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Recruitment of substrates to the 26S proteasome usually

requires covalent attachment of the Lys48-linked polyubi-

quitin chain. In contrast, modifications with the Lys63-

linked polyubiquitin chain and/or monomeric ubiquitin

are generally thought to function in proteasome-indepen-

dent cellular processes. Nevertheless, the ubiquitin chain-

type specificity for the proteasomal targeting is still poorly

understood, especially in vivo. Using mass spectrometry,

we found that Rsp5, a ubiquitin-ligase in budding yeast,

catalyzes the formation of Lys63-linked ubiquitin chains

in vitro. Interestingly, the 26S proteasome degraded well

the Lys63-linked ubiquitinated substrate in vitro. To

examine whether Lys63-linked ubiquitination serves in

degradation in vivo, we investigated the ubiquitination of

Mga2-p120, a substrate of Rsp5. The polyubiquitinated

p120 contained relatively high levels of Lys63-linkages,

and the Lys63-linked chains were sufficient for the protea-

some-binding and subsequent p120-processing. In addi-

tion, Lys63-linked chains as well as Lys48-linked chains

were detected in the 26S proteasome-bound polyubiquiti-

nated proteins. These results raise the possibility that

Lys63-linked ubiquitin chain also serves as a targeting

signal for the 26S proteaseome in vivo.
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Introduction

Ubiquitin (Ub) is an evolutionarily conserved protein respon-

sible for numerous biologically important processes through

its covalent conjugation to client proteins in all eukaryotes

(Hershko and Ciechanover, 1998). Protein ubiquitination is

regulated by the E1 (Ub-activating enzyme)-E2 (Ub-conjugat-

ing enzyme)-E3 (Ub-ligase) cascade reaction. Ub conjugation

to lysine residues in a substrate-attached Ub leads to the

formation of polymeric Ub chains. In yeast, all seven lysine

residues (K6, K11, K27, K29, K33, K48 and K63) of Ub can be

used for chain formation, resulting in Ub chains of different

topologies (Peng et al, 2003). Of these chains, the best

understood type is the polyubiquitin chain linked through

K48 of Ubs. K48-linked Ub chains with a length of four or

more Ubs serve as the predominant proteasome-targeting

signal (Thrower et al, 2000; Pickart and Fushman, 2004).

K11- and K29-linked chains are also involved in proteasome-

dependent protein degradation (Baboshina and Haas, 1996;

Koegl et al, 1999; Jin et al, 2008). In contrast, K63-linked Ub

chains and mono-ubiquitination are generally thought to

function in proteasome-independent processes such as DNA

repair, signal transduction and receptor endocytosis in vivo

(Hicke, 2001; Pickart and Fushman, 2004), whereas emerging

in vitro studies imply K63-linked chains support the protea-

somal degradation (Hofmann and Pickart, 2001; Kim et al,

2007). Much less is known about the functions of chains with

other topologies.

Rsp5, an essential HECT-type E3 in Saccharomyces cerevi-

siae, is involved in various biological processes through both

proteasome-dependent and proteasome-independent path-

ways (Horak, 2003). In the former case, Rsp5 ubiquitinates

the largest subunit Rpb1 of RNA polymerase II upon DNA

damage and the mRNA export factor Hpr1, leading to their

proteasomal degradation (Beaudenon et al, 1999; Gwizdek

et al, 2005). Rsp5 also ubiquitinates the membrane-anchored

transcriptional factors Spt23 and Mga2 leading to proteaso-

mal processing (Hoppe et al, 2000). In the latter cases, Rsp5

ubiquitinates several plasma membrane proteins for their

Ub-dependent endocytosis (Hein et al, 1995; Galan and

Haguenauer-Tsapis, 1997; Dunn and Hicke, 2001).

Although Rsp5 participates in multiple cellular processes,

the most important function is in the OLE pathway (Hoppe

et al, 2000; Jentsch and Rumpf, 2007). In this pathway, the

expression of Ole1, a D9 fatty acid desaturase, is tightly

regulated by two related transcription factors, Spt23 and

Mga2. Both proteins are synthesized as inactive precursors

(p120s), which are anchored to the endoplasmic reticulum

(ER) membrane by their single C-terminal transmembrane

domains. Upon unsaturated fatty acid restriction, p120 is

ubiquitinated by Rsp5 and subsequently processed by the

26S proteasome to remove the transmembrane domain. The

processed N-terminal 90 kDa protein (called p90) is segre-

gated by the Cdc48-Ufd1-Npl4 complex. This allows p90 to

enter the nucleus and to activate transcription of target genes

(Rape et al, 2001). Importantly, the lethality of Drsp5 muta-

tions can be suppressed by the addition of oleic acid to the

growth media or by overproduction of Spt23-p90 or Mga2-

p90, suggesting that the essential role of Rsp5 is ubiquitina-

tion of p120 for proteasomal processing (Hoppe et al, 2000).

A major unsolved question in Rsp5 biology is the topology

of the Ub chains on its substrate in vivo. Earlier and recent
Received: 9 April 2008; accepted: 19 December 2008; published
online: 15 January 2009

*Corresponding authors. A Toh-e or K Tanaka, Laboratory of Frontier
Science, Core Technology and Research Center, Tokyo Metropolitan
Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan.
Tel.: þ 81 3 4463 7592; Fax: þ 81 3 3823 2237;
E-mails: toue-ak@igakuken.or.jp or tanaka-kj@igakuken.or.jp

The EMBO Journal (2009) 28, 359–371 | & 2009 European Molecular Biology Organization | All Rights Reserved 0261-4189/09

www.embojournal.org

&2009 European Molecular Biology Organization The EMBO Journal VOL 28 | NO 4 | 2009

 

EMBO
 

THE

EMBO
JOURNAL

THE

EMBO
JOURNAL

359



studies suggest that Rsp5 assembles the K63-linked chains on

its substrates, which function in proteasome-independent

pathways (Galan and Haguenauer-Tsapis, 1997; Kee et al,

2006). As the function of Rsp5 lies on both the proteasome-

dependent and -independent pathways, it is possible that

Rsp5 attaches the different types of Ub chains to different

substrates. In this view, Rsp5 may attach the K48-linked Ub

chains to a subset of the substrate to be targeted by the 26S

proteasome such as Rpb1, Hpr1, Spt23-p120 and Mga2-p120.

Alternatively, it is possible that there are little or no specific

functions of each type of Ub chains. Recent studies showed

that the ubiquitinated cyclin B with heterogeneous short

chains is degraded by the 26S proteasome in vitro (Hanna

et al, 2006; Kirkpatrick et al, 2006). Considering this view, it

is plausible that Rsp5 may attach exclusively K63-linked Ub

chains to the substrate for proteasomal degradation.

In this study, we analysed the Ub chain topologies of

several Rsp5 substrates by mass spectrometry (MS) and

found that Rsp5 attaches entirely K63-linked Ub chains to

its substrates in vitro. Unexpectedly, the 26S proteasome was

able to bind and degrade efficiently the substrates with K63-

linked chains in vitro. To investigate whether K63-linked

ubiquitination is involved in the proteasomal targeting

in vivo, we next dissected the ubiquitination of Mga2-p120

by quantitative MS. We found that the ubiquitinated p120

contains relatively high levels of K63-linked chains and

Lys48-linkages to a lesser extent, and the K63-linked chains

are sufficient for the proteasome-binding and p120-proces-

sing. Furthermore, we detected K63-linked chains within the

proteasome-bound polyubiquitinated proteins. These results

suggest that K63-linked polyubiquitin chains can serve as the

proteasomal targeting as well as K48-linked chains.

Results

Rsp5 assembles K63-linked ubiquitin chains in vitro

We reported earliera convenient method for preparing poly-

ubiquitinated substrates for the 26S proteasome using Rsp5

in vitro (Saeki et al, 2005). For this device, the PY motif, a

Rsp5-recognition site, was introduced to a natural protea-

some substrate Sic1, a CDK inhibitor, termed ‘Sic1PY’. The

Sic1PY was efficiently ubiquitinated by Rsp5 and degraded

rapidly by the purified 26S proteasome in vitro (Saeki et al,

2005). Considering the present scenario, it is critically

important to know the topology of the Ub chains that are

formed by Rsp5. To this end, we first performed the Sic1PY

ubiquitination assay using a series of Ub mutants. A Sic1PY

mutant in which all the lysine residues except for K36 were

replaced to arginine (Sic1K36PY) was also tested to monitor

the number of attached Ub (Figure 1A). Unexpectedly, both

Sic1PYand Sic1K36PY were attached with K11-, K33-, K48- and

K63-linked Ub chains as judged by their gel mobilities

compared with lysine-less Ub (UbK0). Two UbK0 molecules

were attached to Sic1K36PY, suggesting that the N terminus,

in addition to the K36 residue, is utilized for ubiquitination.

On the basis of this consideration, the average length of each

Ub chain on Sic1PY was estimated as follows K11- (3 to

4 Ubs), K33- (3 to 4 Ubs), K48- (2 or 3 Ubs) and K63-linked

Ub chain (3 or more Ubs).

To determine more accurately the Ub chain-type specificity

of Rsp5, we analysed the ubiquitinated Sic1PY by MS. The

method is based on the detection of specific linkages in the

tryptic digests of Ub chains (Peng et al, 2003). We found that

the peptide mass fingerprinting by MALDI-TOF-MS can be

applied to determine the relative abundance of Ub-linkages

(Supplementary Figures S1–S3). To analyse the ubiquitinated

Sic1PY by MS, the ubiquitinated Sic1PY was isolated from the

reaction mixtures by using the hexahistidine-tag of Sic1PY in

denatured condition (Figure 1B). The gel portion containing

the ubiquitinated Sic1PY was exercised and subjected to in gel

digestion with trypsin. The following MALDI-MS analysis

revealed that the ubiquitinated Sic1PY with wild-type Ub

contains only K63-linkage. In contrast, only K48-linkage

was detected in the preparation using UbK63R (Figure 1C).

These results indicate that Rsp5 preferentially assembles the

K63-linked Ub chains on Sic1PY under normal conditions

without forming other types of linkages. It is worth noting

that when K63 of Ub is mutated, Rsp5 catalyzes K48-linked

chain synthesis, indicating that Rsp5 uses other lysine resi-

dues for the chain formation when the preferred site is

missing. In this study, we used Ubc4 as E2 because Ubc1,

Ubc4 and Ubc5 were found to work equivalently with Rsp5

(Supplementary Figures S4–S6). We further determined the

topology of Ub chains of the self-ubiquitinated Rsp5 and two

native Rsp5 substrates, Mga2 and Rpb1, in vitro. MS analysis

revealed that these ubiquitinated substrates contained only

K63-linkages (Supplementary Figures S1, S6 and S7). These

results suggest that Rsp5 ubiquitinates its substrates exclu-

sively with K63-linked chains in vitro.

26S proteasome efficiently degrades the ubiquitinated

Sic1PY with K63-linked chains

We have showed previously that the ubiquitinated Sic1PY is

degraded by the yeast 26S proteasome, and this system was

utilized for evaluating the activity of mutant proteasomes

(Sone et al, 2004; Isono et al, 2005; Saeki et al, 2005). In this

study, we found that this ubiquitinated Sic1PY contains only

K63-linked chains (Figure 1). To confirm this unexpected

result, we employed the following systematic degradation

assays. The wild-type 26S proteasome was affinity purified

from the RPN11-3xFLAG cells, in which the RPN11 gene was

tagged with three tandem Flag epitopes (Saeki et al, 2005). As

a control for degradation assay, we also prepared the 26S

proteasome lacking Rpn10, an intrinsic Ub receptor, from the

RPN11-3xFLAG Drpn10 mutant cells (Figure 2A).

To optimize our degradation assay system, the wild-type

26S proteasome was titrated in the degradation assay with

200 nM of substrates. Strikingly, low concentrations (25 nM)

of the 26S proteasome were sufficient to degrade the K63-

linked ubiquitinated Sic1PY with wild-type Ub (Figure 2B). In

contrast, the Drpn10 26S proteasome cannot degrade the K63-

linked ubiquitinated Sic1PY (Supplementary Figure S8) as

observed for the K48-linked ubiquitinated Sic1 (Verma et al,

2004).

To exclude the possibility that the ubiquitinated Sic1PY

contains undetectable levels of K48-linkages, which may

stimulate proteasomal degradation, we performed the degra-

dation assay using the ubiquitinated Sic1PY with UbK48R,

which contains only K63-linkages (Figure 2C). The Sic1PY

ubiquitinated with UbK48R was degraded at a comparable

dose and rate with wild-type Ub (Figure 2B and C). Thus, the

results suggested that K63-linked Ub chains promote

the degradation by the 26S proteasome. We believe that

the concentration of the 26 proteasome is biologically

Proteolytic role of Lys63-linked ubiquitin chains
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relevant: The concentration of the 26S proteasome in

yeast cells is estimated to be B60 nM, if the proteasomes

are distributed evenly throughout cells and to be B8.6 mM,

if all the proteasomes are present in nucleus (Russell

et al, 1999; Ghaemmaghami et al, 2003; Jorgensen et al,

2007).

To investigate the types of ubiquitination that undergo

degradation, we prepared the ubiquitinated Sic1PY with dif-

ferent topologies by a series of mutant Ubs; K48-linked chains

with UbK63R (K63R), short Ub chains possibly containing

K33-linkage with UbK48R K63R (K48R K63R), and multiple

mono-ubiquitination with methylated Ub (m) and lysine-less
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Figure 1 Rsp5 assembles K63-linked ubiquitin chains on Sic1PY. (A) Multiple types of Ub chains can be formed on Sic1PY when using Ub
mutants. T7-Sic1PY-His6 (Sic1PY, left) or its single lysine construct (Sic1K36PY, right) was ubiquitinated by E1, E2 and Rsp5, with the indicated
Ub mutants and analysed by western blotting with anti-T7 antibody. (B) Purification of the ubiquitinated-Sic1PY. After ubiquitination as in (A),
the samples were denatured with 6 M urea and the Sic1PY Ub conjugates were pulled down with TALON resin. As a control, Ub-omitted reaction
was conducted. Gels were stained with Coomassie brilliant blue (CBB). (C) MS analysis of the purified ubiquitinated-Sic1PY. Gel regions of the
ubiquitinated-Sic1PY (Ubn-Sic1PY in A) were excised and subjected to in gel-digestion with trypsin. The resulting peptides were analysed by
MALDI-TOF mass spectrometry (MS). The major and specific peaks are labeled. The peak corresponding to K63- and K48-linkages are indicated
in blue and red, respectively. The Ub fragments derived from the mutants are indicated by Ub* in green. The ideal masses (m/z) of all seven
specific ubiquitin linkages are indicated by the triangles.
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Ub (K0). In comparison to the K63-linked ubiquitinated

Sic1PY, higher concentrations (100 nM) of the 26S proteasome

were required for the degradation of the K48-linked

ubiquitinated Sic1PY. On the other hand, the ubiquitinated

Sic1PY with short chains were only slightly degraded

(Figure 2B), indicating that the short Ub chains are a less

favorable signal for proteasomal degradation. As expected,

the 26S proteasome failed to degrade the multiply

mono-ubiquitinated Sic1PY with methylated Ub (mUb)

and UbK0 (Figure 2B and D). Thus, the K63-linked Ub chains

are efficient signal for degradation, whereas multiple

mono-Ubs and short chains are not. To simplify this,

we further prepared the ubiquitinated Sic1PY with single

lysine Ub mutants. Although a single- or double-lysine

Ub mutants (e.g., K48, K63, K48, K63) were polymerized

efficiently on Sic1PY by Rsp5, the Sic1PY Ub conjugates

were incompetent to proteasomal degradation (Figure 2D),

which is apparently consistent with the lack of

their interaction with the 26S proteasome as described

below.
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Figure 2 The 26S proteasome degrades K63-linked polyubiquitinated-Sic1PY. (A) The purified 26S proteasomes from RPN11-3xFLAG strain
(WT) or Drpn10 RPN11-3xFLAG strain (Drpn10) and the mock purified materials from the parent wild-type strain (no-tag) were subjected to
SDS–PAGE followed by staining with CBB (left) or analysed by western blot with the indicated antibodies (right). (B) Degradation of the
ubiquitinated-Sic1PY by the wild-type 26S proteasome. Sic1PY was ubiquitinated by Rsp5 with wild-type Ub (Ubn-Sic1PY, resulting K63-linked
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Sic1PY degradation. Each substrate (200 nM) was incubated with the wild-type 26S proteasome (50 nM) at 251C. The reaction was terminated at
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K63) and double-lysines (K48þK63) Ub mutants. Each substrate (200 nM) was incubated with the wild-type 26S proteasome (50 nM) at 251C
for 10 min and analysed as in (B).
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As Sic1PY is an artificially devised substrate for Rsp5,

we also examined the degradation of the Rpb1, a subunit

of the RNA polymerase II complex, as a native Rsp5

substrate (Beaudenon et al, 1999; Somesh et al, 2005).

Rpb1 was efficiently polyubiquitinated by Rsp5 and was

degraded by the 26S proteasome in vitro (Supplementary

Figure S7). MS analysis showed that the ubiquitinated

Rpb1 in the reaction contained only K63-linkage (data not

shown).

26S proteasome and its ubiquitin receptors bind

K63-linked ubiquitin chains

We further investigated whether K63-linked Ub chains are

suitable for the targeting signal of the 26S proteasome. We

noticed that the self-ubiquitinated Rsp5 is neither degraded

nor deubiquitinated by the 26S proteasome (data not shown),

like the self-ubiquitinated Cdc34 (Elsasser et al, 2002). By

using this property, we analysed the interaction between the

purified 26S proteasome and the Ub chains on GST-Rsp5 by

native-PAGE (Figure 3A and B). In the presence of the

ubiquitinated Rsp5 with wild-type Ub, the migration of the

26S proteasome was retarded due to their binding, whereas

Rsp5- or Ub-omitted reactions had no effects (Figure 3B).

These data indicate that the 26S proteasome binds directly

with the K63-linked Ub chains on GST-Rsp5. Expectedly, the

26S proteasome also binds efficiently the ubiquitinated Rsp5

with UbK63R, which contains K48-linkages. In contrast, the

proteasome binds only weakly with multiple mono-ubiquiti-

nated and short polyubiquitinated Rsp5, which were gener-

ated by methylated Ub (mUb) or UbK48R K63R (K48R K63R),

respectively (Figure 3B). The gel shift by the respective

Ub conjugates occurred in a dose-dependent manner

(Supplementary Figure S9), suggesting that the 26S protea-

some binds with high affinity to both K48- and K63-linked Ub

chains almost equivalently, but with low affinity to the

multiple mono-Ubs or short Ub chains (Figure 3B, left).

Although polyubiquitination occurred with a single- or dou-

ble-lysine Ub mutants (UbK48, UbK63 or UbK48þUbK63) on

Rsp5 (Figure 3A), the assembled chains were incompetent for

proteasome-binding irrespective of K48- and/or K63-linked

chains (Figure 3B, right). These results clearly indicate that

certain lysine residue(s) other than the remaining lysine

residue is required for their proper conformations.

Consequently, the 26S proteasome was not able to degrade

the polyubiquitinated Sic1PY with single-lysine Ub mutants

(Figure 2D).

The 26S proteasome utilizes multiple Ub receptors such as

Rpn10, Rpn13, Rad23 and Dsk2 (Elsasser et al, 2002; Verma

et al, 2004; Richly et al, 2005; Husnjak et al, 2008; Schreiner

et al, 2008). To investigate the binding properties of the Ub

receptors against K63-linked Ub chains, we performed a GST

pull-down assay with a mixture of free K63-linked chains. We

found that both Rpn10 and Rad23 have markedly high affinity

with long chains, more than seven Ubs, but low affinity with

short chains. This property was also observed in a compara-

tive analysis using free K48-linked chains (Figure 3D). The

results are consistent with a previous study, which showed

that the maximum affinity of human Rad23 for K48-linked Ub

chains is reached with a chain length of six or more Ubs

(Raasi et al, 2004).

Mga2-p120 is modified mainly with K63-linked ubiquitin

chains in vivo

Is the K63-linked Ub chain recognized and targeted by the 26S

proteasome in vivo? One way to show this is to isolate and

dissect Ub conjugates of Rsp5 substrate. Among the known

substrates of Rsp5, we selected Mga2 because the essential

role of Rsp5 is the ubiquitination of Spt23-p120 and Mga2-

p120 and their regulations have been characterized exten-

sively (Hoppe et al, 2000; Rape et al, 2001; Shcherbik et al,

2003; Shcherbik and Haines, 2007).

To purify the Mga2-p120 Ub conjugates in enough amounts

for MS analysis, we investigated optimal conditions, in which

the ubiquitination levels were enhanced and the ubiquiti-

nated proteins were stabilized in vivo. Because Mga2 is a

protein of a very low abundance, B300 copies per cell

(Ghaemmaghami et al, 2003), we produced N-terminally

Flag-tagged Mga2 under the GAL1 promoter. The ubiquitina-

tion and the processing of overproduced Mga2 is governed by

Rsp5, Ubp2, Cdc48 and the proteasome (Supplementary

Figure S10), indicating that the overexpressed Mga2 seems

to be functionally equivalent to endogenous one. In addition,

the PDR (pleiotropic drug registance) 5 gene was deleted to

increase sensitivity to the proteasome inhibitor MG132

(Fleming et al, 2002). To enhance the ubiquitination levels

of Mga2, we used a plasmid that constitutively expresses

wild-type Ub (Supplementary Figure S12).

Under these conditions, we successfully isolated the Mga2-

p120 Ub conjugates to a detectable level in a CBB stained gel

(Figure 4A). The gel portion of the Mga2-p120 Ub conjugates

was excised and subjected to MS analysis (Figure 4B). Within

the multiple ion peaks corresponding to Mga2 and Ub pep-

tides, a strong peak of K63-linkage and a relatively weak peak

of K48-linkage were detected.

To quantify the Ub linkages by MS, we next used SILAC

(stable isotope labeling by amino acids in cell culture): the

Dlys2 background strains were grown in SILAC medium

supplemented with ‘heavy’ lysine (13C6-Lys) (de Godoy

et al, 2006). To exclude the possibility that the Ub-linkages

detected in MS is due to contaminants, we first grew the cells

with a control plasmid in ‘light’ medium, whereas the cells

carrying the PGAL1-MGA2 plasmid in heavy medium. After

incubation with 1% galactose and 100 mM MG132 for 2 h,

equal amounts of the cells from the two cultures were mixed

together. The Mga2 Ub conjugates were then purified and

subjected to MS analysis. As the incorporation of heavy

lysine results in a mass shift of 6 Da, K-containing peptides

are detected as heavy ions by MS. As shown in Figure 4C, the

heavy lysine-labeled Ub linkages were only detected as heavy

ions. The absence of light ions indicates that the detected Ub

chains were not contaminant.

Next, the yeast cells carrying the PGAL1-MGA2 plasmid

grown in heavy medium were treated with MG132, whereas

the same cells grown in light medium were treated with

DMSO. Then, the p120 Ub conjugates were purified and

subjected to MS analysis. Comparing the intensities of

SILAC ion pairs, the relative amounts of Ub-linkages were

determined both the K63- and K48-linkages were increased to

1.75- and 3.84-fold, respectively, by inhibition of the protea-

some (Figure 4D). To quantify the absolute amount of the Ub

chains on Mga2-p120, we prepared a control Ub peptides that

consist of a 1:1 mixture of K48- and K63-linked di-ubiquitins.

The tryptic digests of the Mga2 Ub conjugates from the
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MG132-treated cells (heavy) were mixed with the control Ub

peptides (light), then, analysed by MS (Figure 4E and

Supplementary Figure S13). The absolute amounts of total

Ub and the linkages were determined by respective ion

pairs, and the percentages of chains were then calculated

(Figure 4F). Strikingly, the K63-linked chains occupied

B57% of total Ubs and existed in 4.7-fold larger amount

than K48-linkaged chains.

K63-linked ubiquitin chains are sufficient for the

p120-processing in vivo

To investigate the functional significance of the K63-linked

Ub chains, we first analysed steady-state levels of Mga2 in

mutant Ub-expressing cells. In the wild-type Ub-overexpres-

sing cells, surprisingly, the p120 levels were greatly decreased

to B38% as compared with that in the cells carrying a

control plasmid (Figure 5A). The decrease was abrogated

by MG132, suggesting that the overproduced Ub stimulates

the degradation of Mga2. Importantly, the Mga2 degradation

was also observed in both the UbK48R- and the UbK63R-

expressing cells, B58% decrease and B32% decrease, res-

pectively (Figure 5A). In contrast, the p120 protein levels

remained unchanged in the UbK48K63R-expressing cells.

Next, we performed a chase experiment to monitor the rate

of p120-processing (Figure 5B). In the wild-type Ub-over-

expressing cells, the half-life of the p120 was determined to

B30 min. Concomitant with decrease of the p120 levels, the

p90 levels were increased and subsequently degraded after

60 min (data not shown). Similarly, in both the UbK48R- and

UbK63R-expressing cells, the p120-processing also occurred

as fast as in the wild-type Ub-expressing cells. In contrast, the

p120-processing only slightly occurred in the cells expressing

the UbK48R K63R mutant or in the MG132-treated cells.

Because each Ub mutants were expressed at levels 25- to

50-fold higher than endogenous Ub (Figure 5D), the mutants

should inhibit the formation of chains. To confirm this, we

quantified the Ub linkages in the ubiquitinated-Mga2 from

the mutant Ub-expressing cells by MS. As expected, only

K63-linkage was detected in the ubiquitinated Mga2 from

the UbK48R-expressing cells, whereas only K48-linkage was
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Figure 3 The 26S proteasome and its ubiquitin receptors bind K63-linked polyubiquitin chains. (A) Self-ubiquitination of GST-Rsp5 with Ub
mutants. GST-Rsp5 was self-ubiquitinated with a series of Ub mutants. After the reactions, a portion was analysed by SDS–PAGE. The
topologies of ubiquitination on Rsp5 are as follow K63-linked chains with wild-type Ub (WT), with UbK48R (K48R), with UbK63 (K63) or with
UbK48þK63 (K48 K63); K48-linked Ub chains with UbK63R (K63R) or with UbK48 (K48); short Ub chains that probably contain K33-linkages
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Rsp5 are indicated by the asterisk. (B) Association of the 26S proteasome and self-ubiquitinated Rsp5 monitored by gel shift assay. The 26S
proteasome was preincubated with the self-ubiquitinated GST-Rsp5 produced as in (A), then, the mixtures were subjected to 3.5% native-PAGE
followed by in-gel activity assay using suc-LLVY-amc. As a control, Ub-omitted reaction (�) was also tested. Doubly capped and singly capped
species of the 26S proteasomes are indicated by 26Sd and 26Ss, respectively. (C) SDS–PAGE analysis of GST-fusion proteins. GST-fusion proteins
(1mg) were subjected to SDS–PAGE followed by CBB-staining. GST-rpn10N5 is an Ub-interacting motif mutant, in which LAMAL sequence was
mutated to NNNNN. GST-UbLRad23 is a deletion mutant of C-terminal Ub-associated domains. (D) GST pull-down assays of free K48- and
K63-linked Ub chains with the proteasomal Ub receptor proteins. Free K48-linked (left) or K63-linked (right) Ub chains were preincubated with
the indicated GST-fusion proteins, then, GST-fusion proteins were pulled down with glutathione-immobilized agarose. The bound materials
were eluted with SDS-loading buffer and analysed by western blot with anti-Ub antibody. GSTalone, GST-rpn10N5 and GST-UbLRad23 were used
as the control.
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Figure 4 Mga2-p120 is modified with mainly K63-linked ubiquitin chains in vivo. (A) SDS–PAGE analysis of the Mga2 Ub conjugates from
MG132-treated cells. Wild-type cells (YYS1246, Dpdr5 Dlys2 background) carrying PGAL1-

FLAGMGA2 (FlagMga2) and PTDH3-Ub plasmids were
cultured in SRaf medium. Mga2 expression was induced by 1% galactose for 2 h in the presence of 100mM MG132 or DMSO. Mga2 and its Ub
conjugates were affinity-purified by anti-Flag M2 agarose, and subjected to SDS–PAGE analysis followed by CBB staining. (B) MS spectrum of
the ubiquitinated-Mga2. The gel portion of the Mga2-p120 Ub conjugates from MG132-treated cells, indicated by a blanket in (A), was excised
and subjected to in-gel digestion with trypsin. The resulting peptides were analysed by MALDI-TOF MS. Peaks corresponding to K48- and K63-
linkages are indicated in red and blue text, respectively. (C) Detection of the heavy isotope-labeled Ub chains of the Mga2 Ub conjugates using
SILAC. The cells (YYS1301) carrying a control plasmid grew in light medium and the cells (YYS1303) carrying the PGAL1-

FLAGMGA2 (FlagMga2)
grew in heavy medium. After the addition of 1% galactose for 2 h in the presence of 100mM MG132, the two cultures were mixed and analysed
as in (A). MS spectra of the SILAC ion pairs are presented: a linear Ub peptide (1–6 amino acids), Ub K48-, and K63-linkages. (D) Stabilizations
of both the K48- and K63-linked Ub chains on the Mga2 by proteasome-inhibition. The cells (YYS1303) were grown in heavy or light medium.
Mga2 expression was induced by 1% galactose for 2 h in the presence of 100 mM MG132 for heavy culture or DMSO for light culture. Then, the
two cultures were mixed and analysed as in (C). (E, F) Absolute quantitation of the Ub chains on the Mga2. The tryptic digests of light Ub
chains (a 1:1 mixture of K48- and K63-linked di-Ubs) were used as internal standards. Note that the mixture of di-Ubs generates a Ub (1–6
amino acid) and each linkages at a 4:1 ratio. The heavy lysine-labeled Mga2 Ub conjugates were prepared as in (C). Then, the peptides were
mixed and the relative ion intensities were analysed by MS. The amount of the total Ub, K48-linkage and K63-linkage were calculated. See also,
Supplementary Figure S13.
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detected from the UbK63R-expressing cells (Figure 5E and

Supplementary Figure S14). These results indicate that each

Ub chains can be formed on p120 independently and are

functionally equivalent in the p120-processing.

The 26S proteasome binds K63-linked ubiquitin chains

in vivo

If K63-linked Ub chains serve as a targeting signal for the 26S

proteasome, the interaction between the 26S proteasome and
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Figure 5 K63-linked Ub chains promote Mga2-p120 processing in vivo. (A) Steady-state levels of Mga2 in the Ub mutant-expressed cells. The
cells expressing FlagMga2 and respective Ubs (YYS1301-1306) were cultured in SRaf medium. Mga2 was expressed by 1% galactose for 3 h in
the presence or in the absence of 100 mM MG132. The total cell extracts were analysed by western blot with anti-Flag antibody for the detection
of both Mga2-p120 and Mga2-p90 (upper) and anti-Pgk1 antibody as a loading control (lower). The protein levels of p120 and p90 are shown
with mean±s.d. values of three experiments in the right graph. (B, C) Cycloheximide-chase analysis of Mga2. The respective cells as in (A)
were cultured in SRaf medium. After Mga2 expression by 1% galactose for 1 h, translation was inhibited by cycloheximide at a final
concentration of 0.4 mg/ml. Aliquots were taken at the indicated time points after cycloheximide addition. The total cell extracts were analysed
by western blot with anti-Flag antibody for the detection of both Mga2-p120 and Mga2-p90 (upper) and anti-Pgk1 antibody as a loading control
(lower). To inhibit proteasome activity, cells were treated with MG132 (100 mM) upon the Mga2 expression. The protein levels of p120 are
shown with meanþ SD values of three experiments in the graph. (D) Expression levels of wild type and mutant Ubs. Cell extracts were
analysed by western blot with anti-Ub. (E) Absolute quantitation of the Ub chains on the Mga2 from the mutant Ub-expressed cells. The Mga2
Ub conjugates were purified from the MG132-treated cells cultured in SILAC medium. The ubiquitination of Mga2 was confirmed by Sypro
Orange-staining and was quantified by MS as in Figure 4E. See also Supplementary Figure S14. (F) The 26S proteasome binds the ubiquitinated
Mga2 in vivo. Mga2 and its Ub conjugates were immunoprecipitated under a mild condition and were analysed by western blot analysis with
anti-Rpn11 and anti-Cdc48 antibodies. The ubiquitination levels of Mga2 were monitored by Sypro Orange-staining.
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the p120 Ub conjugates should be observed in vivo. To

test this, we performed the Mga2 immunoprecipitation

assay under mild conditions, without high salt wash.

As shown in Figure 5F, the 26S proteasome was co-precipi-

tated with K63-linked ubiquitinated Mga2 from the

UbK48R-expressed cells in which the proteasome activity

was inhibited by MG132. The interaction was detected at

background levels from DMSO (mock)-treated cells, suggest-

ing that the 26S proteasome continuously processes the K63-

linked ubiquitinated p120. In contrast, Cdc48, the Ub-depen-

dent segregase for p90, was also detected in the Mga2

precipitates, but the binding was apparently not correlated

with the ubiquitination levels of p120 and was not affected by

MG132. Possibly, Cdc48 may recognize only a subset of the

ubiquitinated Mga2 and/or may be resting until the p90

generation. Nonetheless, the result suggests that the K63-

linked Ub chains are sufficient to the proteasomal targeting.

A recent study showed that total levels of K63-linked Ub

chains as well as K48- and K11-linked chains were elevated by

the treatment of MG132 in mammalian cells (Bennett et al,
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Figure 6 Quantitation of the proteasome-bound Ub chains. (A) Identification of the K63-linked Ub chains from the purified 26S proteasome.
The RPN11-3xFLAG cells (YYS1320) grew in heavy medium and the control cells (YYS1314) grew in light medium were treated with 100mM
MG132 for 2.5 h. Then, the 26S proteasome was purified under a mild condition and analysed as in Figure 4C. MS spectra of SILAC pair ions are
presented: a Ub peptide (11-27 amino acid), Ub K48-, and K63-linkages. (B) Both the K48- and K63-linkages were accumulated by proteasome-
inhibition. The RPN11-3xFLAG cells (YYS1320) were grown in heavy or light medium. The heavy culture was treated with 100 mM MG132 for
3 h, whereas the light culture was treated with DMSO for 2.5 h. The proteasomes were purified and relative ion intensities were measured as in
Figure 4D. (C, D) Absolute quantitation of the Ub chains of the proteasome-bound ubiquitinated proteins. Tryptic digests of the heavy lysine-
labeled Ub conjugates in (A) were mixed with the internal standard Ub peptides and analysed by MS. The amount of the total Ub, K48-linkage,
and K63-linkage were calculated. See also, Supplementary Figure S15 and S16.
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2007). Their observation and our results raise the possibility

that K63-linked Ub chains are widely utilized for the protea-

some-dependent protein degradation. To investigate this, we

analysed the proteasome-bound ubiquitinated proteins by MS

using SILAC. Under a mild condition, the polyubiquitinated

proteins were co-purified with the 26S proteasome from the

Ub-overexpressed cells (Supplementary Figure S15). By

using MS, we found that K63-linkages in addition to K48-

linkages within the ubiquitinated proteins (Figure 6A and

Supplementary Figure S15). The other types of Ub linkages

including K11-linkage were not detected even when analysed

by using a nano LC-coupled MALDI-MS/MS (data not

shown). Importantly, the levels of both the K48- and K63-

linkages were increased to 3B4-fold by MG132-treatment

(Figure 6B and Supplementary Figure S15). By using the

control Ub peptides, the absolute amount of the K63-linkages

was calculated as 4B5% of total Ub, and the K48-linkages

were predominant, B88%, as expected (Figure 6C, D and

Supplementary Figure S16). It is known that Hul5, a protea-

some-bound E4, assembles K63-linked chains onto the pro-

teasome-bound ubiquitinated substrate in vitro (Crosas et al,

2006), suggesting the possibility that the presence of the K63-

linkages is due to the Hul5 activity. However, K63-linkage

was still detected in the proteasome-bound Ub conjugates

from Dhul5 cells (Supplementary Figure S17), indicating that

the K63-linked chains are formed by an E3(s) other than

Hul5. Collectively, these results suggest that K63-linked Ub

chains may be widely utilized for the proteasome-dependent

degradation.

Discussion

Rsp5-mediated ubiquitination results in K63-linked

polyubiquitin chains

We started this study by investigating the chain topology of

the ubiquitinated Sic1PY, which was used to evaluate the

proteasome activity in vitro (Sone et al, 2004; Isono et al,

2005; Saeki et al, 2005; Kriegenburg et al, 2008). Although

four different types of Ub chains can be assembled by Rsp5

using Ub mutants (Figure 1 and Supplementary Figure S5),

direct analysis by MS revealed that the ubiquitinated Sic1PY

with wild-type Ub contained only K63-linked chains

(Figure 1). In addition, we found that Rsp5 itself and two

native Rsp5 substrates were also modified with K63-linked

Ub chains in vitro (Supplementary Figures S1, S6 and S7).

Thus, Rsp5 seems to assemble exclusively the K63-linked Ub

chains on substrate, as reported previously (Galan and

Haguenauer-Tsapis, 1997; Kee et al, 2006).

In our in vivo analysis, we used Mga2-p120 processing in

an experimental setting because this process has been proven

to be solely dependent on ubiquitination by Rsp5 followed by

cleavage by the 26S proteasome. Relatively low levels of

K48-linked Ub chains in addition to K63-linked chains were

detected in the ubiquitinated Mga2-p120 (Figure 4). How

K48-linked chains were introduced remains unclear. After

the processing, the released p90 (active form) is subsequently

ubiquitinated by Ufd2, an E4 that can extend K48-linked

chains on ubiquitinated substrates (Johnson et al, 1995;

Saeki et al, 2004), and is degraded by the 26S proteasome

in the nucleus (Richly et al, 2005). As both Mga2 and Ub were

overexpressed in our experimental setting, Ufd2 could target

the Mga2-p120 under such nonphysiological conditions.

However, the Mga2-p120 Ub conjugates from Dufd2 cells

still contained the K48-linked chains (Supplementary Figure

S11), indicating that Ufd2 is not responsible for the K48-

linked chain formation. Another possibility is that Ubc1 could

preassemble the K48-linked chains prior to Rsp5-mediated

ubiquitination of Mga2-p120 because Ubc1 itself can form

K48-linked Ub chains (Hodgins et al, 1996; Rodrigo-Brenni

and Morgan, 2007). However, only K63-linkage was detected

in the Mga2-p120 Ub conjugates made by Rsp5 even if Ubc1

was used as E2 in vitro (Supplementary Figure S6). Ubp2

is known as a deubiquitinating enzyme that regulates

Rsp5-mediated ubiquitination (Kee et al, 2005, 2006). We

found that the ubiquitination levels of Mga2-p120 were

markedly increased in Dubp2 cells (Supplementary Figure

S11). Therefore, there is no doubt that Rsp5 ubiquitinates the

overexpressed Mga2 used in this study, but it is plausible that

there is an additional E3 for Mga2-p120 in the cells as

proposed previously (Shcherbik et al, 2003).

Why are not all Rsp5 substrates degraded by the 26S

proteasome in vivo?

Although there are many Rsp5 substrates in the cells, only a

subset of substrates are degraded by the 26S proteasome

(Horak, 2003). One possibility is that the length of K63-linked

Ub chains is also a key determinant for proteasomal degrada-

tion. We showed that the proteasomal Ub receptors efficiently

bound long K63-linked Ub chains (Figure 3D). Most plasma

membrane proteins are attached by Rsp5 with multiple

mono-Ubs or a short chain with up to four Ubs (Rotin et al,

2000), in which Ub lengths might simply be enough to escape

proteasomal targeting. Ubp2 might maintain short Ub chains

on such Rsp5 substrates (Kee et al, 2005, 2006). Another

possibility is the structural property of the substrate itself. It

has been proposed that a loosely folded region is required for

efficient proteasomal degradation (Prakash et al, 2004; Piwko

and Jentsch, 2006). Some degradable Rsp5 substrates may

contain this ‘engagement’ site. Our results support this

notion, judging from the findings that physiological sub-

strates (e.g., Sic1 and Rpb1) were readily degraded by

the 26S proteasome, whereas nonphysiological substrates

(e.g., Rsp5 and GFP) were not (data not shown).

Ubiquitin chain topologies for proteasomal targeting

signal

It is widely accepted that K48-linked Ub chains play a central

role in the proteasome-dependent proteolysis, whereas

K63-linked chains function in proteasome-independent

processes (Chau et al, 1989; Finley et al, 1994; Hershko and

Ciechanover, 1998; Pickart and Fushman, 2004). However,

previous and recent studies have raised possibilities that K11-

and/or K63-linked Ub chains also serve as proteolytic signals

(Baboshina and Haas, 1996; Hofmann and Pickart, 2001;

Kirkpatrick et al, 2006; Kim et al, 2007; Jin et al, 2008). In

this study, we showed that homogeneous K63-linked chains

with sufficient length served as the proteasomal targeting

signal in vitro (Figures 2, 3 and Supplementary Figures

S7–S9). Moreover, our experiments, although carried out

under a nonphysiological condition in which Ub was over-

expressed, suggested that K63-linked Ub chains can be

utilized to the proteasome in vivo (Figures 5, 6 and

Supplementary Figures S13–S17). Direct analysis of the pro-

teasome-bound ubiquitinated proteins suggests that
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K63-linked Ub chains, even at a small fraction, are certainly

utilized in the proteasome-dependent protein degradation

(Figure 6). Curiously, we failed to detect K11-linked chains

in this assay, possibly, this type of Ub conjugates may be

delivered to Cdc48/p97 via UBX-UBA proteins as recently

reported (Alexandru et al, 2008). In contrast to previous

reports (Guterman and Glickman, 2004; Kirkpatrick et al,

2006; Boutet et al, 2007), multiple-mono Ubs and short Ub

chains are unlikely to be signals for the proteasomal targeting

(Figures 2 and 3).

Our work is reminiscent of the earlier study in yeast;

overexpression of UbK63R in Dubi4 cells caused hypersensi-

tivity to various stresses including heat, amino acid analo-

gues and UV (Arnason and Ellison, 1994). It is known that

the ubiquitin-proteasome pathway degrades damaged cellu-

lar proteins by heat stress and amino acid analogues

(Ciechanover et al, 1984). It is likely that K63-linked Ub

chains are involved in protein quality control in cells. In

this context, it should be noted that Rsp5 was shown to be

also involved in degradation of stress-induced abnormal

proteins (Hoshikawa et al, 2003). Our results are consistent

with these observations in the sense that K63-linked Ub

chains would serve as the proteasomal degradation signal.

Further studies are needed to solve more precisely this long-

standing and fundamental question.

Materials and methods

Plasmids, strains, and protein purifications
The plasmids, yeast strains and protein purification methods are
described in the Supplementary data.

In vitro degradation assay
The ubiquitination of Sic1PY was performed as described previously
(Saeki et al, 2005).

The degradation was initiated by adding the polyubiquitinated
substrate to the purified 26S proteasome in buffer A (50 mM Tris-
HCl, pH 7.5, 100 mM NaCl, and 10% glycerol) containing 1 mM
DTT, 2 mM ATP and 5 mM MgCl2 at 251C. The reaction was
terminated by adding SDS sample buffer and analysed by western
blotting with anti-T7 antibody.

Mass spectrometry
Protein samples were analysed by MALDI-TOF mass spectrometry
(Voyager DE-PRO or 4800 MALDI TOF/TOF, Applied Biosystems) as
described previously (Saeki et al, 2004; Tanaka et al, 2008) with
minor modifications. Briefly, CBB-stained protein bands were
excised from the SDS–polyacrylamide gel, destained and in-gel
digested with 10mg/ml of modified trypsin (Trypsin Gold, Mass
Spec Grade, Promega). For SILAC analysis, the excised gel was
treated with 0.5% RapiGest (Waters) for improvement of tryptic
digestion. To prepare the Ub internal standard peptides, a 1:1
mixture of K48-linked and K63-linked di-ubiquitins (Boston
Biochem) was subjected to in gel-digestion with trypsin. MS and
MS/MS data were obtained according to the instructions provided
by the manufacturer and then analysed by ProteinPilot software 2.0
(Applied Biosystems) or manually.

Gel shift assay
The self-ubiquitinated GST-Rsp5 (2 pmol) was incubated with a
purified 26S proteasome (2 pmol) in 5ml total volume of buffer A
plus 1 mM DTT, 2 mM ATP and 5 mM MgCl2 for 5 min on ice, mixed

with dye and then subjected to 4% native-PAGE (Elsasser et al,
2002). The gel was incubated with 0.1 mM succinyl-Leu-Leu-Val-
Tyr-7-amide-4-methyl-coumarin (suc-LLVY-amc) in buffer A plus
2 mM ATP and 5 mM MgCl2 for 10 min at 251C. The proteasome
bands were visualized under UV light (360 nm) and analysed by the
gel documentation system (UVP Inc.) equipped with the UV cut-off
filter (410 nm cut off, Kenko, Japan).

Purification of the ubiquitinated Mga2-p120 from yeast cells
Yeast cells (YYS1246; Dpdr5 Dlys2) were transformed with
PGAL1-

FLAGMGA2 (pOKA606), which expresses Flag-tagged Mga2
under the galactose-inducible promoter, and pKT10-Ub plasmid
(pOKA601), which constitutively express wild-type Ub. The
transformants were cultured to an OD600 between 0.6 and 0.8 in
SRaf-Ura-Trp medium (0.67% yeast nitrogen base without amino
acids, 0.5% casamino acids, 2% raffinose, 400 mg/l adenine, 10 mM
phosphate buffer, pH 7.5). For stable isotope labeling experiments,
the cells were grown in SILAC medium (0.67% yeast nitrogen base
without amino acids, 2% raffinose, 20 mg/ml 13C-lysine, amino acid
mixtures omitting appropriate nutrients, 400 mg/l adenine, 10 mM
phosphate buffer, pH 7.5). Then, FlagMga2 was produced by the
addition of galactose (1% final) for 2 h in the presence of 100mM
MG132 (20 mM stock in DMSO, Peptide Institute, Japan). The cells
(corresponding to 100 OD600) were lysed by glass beads in lysis
buffer, 50 mM HEPES-Na, pH 7.5, 100 mM NaCl, 10% glycerol,
10 mM iodoacetamide, 1 mM 1,10-Phenanthroline, 100mM MG132,
and 2� concentration of protease complete inhibitor cocktail
(-EDTA, Roche). After removal of the glass beads, Triton-X100
(1% final) was added and incubated for 30 min at 01C. The extracts
were cleared by centrifugation and incubated with anti-FLAG M2
agarose beads (Sigma) for 1.5 h at 41C. Beads were washed twice
with lysis buffer containing 1% Triton-X100 and twice with lysis
buffer containing 1 M NaCl, then, twice with lysis buffer containing
0.2% Triton-X100. The Mga2 and its ubiquitinated species were
eluted with 400mg/ml Flag peptide (Sigma) in the same buffer. For
immunoprecipitation experiments, the washing step with high salt
buffer was omitted.

Purification of the proteasome-bound ubiquitinated proteins
The RPN11-3xFLAG tagged cells (YYS1338) were cultured an OD600

between 0.6 and 0.8 in SILAC medium (0.67% yeast nitrogen base
without amino acids, 2% glucose, 20 mg/ml 13C-lysine, amino acid
mixtures omitting appropriate nutrients, 400 mg/l adenine, 10 mM
phosphate buffer, pH 7.5). Then, the cells were treated with 100mM
MG132 or DMSO for 2.5 h, and lysed by glass beads in lysis buffer,
50 mM HEPES-Na, pH 7.5, 50 mM NaCl, 10% glycerol, 10 mM
iodoacetamide, 1 mM 1,10-Phenanthroline, 100mM MG132 and
2� concentration of protease complete inhibitor cocktail (-EDTA,
Roche). After removal of the glass beads, the extracts were cleared
by centrifugation and incubated with anti-FLAG M2 agarose beads
(Sigma) for 1.5 h at 41C. Beads were washed three-times with same
buffer and the proteasomes were eluted with 400 mg/ml 3� Flag
peptide (Sigma) in the same buffer.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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