitate the unfolding, the centerline of the tubular
structure was identified using our automated system for pulmonary airway analysis [62].
Briefly, the entire airway tree is segmented from the pulmonary CT data set using a multiseed
fuzzy-connectedness technique [21], [22] (Fig. 4a). Accurate positionings of the airway
surfaces are not guaranteed after this step. The centerlines of the airway branches are obtained
by applying a skeletonization algorithm [63]. Following the centerline, each airway segment
between two branch points, excluding the branching parts, is resampled using the B-spline
interpolation [64], [65] so that the slices in the resampled volumes are always perpendicular
to the centerlines (Fig. 4b). About 30 resampled and centered airway segments can be obtained
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from each CT data set. The resampled volumes are unfolded and input to our algorithm, by
which the precise inner and outer airway wall surfaces are segmented.

6.1.3 Additional Medical Images—To study the applicability of the proposed method in
a broader range of medical image segmentation tasks, several additional segmentation tests
were performed. In-vivo-acquired abdominal CT images were used to demonstrate the
method’s utility to detect complex terrain-like diaphragm surfaces (contrast-enhanced spiral
CT, 63 4.0 mm thick 256 × 256, in-plane resolution 1.4 × 1.4 mm2=pixel).

To demonstrate the ability of handling more than two interacting surfaces, four surfaces of
excised human ilio-femoral specimens—lumen, intima-media (internal elastic lamina (IEL)),
media-adventitia (external elastic lamina (EEL)), and the outer wall—were segmented in MR
images (1.5T MR scanner, T1-weighted, each vessel depicted by 16 1.2 mm thick 141 × 141
pixel slices, 0.3 × 0.3 mm2/pixel).

Applicability to ultrasound images was demonstrated by simultaneously segmenting lumen-
intima and media-adventitia (EEL) surfaces in intravascular ultrasound (IVUS) data sets
acquired in three right coronary, three left circumflex, and four left anterior descending arteries
in vivo (40 MHz Boston Scientific IVUS transducer, 1,581 image frames approximately 0.5
mm apart, 384 × 384 pixels, inplane resolution 0.3 mm2/pixel.)

6.2 Training Process
Edge-based cost functions (Section 5) were designed by task-specific training-based
optimization processes using either the ground truth available in phantoms or using a separate
training subset of expert-defined independent standard. The training image data were not used
for performance evaluation. In phantoms, the cost functions were optimized to maximize the
agreement between the ground truth and the computer-defined segmentation results.
Specifically for the pulmonary CT data, a physical phantom containing six plexiglas tubes with
sizes ranging from 1.98 to 19.25 mm was imaged by multidetector CT and analyzed using our
surface segmentation method. The corresponding outer wall diameters ranged from 4.45 to
25.50 mm. The CT scans were taken at four distinct angles of 0°, 5°, 30°, and 90°, rotated in
the coronal plane to represent oblique airway positioning with respect to the CT imaging planes.

6.3 Execution Time
The execution times were recorded and compared in 242 computer phantoms of varying sizes
to gain a basic understanding of the speed/size relationship. All experiments were conducted
on a standard 1.67 GHz workstation with 3.5 GB of memory. The execution time for each test
case was measured three times and the results were averaged. The execution time included the
graph initialization time and the actual computation time. Two standard implementations of
the proposed algorithm were tested, which used two different minimum s-t cut/maximum flow
algorithms: the “Boykov-Kolmogorov” (BK) algorithm [36] and the highest-level “push-
relabel” (PR) algorithm with gap relabeling and global relabeling heuristics [66]. For a graph
with n nodes and m arcs, the theoretical worst-case time-complexities for these algorithms are

(n2mc) and  respectively, where c is the cost of the minimum cut [36]. To ensure
a fair comparison, the two implementations used near identical “forward-star” graph
representations. For single-surface detection, the BK algorithm was implemented using a
memory-efficient “implicit-arc” representation [14] and was compared to the standard
schemes.
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6.4 Segmentation Accuracy Assessment Indices
Surface detection performance was assessed using surface positioning errors in all cases for
which independent standard was available. On tubular structures, the performance was also
assessed using major and minor diameter errors. The errors of the measured diameters were
determined whenever possible. In multiple-surface detection tasks, surface-to-surface (wall)
thickness errors were calculated. The independent standards were defined manually by expert
observers.

Maximum and mean surface positioning errors (signed and unsigned) were computed for each
point on a regular grid of the independent standard surface as the shortest distances between
the independent standard and the computer-identified surface. These errors were reported as
mean ± standard deviation in absolute measurements and as percentages of the diameter. The
diameter errors were reported as absolute and diameter-percentage errors, both signed and
unsigned.

The surface-to-surface wall thickness was defined as the local distance between the outer and
inner wall surfaces and was measured at 15° intervals along angular projections from the
tubular structure centerline in individual cross-sections. Linear regression analysis was used
to compare the per-slice mean airway wall thicknesses computed from the observer-defined
and computer-segmented airway wall borders. The regression equations were compared to the
line of identity using t-statistics for the slope and intercept.

On tubular structures for which segmentation results obtained by a 2D dynamic programming
approach were available [62], these results were compared against those obtained using the
reported 3D surface segmentation. The two approaches shared the same pre/postprocessing
steps and utilized training-optimal cost functions. Linear regression analysis of the minor and
major inner diameters measured from the two segmentation results was performed. The
measurements were compared using paired t-text for equivalence. In cases for which an expert-
defined independent standard was available, the unsigned border (surface) positioning errors
were compared using a paired t-text. In all cases, p = 0.05 was considered statistically
significant.

In all reported cases, the segmentation was performed fully automatically with no human
interaction.

7 RESULTS
7.1 Computer Phantoms

The first group of 3D phantoms contained three separate surfaces embedded in the image. The
goal was to identify two of the three surfaces based on some supplemental surface properties
(smoothness in this case). The lower two surfaces were smoother in comparison with the
topmost surface. The lowest surface exhibited a slightly darker brightness and, thus, was fixed
by setting the cost-function to be attracted by low magnitude brightness (Fig. 5a). The cost
function for the second surface yielded an identical magnitude for the middle and topmost
surface positions (Fig. 5c). Consequently, the resulting surface detection could be fully
controlled by the smoothness constraints. Figs. 5d and 5e show controlled detection of the
lower surface interacting with either the middle or the upper surface. In the first case, the
smoothness parameters Δx and Δy were both set to 1. In the second case, the smoothness
parameters were set so that the resulting surface was the topmost surface.

Fig. 6 shows the result of a triple-surface detection experiment. The surfaces in the data set are
10 voxels apart. The algorithm was set to always identify the lowest surface and select two out
of the three surfaces above it, which was fully controlled by the separation constraints.
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A volumetric image shown in Fig. 7a consisted of three identical slices stacked together to
form a 3D volume. As shown, the gradual change of intensity causes the gradient strengths to
locally vanish. Consequently, border detection using an edge-based cost function fails locally
(Fig. 7b). By using an appropriate cost function, the inner elliptical boundary could be
successfully detected using the 2D MetaMorphs method developed by Huang et al. when
attempting to segment the inner contour in one image slice [67] (Fig. 7c). Huang et al.’s method
combines the regional characteristics (texture) and edge properties (shape) of the image into a
single model. For this particular example, due to the smoothly changing intensity and some
exterior intensities being similar to interior, the Mumford-Shah style texture term did not have
a positive influence on the final segmentation. The shape term, being derived using the Canny
edge detector followed by an unsigned distance transform, played a leading role in producing
the successful boundary (Fig. 7d). Our approach using a cost function formulated in the same
way as Huang’s shape term produced an equally good result as the MetaMorphs model (Fig.
7e). Fig. 7f demonstrates our method’s ability to segment both borders of the sample image.
In comparison, the current MetaMorphs implementation was unable to segment the outer
contour.

Fig. 8 presents segmentation examples obtained by our algorithm using the minimum-variance
cost function (Section 5.2). The objects and background were differentiated by their different
textures. In Figs. 8a and 8d, the cost function was computed directly on the image itself. For
Figs. 8b and 8e and Figs. 8c and 8f, the curvature and edge orientation in each slice were used
instead of the original image data [61]. The two boundaries in Figs. 8c and 8f were segmented
simultaneously.

7.2 Execution Times
The average execution times of our simultaneous k-surface (k = 2, 3) detection algorithm are
shown in Table 1 for the implementation using the Boykov-Kolmogorov maximum flow
algorithm on a “forward-star” represented graph.

Comparisons of different implementations of the proposed algorithm for the single, double,
and triple surfaces detection cases are shown in Fig. 9. The Boykov-Kolmolgorov (BK)
implementation typically performed better when the cost function is smooth and k (the number
of surfaces to be segmented) is small, as were the cases in Figs. 9a and 9b. However, cost
functions that exhibit many local minima and a larger k tend to push the algorithms to the worst
case performance bound. When this happens, the push-relabel (PR) implementation tends to
be more efficient. By exploiting the regularity in the graph structure, the “implicit-arc” (IA)
graph representation was shown to improve both the speed and memory efficiency (50 percent
less compared to “forward star”) of the algorithm.

7.3 Accuracy Assessment in CT-Imaged Physical Phantoms
Signed percent errors of the computer segmented and measured diameters are presented in Fig.
10. When compared with segmentation errors achieved by the traditional 2D slice-by-slice
approach, the new 3D coupled-surfaces method was statistically significantly more accurate
(p ≪ 0.001), although the differences were small: The signed errors of the measured diameters
of the 2D and 3D approaches were −0.02 ± 0.11 mm and −0.01 ± 0.10 mm, respectively. The
corresponding unsigned errors were 0.09 ± 0.07mm and 0.08 ± 0.07 mm, respectively.

7.4 Airway Wall Segmentation
While inner wall surfaces are well visible in CT images, outer airway wall surfaces are very
difficult to segment due to their blurred and discontinuous appearance. Adjacent blood vessels
further increase the difficulty of this task. The currently used 2D dynamic programming method
works reasonably well for the inner wall segmentation but is unsuitable for the segmentation
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of the outer airway wall. By optimizing the inner and outer wall surfaces and considering the
geometric constraints, our new optimal coupled-surfaces segmentation approach produces
good segmentation results for both airway wall surfaces in a robust manner (Fig. 11 and Fig.
12).

Compared to the manual tracings in 39 randomly selected slices, the automated 3D approach
yielded signed border positioning errors of −0.01 ± 0.15 mm and 0.01 ± 0.17 mm for the inner
and outer wall surfaces, respectively. The corresponding unsigned errors were 0.10 ± 0.11 mm
and 0.12 ± 0.12 mm, respectively. The maximum unsigned border positioning errors for the
inner and outer wall surfaces were 0.37 ± 0.18 mm and 0.41 ± 0.20 mm, respectively. Linear
regression analysis revealed close correlation between the observer-defined and computer-
detected airway wall thicknesses (r2 = 0.978) in the 39 slices. The regression equation closely
approximates the line of identity with neither the slope nor the intercept being significantly
different from one and zero (p > 0.3).

The 3D method-generated inner airway wall surfaces exhibited higher overall accuracy in
comparison with the 2D slice-by-slice method. The major and minor diameters yielded by the
2D and 3D approaches in all 317 airway segments correlated closely

 However, only the mean minor diameters were statistically
equivalent between the two methods (p = NS). The major diameters obtained from the 2D
approach were significantly larger than those from the 3D approach (p = 0.003).

Segmenting and measuring the inner and outer wall surfaces in one complete airway tree (about
30 airway segments) took approximately 6 minutes excluding the time used for
presegmentation and skeletonization. About 50 percent of the running time was spent on the
measurement stage.

7.5 Additional Studies
Highly accurate results were obtained for diaphragm segmentation, with signed and unsigned
border positioning errors of −0.03 0.80 and 0.50 ± 0.62 voxels, respectively. The segmentation
time of any single data set was about 20 seconds. Fig. 13 shows the segmentation result.

In the vascular MR images (Fig. 14), our method successfully detected all four specified
surfaces in 44 of the 48 analyzed image slices. In comparison with expert manual tracing, the
mean signed surface positioning errors for the lumen, IEL, and EEL borders were 0.44 ± 0.37,
−0.29 ± 0.34, and 0.11 ± 0.31 pixel, respectively; the corresponding unsigned errors were 0.93
± 0.27, 0.91 ± 0.20, and 0.90 ± 0.22 pixel, respectively (outer walls were not segmented by the
experts or using the 2D method). Segmentation of each data set required approximately 30
seconds. Comparing to an interactive dynamic programming approach previously reported in
[68], our new method achieved higher accuracy and three-dimensional consistency. The 2D
approach also required the human operator to interactively define boundary points for guiding
the border detection in difficult locations (2.4 guiding points were needed on average in each
slice). In comparison, the 3D method did not require any interactive guidance.

The 3D method for intravascular ultrasound image segmentation demonstrated lower surface
positioning errors as well as more robust performance judged by the success rate in comparison
to the 2D slice-by-slice dynamic programming approach. Detailed results are given in Table
2. Examples of the IVUS images, obtained segmentation, and resulting 3D reconstruction of
one of the analyzed coronary arteries are given in Fig. 15.
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8 DISCUSSION
In the following discussion, we focus on several important issues potentially influencing the
utility of the presented method. First, the ability to incorporate geometric constraints into the
surface detection process is considered. Second, the steps necessary allowing interactive
guidance of the search process in difficult images are described. Finally, the proposed method
is compared to the existing segmentation methods.

8.1 Variable Geometric Constraints
In the previous sections, homogeneous smoothness and separation constraints whose values
remain constant along each axial direction were considered. In fact, the proposed algorithm
allows incorporation of variable geometric constraints. The constraints can be specified
adaptively based on the local image context. For example, the surface smoothness and surface-
to-surface interrelations may vary at different locations. Variable geometric constraints can be
incorporated into the algorithm by rearrangements of the graph edges. As a result, the graph
arcs may no longer be parallel as the case in the constant-constraint case.

Nevertheless, there are practical obstacles that need to be overcome for this approach to become
useful. For the variable-constraint setup, a key problem remains challenging: How to
automatically adjust the constraints as needed. We expect that employing on-the-fly machine
learning techniques will help solving this issue.

8.2 Surface Guidance and Interactive Segmentation
In practice, prior knowledge about the shape and/or position of the desired optimal surfaces
may be available. Such knowledge can be incorporated into the algorithm by placing
“landmark” points in the image, which are the voxels that the detected surfaces must pass
through. There are essentially two ways to achieve this. One is by manipulating the cost values
of the graph nodes corresponding to the landmark voxels, i.e., by assigning them an extremely
low cost such that the feasible surface including these voxels will have the minimum cost
globally. However, a more reliable and efficient way to incorporate landmarks would be to
change the graph construction itself. It is clear that the (x, y)-column with a landmark node will
contain only a single node corresponding to the landmark voxel. Due to the introduction of
landmarks, some nodes in the original graph that do not satisfy the geometric relationship with
the landmarks can be automatically pruned, further reducing the graph complexity. The
placement of landmarks is especially useful in human-computer interactive segmentation.

8.3 Relations to the Open-Pit Mining Problem
The single surface segmentation algorithm is closely related to the open-pit mining problem
[69], [70], [71], which seeks to excavate the earth surface to extract ore (e.g., gold) contained
in the earth. Each block of earth is associated with a net profit, which is the value of the ore it
contains minus the excavation cost of the block. A key objective in open-pit mining is to
excavate earth blocks until a pit surface is reached such that the total net profit is maximized.
Due to the use of the large mining machines, the pit surface is expected to be “smooth.”

8.4 Comparison to Other Segmentation Methods
In this paper, performance of our new method was directly compared with that of the dynamic
programming in several medical image segmentation tasks. This is because of their common
graph-based formulation and similar domain of application. In recent years, many novel and
powerful techniques have blossomed in many aspects of imaging and vision. In this respect,
the level set framework saw an especially fast development [39], [40]. Unfortunately, the fact
that many of these techniques are application-specific and the unavailability of competing
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implementations that are optimized to the handy segmentation tasks make experimental
comparisons infeasible. Nevertheless, the recently-discovered linkage [47] between level set
methods and graph-cuts suggests that the latter approach would be preferred whenever the
energy functions can be expressed in terms of graph models, such that optimal solutions can
be efficiently computed.

Compared to other techniques, one of our major innovations is that, by considering only objects
with certain shapes (i.e., terrain-like and cylindrical), the geometric constraints, which are
crucial for medical image segmentations, can be modeled in a graph with nontrivial arc
constructions. Thus, the geometric constraints become “hard” constraints that have intuitive
geometric meanings, as opposed to “soft” constraints defined by weighted energy terms that
simulate natural behaviors. The practical advantages are that the method becomes less image-
dependent and the burden on objective function design and calibration is relieved. The
smoothness thus modeled is not discontinuity-preserving, as desired by some other problems
in vision (e.g., stereo, multicamera scene construction). However, discontinuity-preservation
is more a curse than a blessing in medical images since typical objects are sufficiently smooth.
Another advantage of our method is that it can be naturally generalized to handle multiple
coupled surfaces. For the methods developed by Boykov and Jolly [33], [47], for instance, such
an extension is nontrivial.

Some of the demonstrated problems were difficult to solve by existing techniques, e.g., the
delineation of inner and outer airway wall surfaces in pulmonary CT image. Some others were
previously tackled by using slice-by-slice or 3D model-based methods, including the detection
of arterial wall and plaque from in vitro MR [68] and intravascular ultrasound (IVUS) images
[6], [72], [73], segmentation of the endocardial and epicardial boundaries of the left ventricle
from cardiac MR or CT [56], [74], and the extraction of diaphragm dome surface in CT data
sets [75]. Our new approach has the potential of requiring less human interaction, yielding
more accurate results and being more robust than the previous methods.

9 CONCLUSION
A polynomial-time algorithm for segmenting a single surface, or simultaneously segmenting
multiple mutually-related surfaces in volumetric images has been developed and validated on
phantoms and medical images. The method is efficient and robust. The resulting surfaces are
globally optimal with respect to the employed objective function and geometric constraints.
The surface smoothness and separation parameters provide a flexible means for modeling
various inherent properties and interrelations of the desired surfaces. The method is readily
extensible to higher dimensions.
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Fig. 1. The single-surface detection problem
(a) The surface orientation. (b) Two adjacent columns of the constructed directed graph. Arcs
shown in dashed lines are optional.
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Fig. 2. Image unfolding
(a) A tubular object in a volumetric image. (b) “Unfolding” the tubular object in (a) to form a
new 3D image. The boundary of the tubular object in the original image corresponds to a surface
to be detected in the unfolded image.
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Fig. 3. Summary of surface interrelation modeling
1 and 2 are two desired surfaces. Col1(x, y) and Col2(x, y) are two corresponding columns

in the constructed graphs. Arcs shown in dashed lines are optional. (a) The noncrossing case.
(b) The case with crossing allowed.
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Fig. 4. Human airway tree and 3D resampling
(a) Three-dimensional surface rendering of a segmented human airway tree. (b) Two-
dimensional slices were resampled perpendicular to the centerlines of airway branches,
producing a new volume containing a single airway segment. Inside wall surface was detected,
cross-sectional area, minor, and major-diameter were computed.
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Fig. 5. Effect of intrasurface smoothness constraints
(a) Cross-section of the original image. (b) The first cost image. (c) The second cost image.
(d) Results obtained with smoothness parameters Δx = Δy = 1. (e) Results obtained with
smoothness parameters Δx = Δy = 5.
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Fig. 6. Effect of surface separation constraints
(a) Cross-section of the original image. (b) The first cost image. (c) The second/third cost
image. (d) Results obtained with separation parameters  (d)
Results obtained with separation parameters 
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Fig. 7. Single-surface versus coupled-surfaces
(a) Cross-section of the original image. (b) Single surface detection using our method with
standard edge-based cost function. (c) MetaMorphs method segmenting the inner border in
2D. (d) MetaMorphs with the texture term turned off. (e) Single surface detection using our
algorithm and a cost function with a shape term. (f) Double-surface segmentation obtained
with our approach.

Li et al. Page 29

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2009 February 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8. Segmentation using the minimum-variance cost function
(a), (b), and (c) Original images. (d), (e), and (f) The segmentation results.
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Fig. 9. Execution time comparisons
(a) Single-surface detection case. (b) Execution times in smooth and noisy cost functions for
triple-surface detection (3S = smooth, 3N = noisy).
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Fig. 10. Signed percent errors of inner and outer-diameter measurements in the CT-imaged
phantom
Mean errors standard deviations shown as a function of phantom tube diameter.
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Fig. 11. Comparison of observer-defined and computer-segmented inner and outer airway wall
borders
(a) Expert-traced borders. (b) Three-dimensional surface obtained using our double-surface
segmentation method.
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Fig. 12. Segmentation of inner airway wall surface in five consecutive slices of an airway segment,
shown with 3D surface rendering of the obtained surface
(a) Slice-by-slice dynamic programming segmentation—notice the “leaking” in one of the
slices using the 2D method. (b) Optimal coupled-surface segmentation approach using the 3D
method.
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Fig. 13. Three-dimensional segmentation of the diaphragm surface from volumetric in vivo CT
image
(a) Coronal and sagittal views of the original image with the manually traced independent
standard segmentation. (b) Three-dimensional surface segmentation approach.
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Fig. 14. Segmentation of MR arterial walls and plaque
(a) Two original MR slices. (b) Manually identified lumen, IEL, and EEL borders. (c)
Segmentation obtained using slice-by-slice dynamic programming. On average, 2.4 interaction
points per image slice were needed. (d) Four borders identified by the reported fully automated
optimal four-surface segmentation method.
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Fig. 15. IVUS image segmentation result
(a) Polar and longitude cross-sections of the original image. (b) Segmentation result by optimal
coupled-surface segmentation. (c) Surface reconstruction.
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TABLE 2
IVUS Image Segmentation Results

Method Success Rate Positioning Error Max. Error

2-D 68% 0.13 ± 0.08mm 2.1mm

3-D 82% 0.09 ± 0.03mm 1.9mm
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