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Recent evidence suggests that a rare population of self-renewing
cancer stem cells (CSC) is responsible for cancer progression and
therapeutic resistance. Chronic myeloid leukemia (CML) represents
an important paradigm for understanding the genetic and epige-
netic events involved in CSC production. CML progresses from a
chronic phase (CP) in hematopoietic stem cells (HSC) that harbor
the BCR-ABL translocation, to blast crisis (BC), characterized by
aberrant activation of B-catenin within granulocyte-macrophage
progenitors (GMP). A major barrier to predicting and inhibiting
blast crisis transformation has been the identification of mecha-
nisms driving B-catenin activation. Here we show that BC CML
myeloid progenitors, in particular GMP, serially transplant leuke-
mia in immunocompromised mice and thus are enriched for leu-
kemia stem cells (LSC). Notably, cDNA sequencing of Wnt/B-catenin
pathway regulatory genes, including adenomatous polyposis coli,
GSK3p, axin 1, B-catenin, lymphoid enhancer factor-1, cyclin D1,
and c¢-myc, revealed a novel in-frame splice deletion of the GSK3
kinase domain in the GMP of BC samples that was not detectable
by sequencing in blasts or normal progenitors. Moreover, BC CML
progenitors with misspliced GSK3g have enhanced B-catenin ex-
pression as well as serial engraftment potential while reintroduc-
tion of full-length GSK3pB reduces both in vitro replating and
leukemic engraftment. We propose that CP CML is initiated by
BCR-ABL expression in an HSC clone but that progression to BC may
include missplicing of GSK3B in GMP LSC, enabling unphosphory-
lated B-catenin to participate in LSC self-renewal. Missplicing of
GSK3p represents a unique mechanism for the emergence of BC
CML LSC and might provide a novel diagnostic and therapeutic
target.
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hronic myeloid leukemia (CML) was the first cancer shown

to be initiated at the hematopoietic stem cell (HSC) level by
a pathognomonic chromosomal abnormality the Philadelphia
chromosome, which produces a constitutively active protein
tyrosine kinase —P210BCR-ABL (1-6). CML was also the first
malignancy treated with a molecularly targeted agent imatinib,
which inhibits the BCR-ABL tyrosine kinase (3). However, most
CML patients treated with BCR-ABL inhibitors harbor cells
with low-level BCR-ABL transcripts, suggesting that these cells
may be susceptible to further transforming events that promote
relapse (3).

Several studies indicate that relapse and disease progression
derive from a rare population of cancer stem cells (CSC), the only
cells within the cancer that can recapitulate the tumor in transplant
models (1, 7-16). Recent evidence suggests that CSC are generated
by a sequence of heritable events, both epigenetic and via mutations
that alter progenitor self-renewal, survival, and differentiation (16).
To date, CSC have been identified in human acute myelogenous
leukemia (AML), breast cancer, several brain tumors, head and
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neck squamous cell carcinomas, pancreatic, and colon cancer (1,
7-16). Preliminary studies suggest that CSC of the hematopoietic
system, also called leukemia stem cell (LSC), have subverted the
properties normally ascribed to HSC such as self-renewal capacity
(1,9-11, 16). By studying 100 CML blood and marrow samples, we
previously discovered that a cell population sharing the same
immunophenotype as granulocyte-macrophage progenitors
(GMP) expressed high levels of BCR-ABL and had activated the
Wnt/B-catenin self-renewal pathway (1). Candidate LSC had en-
hanced replating capacity, an in vitro surrogate measure of self-
renewal potential that was inhibited by a specific Wnt pathway
antagonist-axin (1).

Here we studied (i) the capacity of candidate blast crisis
(BC) LSC to self-renew in immunocompromised mice and (if)
the mechanisms driving Wnt/B-catenin self-renewal pathway
activation.

Results

We developed an in vivo bioluminescent BC LSC model via
intrahepatic transplantation of candidate BC LSC transduced
with lentiviral luciferase (GLF) into neonatal immunocompro-
mised (RAG2—/—vy.—/—) mice (17). Controls included CML
HSC and blast (Lin™) cells, as well as normal HSCs and
progenitors (Tables S1 and S2A4). Weekly in vivo biolumines-
cence imaging demonstrated enhanced engraftment of GLF-
transduced BC progenitors (CD34*CD38*Lin~) which, com-
pared to CD34"CD38 Lin~ cells, yielded twice as many myeloid
progenitors, prominent myeloid engraftment in all hematopoi-
etic tissues, and 1.7-fold higher B-catenin expression (Figs. S1
and S2a). Moreover, mice transplanted with lentiviral luciferase
(GLF)-transduced BC CML progenitors developed signs of
leukemia, including wasting, piloerection, and lethargy (Fig. 14).
These mice expressed BCR-ABL in all hematopoietic tissues and
formed bioluminescent BCR-ABL* myeloid cell-enriched tu-
mors typical of BC granulocytic sarcomas (Fig. 1 B, C, and D).
While only one tumor formed in mice (n = 8) transplanted with
the HSC enriched 34738 Lin~ fraction, 9 tumors arose in mice
(n = 15) transplanted with BC CML progenitors and no tumors
arose in mice (n = 4) transplanted with Lin* cells (Fig. S2b).

Author contributions: A.E.A,, I.G., J.G., K.-H.T.D., C.F.B., F.J.G., J.D,,RS.C, MK,, C.J.,, J.L.Z,
A.K., RS.N., I.LLW., and C.H.M.J. designed research; A.E.A,, .G, K.-H.T.D., C.F.B.,, .G.N., J.D.,
M.K., C.J.,J.L.Z.,and C.H.M.J. performed research; A.E.A., .G.,K.-H.T.D.,C.F.B.,,R.S.C,, .LW.,
and C.H.M.J. contributed new reagents/analytic tools; A.E.A., I.G., J.G., K.-H.T.D., C.F.B.,
I.G.N., J.D., MK, C.D.J, J.L.Z, I.LW., and C.H.M.J. analyzed data; and A.E.A,, |.G., and
C.H.M.J. wrote the paper; J.G., F.J.G., AK., and R.S.N. acquired samples.

Conflict of interest statement: I.L.W. has equity ownership in Cellerant, Inc. and Stemcells,
Inc. C.H.M.J consults for Wintherix Inc.

Freely available online through the PNAS open access option.
TA.E.A. and I.G. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: cjamieson@ucsd.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0900189106/DCSupplemental.

PNAS | March 10,2009 | vol. 106 | no.10 | 3925-3929



http://www.pnas.org/cgi/data/0900189106/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/data/0900189106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0900189106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0900189106/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/content/full/0900189106/DCSupplemental
http://www.pnas.org/cgi/content/full/0900189106/DCSupplemental

BC CML Progenitors

A No Transplant Controi

C BC CML Tumor No Transplant Control

0.063

<APC-A>: CD45

CD45 ————————p
<APC-A>: CD45

13.8
1%
10° 10° 0 10?
<FITC-A> CD14833

CD14/33

10 o
<FITC-A>: CD14833

Because the progenitor fraction of BC CML blood and
marrow is composed primarily of GMP, we examined whether
this population also produces leukemia (1). Notably, myeloid BC
GMP promoted engraftment more frequently than BC HSC and
blasts (Fig. S3). Normal human HSC populations also engrafted
long-term, whereas normal committed progenitors, including
GMP, did not (Fig. S3). These results suggested that self-
renewing LSC were enriched within the GMP fraction of
myeloid BC CML. To further investigate the leukemic trans-
plantation capacity of BC HSC, GMP, or blasts, weekly in vivo
bioluminescence imaging was performed following GLF-
transduction and transplantation (Fig. 24). In these studies, BC
GMP (LSC) showed significantly greater engraftment capacity
by bioluminescence than BC HSC or blasts compared with
untransplanted controls (Fig. 2B). Secondary BC CML progen-
itor transplantation (n = 9) gave rise to a preponderance of GMP
(Fig. 2C). Subsequent titration experiments revealed that as few
as 1,000 BC GMP were sufficient to engraft 50% of transplanted
mice while approximately 10-fold more cells resulted in leukemic
engraftment in the majority of transplant recipients (Fig. 2C).
Self-renewal potential was assessed by serially transplanting
human CD45* cells derived from hematopoietic tissues of
RAG2—/—vy.—/— mice transplanted with hematopoietic sub-
populations (17). Serial transplantation capacity of BC GMP was
compared with that of BC HSC and blasts as well as normal
GMP and HSC. Both normal HSC and BC GMP demonstrated
serial engraftment potential that was absent in committed
normal progenitors (Fig. 2D). These experiments suggest that
BCR-ABL expressing-BC GMP aberrantly gain self-renewal
capacity resulting in LSC generation (Fig. 2F).

Previous research demonstrated activation of components of
the Wnt/B-catenin self-renewal pathway in CML progenitors
during progression to myeloid BC (1, 6). Thus, we sought
possible molecular mechanisms driving B-catenin activation and
expansion of the BC GMP pool (Fig. 34). Quantitative RT-PCR
analysis of key Wnt/B-catenin pathway gene transcript levels
revealed a significant decrease in glycogen synthase kinase 33
(GSK3p) transcripts in BC CML progenitors compared with
their normal counterparts (Fig. 3B). Moreover, FACS analysis
demonstrated decreased GSK3B protein expression by CML
progenitors during progression from chronic phase (CP) and
accelerated phase (AP) to myeloid BC (Fig. 3C). There was no
significant (P = 0.58) change in GSK3a expression in BC (n =
5) compared with normal peripheral blood (n = 5) progenitor
samples (Fig. 3D). Confocal fluorescence microscopic as well as
FACS analysis and LEF/TCF-GFP reporter assays showed that
GSK3B-depleted BC GMP and progenitor-derived tumors had
higher levels of activated B-catenin than normal GMP indicative
of elevated B-catenin transcriptional activity in the LSC popu-
lation (Fig. 3 E and F).
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Fig. 1. BC CML progenitors (CD34"CD38"Lin") trans-
plant leukemia. (A) Mice transplanted with progenitors
show signs of leukemia including wasting, piloerection,
and lethargy by 6 weeks posttransplantation. (B) Trans-
plantation of progenitors resulted in prominent tumor
bioluminescence as demonstrated at 7 weeks posttrans-
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iments). (D Upper) Tumor derived from a mouse trans-
planted with 1 X 10° progenitor cells. Hematoxylyn-eosin-

\ & 'I | stained tumor tissue revealed prominent infiltration with
’ :. human myeloid cells as typified by the human immature
a granulocyte characteristic of a BC CML granulocytic sar-

coma. (Lower) RT-PCR P210 BCR-ABL analysis of hemato-
poietic tissues including thymus (T), spleen (S), liver (L),
bone marrow (B) and tumors (T1-T6) from CD34+*CD38"
transplanted mice (n = 4).

To elucidate the genetic and epigenetic events responsible for
decreased GSK3p expression during CML progression and to
determine whether other Wnt pathway mediators were aber-
rantly regulated, 15 normal (Table S2A4), 4 chronic phase, 1
accelerated phase, and 8 myeloid BC CML (Table S2B) samples
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Fig. 2. Leukemia stem cells are enriched in the BC GMP population. (A) In 8
experiments involving normal bone marrow or cord blood (n = 30 mice) and 12
BC CML experiments (n = 43 mice) equivalent numbers (103-4 X 105) of HSC,
progenitor and blast (Lin*) cells per experiment were transplanted. Biolumines-
cence imaging demonstrated that BC CML GMP had the greatest engraftment
potential. (B) In 3 experiments, quantitative bioluminescence engraftment anal-
ysis demonstrated that GMP had a higher level of bioluminescence (P = 0.02;
asterisk in figure; two-tailed Student'’s t test) than HSC (P = 0.06) or Lin™ (P = 0.35).
(C Left) FACS analysis of tumors (n = 9) from mice transplanted with 2° BC CML
progenitors demonstrated a preponderance of GMP (66.4%; P = 8.6 X 107%;
two-tailed Student’s t test) while common myeloid progenitors (CMP) (16.3%)
and megakaryocyte-erythroid progenitors (MEP) (2.2%) represented a minority
of cells. (Middle) Tertiary (3°) BC CML GMP transplantation of 1 X 103,5 X 103, 1 X
10% and 5 X 10% resulted in engraftment of a CD45RA positive progenitor
population in transplanted mice (n = 3 experiments). (Right) Graph of 3° BCCML
GMP titration experiments. (D) Bioluminescence imaging was performed 9 weeks
posttransplantation and demonstrated that both 2° normal HSC and 2° BC CML
GMP (n = 6 mice) had long-term engraftment capacity but 1° normal GMP did
not. Primary normal cord blood CD34* cells served as a positive control for
engraftment. (E) RT-PCR analysis of P210 BCR-ABL expression in livers from
transplanted mice revealed that 2° myeloid BC GMP harbored P210 BCR-ABL
transcripts. There were no detectable BCR-ABL transcripts in mice that were
untransplanted or those that were transplanted with normal GMP, normal HSC,
2° normal HSC, or lymphoid BC GMP from P190 BCR-ABL-expressing marrow.
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Fig.3. Aberrant GSK3pBexpression by BCCML progenitors. (A) FACS plot demonstrating characteristic expansion of the GMP compartment in BC CML compared
with normal blood and marrow samples. FACS analysis performed on normal (n = 9) and CML CP (n = 5), CML AP (n = 6), and BC CML (n = 6) blood and bone
marrow samples revealed that, while the proportion of HSC did not expand with progression to BC, there was a significantincrease in GMP compared with normal
controls (P = 1.93 X 106; two-tailed Student’s t test). (B) HSC and progenitors were FACS sorted from normal or BCCML CD34* (n = 3) blood samples and GSK33
transcript levels measured by quantitative RT-PCR. There was a significant difference (P < 0.05; two-tailed Student's t test) in GSK3 transcript levels between
normal (mean 0.98 + S.E.M. 0.05) and BC CML progenitors (0.36 = S.E. 0.04). (C) FACS histograms of CML CP (n = 3), AP (n = 2), and BC (n = 3) progenitors revealed
a decrease in GSK3 protein expression with progression to BC. (D) FACS analysis performed on normal blood (n = 5), and BC CML (n = 5) revealed that there
was not asignificant difference (P = 0.58; two-tailed Student’s t test) in GSK3« protein expression as measured by mean fluorescence intensity == SEM in BC CML
samples compared with normal blood. Mean fluorescence intensity of isotype control (Rabbit IgG) was subtracted from all of the samples. (E Left) FACS analysis
performed on normal blood (n = 6), and BC CML (n = 5) revealed that there was a significant difference (P = 0.016; two-tailed Student’s t test) in activated
B-catenin levels as measured by mean fluorescence intensity = SEM in BC CML compared with normal blood. Isotype control (Mouse 1gG1) was subtracted from
all of the samples. (Right) Confocal fluorescence microscopic analysis revealed that normal GMP had little activated nuclear B-catenin whereas BC CML GMP
expressing misspliced GSK3p had high levels of nuclear p-catenin (green: CD45 membrane marker, blue: Hoechst nuclear stain, red: activated B-catenin). (F) In
6 experiments, BC GMP from CML samples (n = 2) or tumor (n = 1) derived from BC GMP transplanted mice and normal cord blood GMP (n = 3) were transduced
with a lentiviral LEF/TCF GFP reporter for activated B-catenin. BC GMP samples had significantly higher GFP expression (P = 0.037, two-tailed Student’s t test)
than normal cord blood GMP (n = 3) treated in the same manner. Results are expressed as percentage of maximum fluorescence intensity. (G Left) BC CML HSC
in 5 of 8 patient samples subjected to cDNA sequencing analysis had demonstrable misspliced GSK3p transcripts. Nucleotide sequence data represents 2 species
of GSK3p transcript in HSC: misspliced GSK3g and FL-GSK3. (Middle) BC CML progenitors in 5 of 8 samples had prominent misspliced GSK38 transcripts in the
ORF of the cDNA. (Right) BC CML lineage-positive (blast) cells showing a deletion of GSK3B exon 9 in the ORF of the cDNA that was also detectable in normal
samples.

were subjected to direct DNA sequencing to identify mutations  deleted in exon 9, exon 11, or exon 9 and 11, were detected in
in critical Wnt/B-catenin signaling pathway genes including  the blasts as well as CP CML and normal peripheral blood,
B-catenin, GSK3p, axin 1, adenomatous polyposis coli (APC), = marrow, and cord blood, where they represented the predomi-
cyclin D1, lymphoid enhancer factor-1 (LEF-1), and c-myc  nant transcripts (Tables S2 4 and B and Fig. S5). While exon 9-
(18-25). A comprehensive cDNA sequencing analysis revealed  and 11-deleted GSK3p splice isoforms were previously identi-
a novel exon 8 and 9 deleted misspliced isoform of GSK3B  fied in neurons of Parkinson’s disease patients (18), exon 8 and
(m-GSK3p) in progenitors in 4 of 7 myeloid BC CML samples 9 truncated transcripts found in CML progenitors have not been
and 1 of 4 CP CML samples (Table S2 4 and B). In addition to  described to date. The capacity to down regulate B-catenin
its role in regulation of metabolic pathways such as insulin  signaling may have been impaired as a result of both the absence
signaling, GSK3B is a critical component of the B-catenin  of axin 2 expression (Fig. S4C) and deregulation of GSK3p.
destruction complex and thus, GSK38 deregulation would be =~ These data suggest that in the molecular context of LSC, an
expected to enhance B-catenin activation (19, 21-23). While  m-GSK3pB isoform predominates that cannot phosphorylate
cDNA sequencing analysis demonstrated that m-GSK38 was a  B-catenin.

prominent isoform in BC GMP, BC HSC harbored lower levels Transplantation of m-GSK3g-expressing BC progenitors pro-
of m-GSK3p (Table S2B and Fig. 3G). These m-GSK3 tran-  duced high levels of BCR-ABL* myeloid cell engraftment in
scripts lacking the FRAT and axin binding domains encoded by =~ hematopoietic tissues and tumors in primary and secondary
exons 8 and 9 were not detected by sequencing in CML blasts or  recipient mice (Fig. 4 A and B). Western blot analysis demon-
normal sample populations (Tables S2 4 and B) (23). Splice  strated that m-GSK3p protein expression in tumors derived
isoform specific Q-PCR confirmed higher levels of m-GSK3B  from BC progenitor transplanted mice (Fig. 4C). While lentiviral
transcripts in BC GMP compared with CD34*CD38~ cells, m-GSK3p transduction of CP CML progenitors led to increased
which may explain, in part, the functional hierarchy in leukemic  levels of activated B-catenin expression, lentivirally-enforced
transplantation potential. This analysis also detected low levels  expression of full-length GSK38 reduced B-catenin expression.
of m-GSK3p in BC Lin* cells and 3 additional CP progenitor  In addition, CP CML progenitors lentivirally cotransduced with
samples (Fig. S4 4 and B). Alternative GSK3p splice isoforms, = GLF and misspliced GSK3B had increased replating capacity
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(Fig. S4E). Conversely, lentiviral overexpression of full-length
GSK3p reduced activated B-catenin expression (Fig. S4D) and
leukemic engraftment by BC progenitors in all hematopoietic
tissues (Fig. 4 D and E). Thus, deregulation of GSK3p through
missplicing may be a key event in the evolution of LSC.

These studies suggest that decreases in functional GSK38 at
specific stages of hematopoiesis may represent an important
mechanism triggering aberrant B-catenin activation, nuclear
entry, and enhanced self-renewal capacity (18-23). In CML, the
combined effects of BCR-ABL-mediated stabilization of B-cate-
nin (24) and possibly decreased expression of other negative
regulators of the Wnt/B-catenin pathway, such as axin 2, may
accentuate the effects of m-GSK3p on B-catenin activation (Fig.
S4C).

Discussion

Our finding that enforced overexpression of full-length (FL)
GSK3p decreases B-catenin expression and engraftment of
m-GSK3p expressing BC progenitors validates the potential of
repaired splicing to have some therapeutic benefit. GSK38 acts
in different cells and has many important substrates; here we
show that in the leukemic progression of an HSC clone and its
GMP progeny, one effect of decreasing its activity is to enhance
the activity of B-catenin in these cells. Extrapolation of this
activity in these cells to other situations might be enhanced by an
assessment of the other activities of the enzyme in the target
cells.
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0.0109), and thymus (T; P = 0.10) of mice transplanted with FL-GSK3p (n = 3)

Recently, loss of B-catenin was shown to inhibit engraftment
of mouse myeloid leukemia and normal stem cells, underscoring
the importance of B-catenin in normal and LSC self-renewal
(25). Previous studies in mice revealed that a master regulator of
hematopoiesis, Ikaros, has splice isoforms specific to HSC,
progenitors, and progeny cells (26). The mechanism(s) respon-
sible for alternative splicing of GSK3p have yet to be elucidated.
Previously, SNPs were shown to create alternative splice accep-
tor sites responsible for generating GSK3p splice isoforms (18).
Alternatively, these transcripts could arise through epigenetic
fixation of splice isoforms, mutations in a yet unknown splicing
element, or spliceosomal errors (26-28). Of particular signifi-
cance to the pathogenesis of CML, enforced expression of
BCR-ABL in cord blood progenitors was previously reported to
induce increased expression of a number of genes involved in
alternative splicing (27). Changes in splicing have been shown to
play a functionally significant role in tumorigenesis, either by
inactivating tumor suppressors or by gain of function of proteins
promoting tumor development (28). In addition, oncogenic
splicing events may generate novel epitopes that can be recog-
nized by the host’s immune system as cancer-specific and may
serve as targets for immunotherapy. Finally, the identification of
LSC-specific splice isoforms of GSK38 may be a useful indicator
of disease progression and should be evaluated as a therapeutic
target for eradicating the reservoir of LSC in advanced phase
CML.

Materials and Methods

FACS Analysis and Sorting. Normal blood and marrow samples were purchased
from the San Diego Blood Bank or All Cells. CML blood and marrow samples
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were donated by Stanford University and MD Anderson Cancer Center pa-
tients according to Institutional Review Board (Princess Margaret Hospital)
approved protocols. HSC, progenitor, and Lin* cells were purified via FACS as
previously described (1).

Lentiviral Transduction and Transplantation. Equal numbers of normal or CML
HSC, progenitors and Lin™ cells were FACS sorted, transduced with lentiviral
vectors according to established methods (1, 29), and transplanted intrahe-
patically into neonatal RAG2—/—y.—/— mice (1, 17). Weekly bioluminescence
imaging was performed with an in vivo imaging system (IVIS 200; Caliper Inc.).
When moribund or at 8—12 weeks posttransplantation, mice were euthanized
and single cell suspensions of hematopoietic organs and tumors were ana-
lyzed for human cell engraftment via FACS (SI Methods). BCR-ABL transcripts
intransplanted mouse hematopoietic tissues were detected by PCR with a one
step RT-PCR kit (Qiagen) (1, 30) BCR-ABL product sizes for b2a2 and b3a2 were
383bp and 458bp, respectively (30).

GSK3«, GSK3 3, B-catenin, and Target Gene Analysis. Normal or CML CD34" cells
were stained with a rabbit anti-human GSK3« (#9338, Cell Signaling Technol-
ogy), rabbit anti-human GSK3p (#9315, Cell Signaling Technology) or anti-
activated B-catenin monoclonal antibody (clone 8E7, Upstate Technologies)
(1). To further assess B-catenin activation, sorted GMP (700-5,000 cells/well)
were transduced with a lentiviral LEF/TCF GFP reporter and analyzed for GFP
expression by FACS after 67 days in culture (2). Quantitative RT-PCR to detect
axin2, c-myc, GSK3g transcripts, and the GSK3g isoforms in normal versus CML
HSC and progenitors was performed with SYBR Greener two-Step Q-RT-PCR
Kit (Invitrogen) (SI Methods) (1). To determine misspliced GSK3B protein
expression, primary BC CML progenitors, tumors from BC progenitor trans-
planted mice or 293FT cells transduced with lentiviral FL-GSK38 or m-GS3p for
48 h, were collected and 5 ug of the whole cell lysate were probed with GSK3
antibody (Cell Signaling) in Western blot analysis.
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Wnt Pathway Mutation Screening. Genomic DNA mutation and cDNA analysis
of B-catenin, APC, axin 1, c-myc, LEF-1, cyclin D1, and GSK33 was conducted
with SURVEYOR mismatch cleavage analysis using the WAVE-HS System
(Transgenomic) followed by bidirectional sequence analysis on an ABI 3100
sequencer (Applied Biosystems, Inc.) (S/ Methods).

Statistical Analysis. Statistical analyses were performed with the aid of FlowJo,
Caliper, and Excel software.
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