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Abstract

To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging
metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex
and constitute an ecologically dynamic community (microbiota) that has long been believed to possess
a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and pro-
liferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various
diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided
the mechanistic basis for the molecular interactions that occur at the interface between such microbes
and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively
explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising
the host cells and the residing microbial community. The human microbiome project was recently
launched as an international collaborative research effort to further promote this newly developing
field and to pave the way to a new frontier of human biology, which will provide new strategies for the
maintenance of human health.
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1. Introduction along with the ‘host’ human cells, form a complex

ecosystem that, as a whole, interactively performs

An enormous number of microorganisms, the vast
majority of which are bacterial species, are known to
colonize and form complex communities, or micro-
biota, at various sites within the human body. It is
estimated that the human microbiota is composed
of ~10" bacterial cells, which is 10 times more
than the total number of human cells. The largest
and most complex is the one comprised by intestinal
bacteria that includes as many as 10'? cells per 1 g of
feces in the average human individual." Thus, within
each human body, intestinal and other microbiota,
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various biological processes.” Therefore, perhaps we
should regard ourselves as ‘superorganisms’ together
with the indigenous microbes® and that the compo-
site genome should be referred to as the human
‘metagenome’.

Studies on human intestinal microbiota should
include microbial ecology and analysis of the complex
metabolism of the microbial community, as well as
various host—microbial interactions occurring at the
interface between microbes and host intestinal epithe-
lia. Such studies are expected to lead to understanding
of the impact of the microbiota on human health and
disease.*~® Along these lines, it should be noted that
an international collaborative project, ‘the human
microbiome project (HMP)’, was launched” in 2007
with the aim of collecting and integrating the
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genomic information from many diverse human
microbiomes (the word ‘microbiome’ was first intro-
duced in 2001 to define the collective genomes of
microbiota®). This article is intended as an overview
of the recent findings in relevant research fields.

2. Microbial diversity of the human
gut microbiota

Over the past decade, the bacterial 16S ribosomal
RNA gene (16S) sequence (~1.5kb) has been a
useful landmark for analyzing the microbial diversity
of human intestinal microbiota. A large-scale 16S
phylotype analysis (grouping only by 16S rRNA
sequence similarity) was carried out for three
human adult microbiota.’ The analysis of 13 335
bacterial 16S sequences identified 395 phylotypes
at the strain level using a threshold of 99% sequence
identity (% ID) and a single archaeal phylotype
(Methanobrevibacter  smithii)  within the three
samples. Members of the genera Bacteroides,
Eubacterium, Clostridium and Ruminococcus were the
major species found in the adult microbiota. Of
the 395 phylotypes, ~80% represented sequences
from species yet to be cultivated. This analysis also
indicated high interindividual variations in microbial
composition among the three samples. Another
large-scale 16S analysis estimated 4074 phylotypes
at the species level (>97% ID) in 18 348 sequences
obtained from 14 subjects including 12 obese
adults monitored for over 1 year.'® This and a study
using obese mice together revealed the association
of the intestinal microbiota with obesity.'" More
recently, 16S analysis was performed for 15172
sequences from 190 samples including subjects
with inflammatory bowel disease (IBD) and healthy
adults.'? The etiology of IBD is known to largely
correlate with the intestinal microbiota or certain
microbial members.">~"'® These and other studies
demonstrated that the intestinal microbiota of IBD
patients have reduced microbial diversity compared
with those of healthy controls."®'® The 16S analysis
of other disease-afflicted subjects has also been
performed in epidemiologic studies involving
allergy'”~'? and cancer.?%?!

The analysis of more than 45 000 bacterial 16S
data combined with the three large-scale surveys
described above estimated at least 1800 genera
(>90% ID), ~16 000 phylotypes at the species level
(>97% ID) and ~36 000 phylotypes at the strain
level (>99% ID) in the human intestinal microbiota,
predicting even greater diversity at the species
level."? This analysis also revealed that the majority
(98% of all species) belongs to only four bacterial
divisions: Firmicutes (64%), Bacteroidetes (23%),
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Proteobacteria (8%) and Actinobacteria (3%), whereas
other minor taxonomic divisions are quite diverse.

Besides these ‘snapshot’ analyses of the intestinal
microbiota composition, other long-term surveys
have been performed to follow both the overall com-
position and that of limited members over periods
ranging from several months up to 2 years.' 22724
These longitudinal studies suggested that the compo-
sition of intestinal microbiota do not drastically
change in adults within the periods examined.

16S analyzes of infant intestinal microbiota have
also been carried out.?>~27 One analysis revealed a
dramatic progression in microbial composition until
at least 1 year after birth with higher interindividual
variations, but less complex than those between
adults, converging toward a profile characteristic to
the adult type at the end of the first year of life.?®
As might be expected, fraternal twins tend to show a
significantly high similarity in their temporal
microbial composition profiles.?>?® No clear corre-
lation was found in overall microbial composition
due to the mode of delivery (Cesarean section or
vaginal birth) and feeding with breast milk or
formulated milk. Therefore, the source of these early
colonizers is not clear, whereas some specific species
are known to be transmitted from mother to
baby.262?3% |nfant intestinal microbiota is mostly

composed of bacteria such as Staphylococcus,
Streptococcus, Bifidobacterium and Enterobacteria.
Both adult and infant intestinal microbiota

members are restricted to a small subset of species
as described above, implying that the intestinal micro-
biota have evolved to shape overall microbial diversity
under strong selective pressures.*?

3. Sequence-based metagenomics of the human
gut microbiome

The 16S analysis disclosed the existence of numbers
of unculturable bacteria in the human intestinal
microbiota, with only up to 20% of the 16S data
able to be assigned to known species that have been
successfully cultured in the laboratory during the
past four decades.? Purely culturable bacteria are defi-
nitely necessary for comprehensive characterization
of their biological and genetic natures. On the other
hand, it is obvious that the 16S data do not provide
any information on functional features of the
microbial community. Thus, both culture-based and
16S-based approaches have crucial limitations for
further studies, particularly for functional analysis.
Metagenomics, the third and newest approach, has
made it possible to comprehensively explore the
biological nature of these complex communities.®'32
This culture-independent approach includes shotgun
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sequencing of microbial DNA prepared from the
microbiota containing unculturable species isolated
directly from the environments, followed by intensive
computational analysis of obtained genomic
sequences. Metagenomics is a quite effective and
powerful approach for collecting and analyzing the
information of genes present in the microbial
community, because the proportion of the protein-
coding regions in bacterial genomes can be as high
as 80%, so that most of the metagenomic sequences
obtained contain at least partial gene regions directly
related to functions.®® Biased data can be minimized
in the metagenomic analysis, but a small fraction of
genes may be relatively under-represented in the
entire data set mainly due to toxicity of the gene pro-
ducts or sequence regions to the host Escherichia coli
during cloning of the microbial DNA.** In addition,
the degree of gene coverage is largely dependent on
sequencing depth and complexity of the commu-
nities. These problems can be overcome by employing
next-generation DNA sequencers based on massively
parallel sequencing technologies,®> by which the
cloning step is eliminated and sequence quantity is
increased by orders-of-magnitude compared with
that of conventional Sanger sequencers.

To date, metagenomic data of human and mouse
intestinal microbiomes have been published from
three separate groups.''*®3” Gill et al. obtained
~78 megabases (Mb) unique metagenomic sequence
data from the intestinal microbiome of two healthy
human adults. Comparison of gene sets annotated
in the intestinal microbiomes with human genes
identified significant numbers of bacterial genes that
are not encoded in the human genome. The function
of these gene products contributes largely to the
metabolism of glycans, amino acids and xenobiotics,
and biosynthesis of vitamins and isoprenoids, which
are necessary processes in human biology. These find-
ings indicate the symbiotic relationship with humans
and support the concept that we are superorganisms,
the union of humans with their microbiota.?
Kurokawa et al.3” analyzed 13 human intestinal
microbiomes  including adults, children and
unweaned infants and obtained 479 Mb unique
metagenomic sequence data. Unexpectedly, more
than half (up to 90%) of total shotgun reads were
assembled to form unique contigs in each sample,
which is in sharp contrast to soil microbiota in
which <1% of total reads were assembled. These
results suggest that the amount of sequence data
produced in the two metagenomic studies (around
50 Mb of Sanger sequence data for each sample)
could substantially uncover the major species with
the highest orders of magnitude in quantity in each
microbiota, and that these species may be comprised
of a very limited number of strain-level species,
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perhaps accounting for <20 species in each micro-
biome. The constitution of major species by strain-
level species, not by high species-level diversity,
could be inferred from base-inconsistency in the
generated contigs, with most of those >5 kb display-
ing high sequence similarity of >99.5% ID between
assembled reads. In order to uncover the vast
numbers of other species present at lower orders of
magnitude, it would be necessary to produce
sequence data of several more orders of magnitude.

The analysis by Kurokawa et al. also found 647
novel gene families specific to these intestinal micro-
biomes when compared with genes present in the
metagenomic data of other microbial communities
such as sea-surface, deep-sea and soil, and signifi-
cantly enriched genes in these microbiomes when
compared with gene sets in known microbes, except
for the gut inhabitants. These gut microbiome-
enriched (gut-enriched) genes were assigned to 237
and 136 clusters of orthologous groups (COGs) for
the adult/child and the infant microbiomes, respect-
ively, sharing 58 COGs between them for a total of
315 COGs in all. In the 315 enriched COGs, the func-
tion related to carbohydrate metabolism was remark-
able in both types, but the functional repertories
clearly differed between the adult and infant types.
The adult type was rich in polysaccharide-degrading
enzymes and the infant type was rich in sugar trans-
porters. These data indicate that the functionality of
healthy intestinal microbiota relies largely on avail-
able nutrients in the diet.3®3°

4. Further analysis of metagenomic genes
identified in 13 Japanese samples

Genome analysis of several Bacteroides strains domi-
nant in adult intestinal microbiota indicated the rich-
ness of genes involved in  polysaccharide
metabolism,*°~*? exemplifying the functional adap-
tation of intestinal microbes to gut habitats rich in
polysaccharides, which are metabolized by bacteria
to generate short-chain fatty acids such as butyrate,
the major energy source for the host.®® It is also valu-
able to examine and compare the content of genes
belonging to the 315 gut-enriched COGs in each
genome of bacteria isolated from various environ-
ments. Our group recently performed a similarity
search analysis of the enriched genes for 371 bacteria
whose genomic sequences are already available. The
371 bacteria were classified into seven groups accord-
ing to their origin of isolation. The ratio of adult gut-
enriched genes in each genome is shown in Fig. 1.
The average percentage ratios were 3.9% for all 371
microbes, 9.2% for 46 commensal bacteria, 4.0% for
94 pathogens and 2.7% for 231 bacteria from the
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Figure 1. Ratio of gut microbiome-enriched genes (adult) in sequenced genomes of bacteria isolated from various environments. The
similarity search was performed with a threshold value of <1e—8 for 371 bacteria whose genomic sequences were available from
public databases. The 371 bacteria were classified into seven groups according to their origin of isolation; commensals, pathogens,
plant-related, soil-born, freshwater-born, seawater-born and others, and shown in red, pink, green, brown, light blue, dark blue and

black dots, respectively.

other five groups. Those of infant gut-enriched genes
were 2.8% for all microbes, 6.0% for the commensal
bacteria, 3.5% for the pathogens and 1.9% for the
other bacteria. These data clearly show that most of
the commensal bacteria contain gut-enriched genes
at a higher ratio than the other environmental bac-
teria. Interestingly, many of the commensal bacteria
with lower ratios overlap those of pathogens, implying
that intestinal microbes with a lower ratio of gut-
enriched genes might be primary reservoirs for the
corresponding pathogens. Table 1 lists the top 15
species with a higher ratio of adult and infant gut-
enriched genes, respectively, which differ considerably
from one another, except for the two species,
Ruminococcus and Dorea. For the adult gut-enriched
genes, members aggregated to three species,
Bacteroides, Eubacterium and Ruminococcus, all of
which are known dominant species in adult intestinal
microbiota. For the infant gut-enriched genes,
members are relatively diverse with Clostridium,
Bifidobacterium and Lactobacillus species being charac-
teristic. Some of them (e.g. Bifidobacterium and
Lactobacillus) are prominent probiotics, living micro-
organisms having beneficial effects on host health.*?
The species with the higher ratios tend to be domi-
nant in intestinal microbiota compared with the
species with the lower ratios. For instance, E. coli
K12 had a ratio of 3.4% for adult gut-enriched
genes, much lower than the 15 species listed, which
is consistent with the minority of E. coli in the adult

intestinal microbiota. It is also possible that the meta-
bolic mutualism between intestinal members may
allow the species with lower ratios, e.g. the human
intestinal archaeon (3.6 and 1.2% for the adult and
the infant gut-enriched genes, respectively), to stably
colonize the gut.**

In summary, the abundance of specific gene sets
(i.e. gut-enriched genes) in commensal bacteria
suggests that their genomes have evolved to accumu-
late functions advantageous for competitive survival
and colonization in the gut habitat, a possible conse-
quence of the functional adaptation to the gut ecosys-
tem.>*? This distinct feature also suggests the
difficulty for these intestinal microbes to survive in
other environments where available nutrients and
surrounding conditions are different in quantity and
quality from those in the gut environment.
Therefore, intestinal microbes may have additional
properties tolerant to transient, but harsh conditions
encountered in the mouth and stomach, through
which they must travel to reach the gut. Genes encod-
ing these yet unidentified functions may be included
in the 315 gut-enriched COGs that contain many
conserved but function-unknown genes, accounting
for nearly 30% of all gut-enriched COGs, and in the
647 novel gene families identified.”

About 75% of the genes annotated in the metage-
nomic sequences of the 13 human intestinal micro-
biomes showed sequence similarity ranging from 40
to 100% ID at the amino acid level with known
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Table 1. Top 15 species with the high ratio of adult and infant
gut-enriched genes

Species having higher ratio of
infant gut-enriched genes

Species having higher ratio of
adult gut-enriched genes

Ratio Species Ratio Species
0.152  Bacteroides ovatus 0.102 Bifidobacterium longum
NCC2705
0.148 Bacteroides WH2 0.098 Clostridium ramosum
JCM1298
0.144  Bacteroides sp. AO1 0.093 Bifidobacterium
catenulatum JCM1194
0.143  Bacteroides vulgatus 0.092 Clostridium
clostridioforme
JCM1291
0.141 Bacteroides 0.087 Collinsella aerofaciens
thetaiotaomicron 3731
0.137  Bacteroides 0.082 Lactobacillus johnsonii
thetaiotaomicron VPI- NCC 533
5482
0.136  Bacteroides 0.081 Ruminococcus gnavus
thetaiotaomicron 7330
0.130 Bacteroides uniformis 0.081 Enterococcus faecalis
V583
0.128 Bacteroides caccae 0.081 Lactobacillus
acidophilus NCFM
0.126  Eubacterium ventriosum  0.079 Dorea longicatena
0.125 Ruminococcus gnavus 0.077 Listeria monocytogenes
EGD-e
0.123  Dorea longicatena 0.076 Lactobacillus plantarum
WCFS1
0.121  Bacteroides sp. AO3 0.073  Streptococcus agalactiae
A909
0.121  Ruminococcus torques 0.072 Streptococcus
pneumoniae TIGR4
0.121  Bacteroides fragilis 0.072  Streptococcus

NCTC 9343 pneumoniae R6

genes.?” When, for each gene, the best blastp-hit was
used to tentatively assign the gene to a species, the
distribution of sequence similarity for each species
assigned could be depicted as shown in Fig. 2. Fig. 2
shows two distinct distribution patterns; those that
peaked at high similarity of over 80% ID and those
with low similarity between 50 and 80% ID. Typical
species with the first pattern are Escherichia,
Klebsiella, Bifidobacterium and Bacteroides, all of
which were previously isolated from humans and
fully sequenced, so it is reasonable that many of the
metagenomic genes showed high sequence similarity
with those in these microbes. On the other hand,
the metagenomic genes showing low similarity with
known genes in tentatively assigned species, such
as Bacillus, Clostridium and Streptococcus, probably
originate from species that are close to the assigned
taxa but have not yet been isolated or sequenced.
These data suggest that human intestinal microbes
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constitute distinct phylogenies from those of other
environmental bacteria and have evolved with their
own unique histories including co-evolution with the
human host and its ancestors.*®

5. Issues to be considered in 16S
and metagenomic studies

In both cases of 16S rRNA phylotyping and metage-
nomic analysis, establishment of a reliable method for
microbial DNA isolation from any given microbiota is
a critical issue. This is because the intestinal micro-
biota comprise Gram-positive and Gram-negative
bacteria and a small fraction of archaea, some of
which may be hard-to-lyse species. So far, methods
based on mechanical disruption using zirconium/
silica beads'?23%4> and those based on enzymatic
lysis”25:37:4647 have been developed and employed
for the isolation of microbial DNA from various bac-
terial sources.**~52 The DNA extraction method has
been assessed with respect to the quality and quantity
of obtained DNA as well as fecal sample preser-
vation.>® Our group recently assessed and compared
the published lysis methods using fecal samples. Our
preliminary results, including UniFrac®* analysis of
enumerated 16S data, shape and yield of obtained
DNA, showed that many of the methods examined
gave similar results in quality, but varied by more
than 10-fold in quantity and in the degree of DNA
fragmentation (data not shown).

The 16S analysis also has an intrinsic problem in
quantitative evaluation of the microbial composition
because of the existence of multiple heterogeneous
copies of the 16S rRNA genes within a genome
along with uneven PCR-amplification of the 16S
region. The range in copy number of the 16S rRNA
gene varies from 1 to as many as 15 in prokaryotic
species.®® In addition, the PCR primer Bact-8F°°
often used for amplification of the nearly full-length
16S sequence, might not be suitable at least for the
quantification of Bifidobacteria, of which the 16S
sequence has three base mismatches with the
primer, underscoring the composition of this
species.?® Recently, an improved primer pool was
developed.®” Next-generation DNA sequencers guar-
antee the rapid collection of genomic data but
provide less read-length than that of conventional
Sanger sequencers.®® The feasibility of pyrosequen-
cing reads of 200—300 bases for the 16S phylotype
analysis®® was evaluated by collecting 141 000
reads from rhesus macaque intestinal microbiota.>®
The results showed high reproducibility of the phylo-
genetic assignments and similarity of the major
types and relative numbers of taxa to those obtained
from Sanger sequences.
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Figure 2. Distribution of sequence similarity of genes identified in the human intestinal microbiome. Only the data for the species that had
sufficient numbers of best blastp-hit to known genes were represented. Species names are indicated in the box. Of these, four typical
distribution patterns, which peaked at high sequence similarity (>80% ID), are indicated by name in the figure.

6. Functions of the gut microbiota

Deciphering biological features of a taxonomically
complex and ecologically dynamic microbial commu-
nity is a challenging issue in gut microbiome research.
Germ-free and gnotobiotic mice,®® pig®' and zebra-
fish®2 provide simplified model ecosystems that allow
detailed evaluation of functions of colonized microbiota
or microbes and the corresponding host responses
in vivo,°>®* as well as their impact on various host
physiologies.' ">~ Immunity in germ-free mice is
premature, but is restored by colonization of com-
mensal bacteria and even by a single microbe.”®”!
Protection against pathogenic infection is also a
characteristic feature of commensal bacteria.”?~74

Investigations have been made regarding the func-
tions of commensal bacterial genes on their coloniza-
tion in the mouse intestine. Flexible transcriptional
regulation for adaptation to changes in available
nutrients, including those during weaning, was
found in Bacteroides thetaiotaomicron*®”> Surface
glycans expressed by Bacteroides fragilis are essential
for its colonization.”® The analysis of certain
Lactobacillus strains, which are thought to have
health-promoting properties as probiotics, identified
genes inducible upon their  colonization.””
Expression profiling of both bacterial and host genes
in mono-associated mice colonized by either
Bifidobacterium longum or B. thetaiotaomicron and
di-associated mice colonized by both bacteria were
examined.”® The co-existence of B. longum expanded
diversification in the carbohydrate substrates accessed
by B. thetaiotaomicron in a host-independent manner.
On the other hand, the presence of B. longum

significantly reduced the expression levels of host
genes responsible for antimicrobial activity against
Gram-positive bacteria compared with that by
B. thetaiotaomicron alone, suggesting the involvement
of host responses in competitive colonization between
these bacteria.

Commensal bacteria share many indistinguishable
features with pathogenic bacteria relating to host
immune response.”’~8" For example, lipopolysac-
charide (LPS), lipoteichoic acid (LTA) and peptidogly-
can, major cell wall components of all bacteria, are
well known ligands recognized by membrane-bound
toll-like receptor 4 (TLR4) and TLR2 (TLR2), that
serve as sensors of bacterial infection and lead to
the production of pro-inflammatory cytokines such
as TNFa and IL-6.82 Commensal bacteria have the
ability to activate pro-inflammatory responses
leading to harmful effects on the host via TLR signal-
ing in mice lacking IL-10,%3 an anti-inflammatory
cytokine.®* Commensal bacteria also have the ability
to activate anti-inflammatory responses leading to
beneficial effects on the host via TLR signaling when
the cascade to pro-inflammatory responses is
lacking.®> These results indicate that the impact of
intestinal microbiota on the host physiology largely
depends on the state of host immunity and that
host-commensal bacteria interactions are considered
to be placed at the exquisitely equilibrated state
between pro-inflammatory and anti-inflammatory
responses,®'"8¢ where the host preserves intestinal
microbes while still being able to sense the bacteria
that penetrate across intestinal borders.

Mammalian epithelia including Paneth and dendric
cells are major sources of endogenous antimicrobial
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substances, including: lysozymes, phospholipases and
various antimicrobial peptides such as a-defensins,3’
angiogenin4®® and Regllly.®? Several studies have
examined the relationships between these antimicro-
bial peptides and their effect on various intestinal
microbes. Regllly is a C-type lectin, of which the
expression is mediated by TLR signaling®® and down-
regulated by a Gram-positive Bifidobacterium
strain.”® The expression of mouse cryptdins, a
counterpart of human o«-defensins, requires Nod2
(nucleotide-binding oligomerization domain contain-
ing 2), a cytoplasmic pattern recognition receptor
expressed in Paneth cells that senses for bacterial pep-
tidoglycans.”’?? Mutations in the Nod2 gene are
highly correlated with the etiological risk of a subset
of Crohn’s disease (CD).'*°3 The expression of a-
defensins at the ileal of patients with CD of the ileal
was significantly down-regulated, but not at the ileal
of patients with CD of the colon.’* Certain
Enterococcus strains have been shown to regulate the
phosphorylation of peroxisome proliferators-activated
receptor y (PPARy) to induce the expression of
downstream target genes including interleukin-10
(IL-10).%° PPARy-deficient mice exhibited dysfunction
on the maintenance of gut homeostasis.’® Bacteroides
thetaiotaomicron induced PPARy-mediated cyto-
plasmic re-distribution of the NF-«B subunit RelA in
intestinal cells, selectively attenuating the inflamma-
tory response.’” These findings indicate that PPARy
is a nuclear factor associated with anti-inflammatory
response. The expression of antimicrobial cathelicidin
LL-37 is induced by butyrate, the product of poly-
saccharide fermentation by intestinal microbes.”®
These antimicrobial peptides may suppress microbial
overgrowth and excessive contact of bacteria to
the epithelia by directly killing them, resulting in
minimizin§ inadequate stimulation of inflammatory
responses.®?9

Some antimicrobial peptides were shown to dra-
matically increase in expression during the post-
natal period.88:8299100 And, it has been shown that
TLR signaling by LPS is activated in vaginally delivered
newborn mice immediately after birth but not in
newborns delivered by Cesarean section.'®"192
These findings suggest that exposure of maternal-
derived commensals to the intestinal epithelia in neo-
nates is involved in initiating the development of
intestinal homeostasis. Secreted (or mucosal) IgA pro-
duced by gut-associated lymphoid tissues is largely
involved in shaping the intestinal microbiota com-
position, whereas lack of IgA expression can lead to
adaptive immune response.' %3~ 195 |ntestinal alkaline
phosphatase (IAP) was found to dephospholyrate the
phosphate moiety in LPS, resulting in detoxification
of LPS and prevention of bacterial penetration across
the epithelial barrier, suggesting that IAP plays an
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important role in maintenance of gut homeosta-
sis. 96197 Recently, a study on gene expression of
the TLR4-mediated signaling cascade in LPS-stimu-
lated macrophages identified two classes of genes:
those responding only to initial LPS stimulation and
those responding to repeated LPS stimulation. The
former class of genes includes pro-inflammatory cyto-
kine genes, whereas the latter includes antimicrobial
genes such as cathelicidin-related peptides. Histone
modifications are involved in this regulation,'®®
which could also be linked to disease susceptibility
from environmental factors.'°

In summary, the host has evolved to establish many
processes that sustain unresponsiveness toward the
commensal bacteria while at the same time maintain-
ing responsiveness toward pathogens (Fig. 3). These
processes include the production of IgA, IAP and
various antimicrobial peptides and epigenetic
control of pro-inflammatory responses, all of which
sever routes leading to excessive inflammatory
response. On the other hand, pathogens also have
evolved to equip various virulence factors, including
effectors, that confer additional abilities for evading
the host defense system, eventually inducing pro-
inflammatory responses’®''° via change of the
microbiota composition in favor of the pathogens.”?
In contrast, commensal bacteria may also have
evolved not only to acquire specific functions adaptive
to the gut habitat, e.g. carbohydrate metabolism,
energy production, cell maturation and proliferation
toward intestinal homeostasis,''! but also to elimin-
ate undesired appendages that could result in
sensing for pro-inflammatory responses, e.g. profound
depletion of genes for cell motility function in the
metagenomic data of human intestinal micro-
biomes®” and attenuation of host immune response
by loss of flagellar function.'"?

7. HMP and future directions

The HMP aims at a better understanding of the
roles of human microbes on human biology including
their relationship with health and disease.” The
project includes metagenomic and 16S analysis of
the microbiota inhabiting various body sites such as
the oral and nasal cavities, the gastrointestinal and
urogenital tracts, and skin in several hundreds of
healthy and disease-afflicted subjects, as well as
genome sequencing of nearly 1000 human commen-
sal microbes. In addition, various metadata concern-
ing the host are needed, including variations in host
genotypes''® and metabolic phenotypes''* that
largely influence host—microbe interactions. In this
regards, one challenging issue is the construction of
an integrated metabolic map, of both human and



8 Human Intestinal Microbiome

Pathogenic
bacteria

Common functions

[Vol. 16,

Commensal
bacteria

/

LPS, LTA, peptidoglycan

3

Virulence factors
including effectors

IgA IAP

=

Mucosa

Epithelial cells

TLRs

Gut adaptive and
beneficial factors

Antimicrobial peptides

I J Gut lumen

7

Pro-inflammatory
responses

Homeostasis

o

N

Anti-inflammatory
responses

/

Figure 3. Molecular interactions at the frontline between the host, intestinal commensal bacteria and pathogenic bacteria. Commensal
bacteria possess specific functions adaptive to the gut habitat and are beneficial to host cells, including maintenance of intestinal
homeostasis, but also include functions such as those of TLRs that signal immune responses to pathogenic infection.®'#¢ Host cells
produce various antimicrobial substances such as IgA, IAP and antimicrobial peptides at the frontline to suppress excessive immune
response to commensal bacteria, while maintaining responsiveness to pathogens equipped with various virulence factors to evade

the host defense system.

microbiota,' "> which will become the new frontier

for medical purposes such as the development of
biomarkers for prediction of disease predisposition
of individuals, extensive drug design targeting the
intestinal  microbiota and personalized drug
therapies.!'®117

A simplified model system using gnotobiotic
animals has provided fundamental knowledge of the
molecular mechanisms involved in intestinal host—

microbe interactions, in which active bacterial com-
ponents have been identified.'"®''® However, an
enormous number and variety of bacterial com-
ponents and products must participate in these inter-
actions, and most remain unknown. Future studies
will include those to explore and identify intestinal
bacteria and their gene products (including metab-
olites) that are involved in host—microbial inter-
actions, to identify human genes that respond to
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Figure 4. Future direction of human intestinal microbiota research. Human intestinal microbiota function is responsible for both human
health and disease in accordance with its own genetic diversity and in association with human genetic variation. The study of human
microbes, especially the vastly abundant intestinal microbes, is a new frontier in human biology. Many questions remain to be answered
about host—microbe interactions, including: what factors and dietary components shape microbiota diversity, which bacteria and their
components interact with host cells, which human genes respond to and how do they react to bacterial signals affecting human

physiology.
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bacterial signals crucial for human physiology and to
identify dietary components that influence and
shape the intestinal microbiota composition. These
scientific challenges will be achieved by using
advanced ‘omics’ technologies coupled with the vast
quantities of genomic data that are already being
accumulated by the HMP. Thus, the human intestinal
microbiome will pave the way leading to a new fron-
tier in human biology, in which the human genome
and the intestinal microbiome are tightly linked
together as an integral part of the ‘human meta-
genome’ (Fig. 4).
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