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Abstract
This paper presents automated methods to quantify dynamic phenomena such as cell-cell interactions
and cell migration patterns from time-lapse series of multi-channel three-dimensional image stacks
of living specimens. Various 5-dimensional (x, y, z, t, λ) images containing dendritic cells (DC), and
T-cells or thymocytes in the developing mouse thymic cortex and lymph node were acquired by two-
photon laser scanning microscopy (TPLSM). The cells were delineated automatically using a mean-
shift clustering algorithm. This enables morphological measurements to be computed. A robust
multiple-hypothesis tracking algorithm was used to track thymocytes (the DC were stationary). The
tracking data enables dynamic measurements to be computed, including migratory patterns of
thymocytes, and duration of thymocyte-DC contacts. Software was developed for efficient
inspection, corrective editing, and validation of the automated analysis results. Our software-
generated results agreed with manually generated measurements to within 8%.
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Introduction
Advances in multi-photon time-lapse microscopy and fluorescent protein (FP) technology have
ushered in a new era of biological research in which dynamic processes in living specimens
can be imaged over extended durations in their three-dimensional (3-D) spatial and temporal
context (Cahalan et al., 2002, Robey & Boussso 2003, Miller et al., 2003, Lichtman &
Conchello, 2005, Shaner et al., 2005). Using multi-spectral imaging and multiple labeling, it
is possible to image multiple structures and cell types in a manner that preserves their
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relative spatial and temporal relationships. The resulting images are 5-dimensional (5–D),
spanning 3-D space (x, y, z), time(t), and spectrum (λ). These image datasets have obvious
potential to provide qualitative and quantitative insights, if only they can be analyzed with
sufficient accuracy and automation.

For example, quantitative studies of cell motility and interaction patterns is one of the essential
foundations for understanding cell behaviors under specific stimuli, either in vitro or in vivo
(Bousso & Robey, 2003&2004). Recent studies have provided evidence that the migration
patterns of T cells and their interactions with DCs are regulated by T-cell repertoire (TCR)
selection events (Bousso & Robey, 2003, Miller et al., 2004, Witt et al, 2005b, Ladi et al.,
2008). In these prior studies, cell-cell associations were quantified by tedious and time-
consuming manual analysis aided by commercial software for cell tracking. Manual
measurements are limited by subjective variability, and human limitations on visualizing multi-
dimensional data, especially when image quality is suboptimal. Currently available
commercial tools allow excellent visualization, interactive annotation and measurement
capabilities, but are lacking in terms of automated analysis. There is a compelling need for
objective and automated software tools that are sufficiently robust and adaptive to cope with
morphological diversity of cells, dynamic changes in their morphologies, and complex
movement/interaction patterns.

From an automated image analysis standpoint, the advent of 5-D imaging and systems biology
has created the need for novel types of image-based measurements. Beyond traditional
morphological measurements, there is now a need to quantify static/dynamic relationships
among two or more structural or functional entities (Roysam et al., 2006). To address this need,
we propose associative image analysis methods to quantify spatial associations, temporal
associations, and spatio-temporal associations (interaction dynamics), building upon our prior
work in tracking and lineage analysis (Al-Kofahi et al., 2006a&b, Roussel et al., 2007).

Recognizing that even the best-available automated image analysis systems have a non-zero
(albeit modest) error rate. With this in mind, there is a need for efficient and scalable methods
to ensure that the automated measurements are valid and sufficiently accurate for a given study.
For this, we developed pattern analysis algorithms to enable efficient visual inspection, and
corrective editing of automated image analysis errors, resulting in a set of trustworthy
measurements. In addition, records (logs) of corrective editing operations can be used to assess
the performance of the automated algorithms, and to plan improvements. These methods extend
our prior development of edit-based protocols for fixed specimens (Lin et al., 2007, Tyrrell et
al., 2007).

Specimen Preparation and Imaging
To examine the correlation of T-cell receptor (TCR) repertoire selection with increased
thymocyte-DC contacts, donor bone marrow from GFP transgenic mice was injected into
CD11c-YFP neonatal hosts (Ladi et al., 2008). Using this system to generate hematopoietic
chimeras, we evaluated three experimental conditions: positive selection of P14 expressing
thymocytes on the B6 background (P14 → B6), negative selection on the DBA background
P14 → (DBA × B6), and wild-type thymocytes bearing a diverse TCR repertoire (wt → B6).

Intact thymic lobes from these chimeric mice at 4 – 6 weeks of age were imaged by two-photon
two-channel laser-scanning microscopy (TPLSM) while being perfused with warmed,
oxygenated media as described previously (Witt et al., 2005a&b). Two-photon excitation was
achieved using a Spectra-Physics MaiTai laser tuned to 920nm, and GFP and YFP emission
light was separated using a 515nm dichroic mirror and collected using two non-descanned
detectors. A Zeiss LSM 510 META/NLO Axioplan Microscope with a Spectra Physics MaiTai
Laser was used for these experiments. GFP-labeled donor thymocytes are dominant in the green
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channel, and YFP-tagged thymic DCs appear in the red channel. Three-dimensional image
stacks (164 × 164 × 40 μm) were scanned at the thymic cortex every 37 seconds, generating
time series that last 20 – 40 minutes. Figure 1 (A–C) shows sample images of wild type cells,
and those undergoing (P14 → B6) selection and P14 → (DBA × B6) selection. The 3-D images
at each time point have dimensions 256×256×21 with a dynamic range of 8 bits/voxel. These
3-D datasets are displayed as 2-D axial maximum-intensity projections.

Image Analysis Methods
The fluorescence emission spectra of GFP and YFP overlap. One approach to overcoming
spectral overlap is spectral fingerprint based unmixing (e.g., Dickinson et al., 2001;
Zimmerman 2005; Walter 2004). This method assumes that the overall emission spectrum
recorded at each voxel is a linear mixture of the emission spectra (spectral fingerprints)
contributed by each fluorophore. The linear unmixing software computes the relative
proportions of the mixture components. This approach was not matched to our instrumentation
since it requires the emission spectra to be sampled much more finely (typ. 20-50 spectral
bands). With these limitations in mind, we adopted a processing strategy based on two
observations: (i) thymocytes express higher signal in GFP (green) than in YFP (red) channel;
(ii) DC bodies have higher intensity in YFP than the GFP channel.

For describing our unmixing procedure, we denote a voxel in the 5-D image data as I(r,t) where
r = (x, y, z) is the vector of spatial coordinates, and t is the temporal sampling index (an integer
indicating the frame number, so (t+1) refers to the next frame). We use a subscript to indicate
the spectral channel, so voxels in the GFP and YFP channels are denoted IGFP(r,t), and
IYFP(r,t), respectively. To achieve some robustness to imaging noise (mainly dark noise in the
PMTs), we average voxel intensities over a rectangular neighborhood of each voxel denoted
NGFP(r,t), or NYFP(r,t), as appropriate. The size of the neighborhood is unequal along the axes
to compensate for the image anisotropy. In our experiments, it is typically 5 × 5 × 3 voxels,
covering a region of 3.2μm×3.2μm×4μm. Larger neighborhood sizes provide greater robustness
to noise at the expense of blurring. Our method is not overly sensitive to the size of the
neighborhood that is chosen. We computed the average fluorescence intensity values, denoted
N̅GFP(r,t), and N̅YFP(r,t), respectively, over each neighborhood. We next computed threshold
values (intensity cutoffs) denoted (θGFP(t),θYFP(t)) individually for the GFP and YFP channels,
using the widely-used Otsu's automatic threshold selection algorithm (Otsu, 1979). This
method has the advantage of compensating for temporal variations in fluorescence intensity.

A direct application of these thresholds to each channel will result in false classifications due
to spectral overlap (Figure 1 (C, D)). With this in mind, we use the following alternative
strategy. The user specifies an empirical weighting factor α that depends upon the experimental
setup, and adjusted α until a satisfactory delineation of thymocytes and dendritic cells is
attained. For our work, we used a value of 1.3 for all data sets. Major changes to the imaging
system or protocols require an empirical re-estimation of this value. Fully automated methods
to select this parameter remain a subject for future research. We first consider voxels for which
N̅GFP(r,t)×α > N̅YFP(r,t). For these voxels, we examine if N̅GFP(r,t) > θGFP(t). These voxels
are labeled as thymocyte voxels, and the rest are considered background voxels. For the
remaining unlabeled voxels after the first step, we next examine voxels for which N̅YFP(r,t) >
θYFP(t). These are labeled as DC voxels, and the rest are considered background voxels. The
above sequential procedure implies that the second segmentation step depends on the results
from the first step. This procedure precludes the possibility of two labels per voxel. The results
of the above sequence of steps are illustrated in Figure 2.
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Cell Identification
The next step in the processing is to recognize groups of thymocyte voxels representing
individual cells in the thymocyte image channel T(t). For this, we treat each cell as a cluster of
densely located voxels associated with an individual cell. To delineate these clusters, we used
the mean-shift clustering algorithm (Comaniciu et al., 2001 & 2002). This non-parametric
method does not require prior knowledge of the number of clusters, and does not constrain the
shape of the clusters. Importantly, it requires the fewest adjustable parameters – just the choice
of a kernel function. For this work, we adopted a radially symmetric Gaussian kernel function
with a width parameter h, and a window Ω. Our mean-shift cell identification algorithm is
iterative. First, (at iteration j = 1) the center of each kernel window Ω is initialized to individual
thymocyte voxels, i.e., . At subsequent iterations (j = 2,3,…), the kernel window centers
are updated by the following gradient based formula (Fukunaga & Hostetler, 1975):

This is repeated until the mean-shift vector defined as mi,j+1 = Xi,j+1 − Xi,j, converges to zero
(to within a chosen tolerance) at a stationary point denoted X̂i. Then, voxels whose convergence
points X̂i are closer than the spatial bandwidth parameter h are combined into clusters denoted
{C1,C2,…Cm}. Each voxel is assigned a label corresponding to the cluster number to which it
belongs (Cheng, 1995).

In our experiments, the morphological attributes of most thymocytes, such as size and shape,
change negligibly over time. This observation allows us to use a fixed bandwidth parameter
h for each image frame throughout the time-lapse series. The value of h is selected empirically
keeping in mind the amount of variation in cell morphologies among different image sequences.
This fixed bandwidth selection method is easily applied, but can yield two types of
segmentation errors: (i) over-segmentation caused by an overly tight kernel bandwidth,
decomposing a cell body into many fragments; or (ii) under-segmentation caused by a large
value of h, grouping closely-localized cells together. To achieve a tradeoff, we consider the
following facts: (i) the majority of cells are well separated in 3-D space; (ii) a narrow gap or
bottleneck exists between adjacent or touching cells in most cases. Furthermore, we note that
it is computationally cheaper to split under-segmented clusters compared to merging fragments
to constitute a whole cell. With these issues in mind, we simply selected a relatively loose
bandwidth value that was sufficient to eliminate most over-segmentation errors, rather than
exhaustively varying the kernel bandwidth. This relaxation of kernel bandwidth produced a
number of falsely merged clusters, that are easily refined by a post-processing step. Automated
methods to select adaptive bandwidth value remain a subject for our future study. The final
segmented images are saved as files, and displayed using a color code (one for each cell), as
illustrated in Figure 2.

For each segmented thymocyte, we compute a vector of geometric features that can be used to
discriminate cells for the purpose of modeling cellular migration patterns and tracking cells
across successive image frames. Specifically, we compute the centroid location
(x̅c(t),y̅c(t),z ̅c(t)), volume vc(t), and the radius rc(t) of each cluster c (each cluster corresponds
to a cell). For a cell of volume vc(t) voxels, the radius is approximated by the formula
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. These attributes are collected into a feature vector for cell c at frame t, denoted
.

Cell Tracking Algorithm
Common nearest-neighbor tracking algorithms are adequate for tracking multiple targets that
are sparsely distributed (Bao et al., 2006; Hamzic et al., 2008). However, their performance
degrades greatly when the targets are crowded, and when there are ambiguities (Han et al.,
2004; Polat et al., 2002; Meijering et al., 2006). In addition, such methods lack the ability to
naturally handle cells that are entering or exiting the field of view. Active contour model based
methods (Zimmer et al., 2002; Ray et al., 2002; Dormann et al., 2002, Dufour et al., 2005)
provide efficient segmentation and tracking by using outputs resulted from frame t to initialize
the process at frame (t+1), and are capable of coping with topology changes (e.g. split or merge).
But they still present drawbacks in handling densely-spaced objects with strong interactions
due to tracking many single objects independently (Zimmer et al., 2002). Mean-shift based
algorithms (Comaniciu et al., 2003; Collins 2003; Debeir et al., 2005) are problematic for
similar reasons, and usually fail to explicitly give precise object contours. Commercial
software, such as Imaris (Bitplane), identify and track touching cells in 3-D space by placing
synthetic spots at voxels of maximum intensity (Witt et al., 2005a). But the diameter of the
spot is manually tuned by the user, and the ambiguity of object boundaries still remains. The
following paragraphs describe a robust multiple hypothesis tracking algorithm for cell tracking
that was used for this study.

Successful tracking requires good modeling of cell behaviors (Al-Kofahi et al., 2007a&b;
Roussel et al., 2007). From visual inspection, the vast majority (> 95%) of dendritic cells
observed in this study are host-derived, non-motile DCs. The bulky bodies of host-derived DCs
are consistently observed to remain in their original positions throughout the time series, and
occasionally exhibit minor movements of dendrites (Ladi et al., 2008). Generally, they are a
more stationary population compared with thymocytes that engage in rapid movements,
frequent changes of trajectory direction, and/or long-term migrations. With this in mind, a cell
motility model is developed only for motile thymocytes.

A thymocyte labeled i in image I(r,t), with feature vector fi(t) that moves to become the
thymocyte labeled j in the subsequent image I(r,t+1) with feature vector fj(t+1) is modeled by
a multivariate Gaussian distribution, as follows (Al-Kofahi et al., 2006a):

(1)

where N is the dimension of the feature vector, and . The sample mean μ and

covariance matrix Σ of the difference vector  are learned from training examples. For the
training set, we collect the first K (typically 10% of the sequence) image frames from the
sequence, and inspect them to make sure they exhibit the typical motion patterns in this time
series. Cells in the training sequence were first segmented by the automated methods described
above, and tracked using a nearest-neighbor criterion under two assumptions: (i) cells move
smoothly, and their motion (speed, direction) does not change abruptly; and (ii) cell appearance
(volume, intensity, shape) does not change abruptly. After visually inspecting and editing the
few false matches, we computed the mean and covariance (μ,Σ) for the statistical model of cell
motion expressed by equation (1).
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In designing the tracking algorithm, we also consider three possible behaviors of thymocytes.
A cell can either: (1) move from frame t to frame (t+1) (migration); (2) leave the field of view
(disappearance); or (3) enter the field of view (appearance). The three events correspond to
distinct kinds of matches in the tracking procedure: one to one, one to none, or none to one.
To accommodate these situations, we consider multiple potential correspondences for a cell i

in image I(r,t) in image I(r,t+1) with comparably high values of , rather than a
single hypothesis with the maximum likelihood. To prevent excessive inclusion of hypotheses,
we collected k matching candidates with highest scores for each cell it and filtered them via an
empirical threshold. We also relaxed the constraint that every cell in I(r,t) must have a
correspondence in I(r,t+1), and vice versa, accounting for valid appearance/disappearance
events as well as segmentation errors, such as false detection of non-existing cells, or failure
to detect existing cells.

Our multiple hypothesis tracking algorithm starts by hypothesizing a set of matches denoted

 between cells i and j identified in images I(r,t) and I(r,t+1), respectively. Each hypothesis

is weighted by the likelihood score . For each cell j, we select a subset of k
matches with the highest likelihood scores (typ. k = 5). At this point, we simply identify the
cell-cell matches for which the sum of the likelihood scores is maximum, subject to the
following biologically rooted constraints: (i) a cell in image I(r,t) has at most one
correspondence in I(r,t+1); (ii) a cell in image I(r,t+1) has no more than one correspondence
in I(r,t). The optimal set of hypotheses is identified by the tracking algorithm described in
(Al-Kofahi et al., 2006a&b, Roussel et al., 2007). Any remaining segmentation and tracking
failures are corrected via an edit-based post-processing phase described next. Figure 3 shows
a sample tracking results for wild-type thymocytes prior to any corrective editing. Tracked
thymocytes are displayed with the same color and number. Panel D shows the cell migration
paths as a set of red lines, with the cell's initial position displayed in green.

Edit-based Validation and Performance Assessment
The task of ensuring the validity of automated segmentation and tracking results, and assessing
their performance is potentially cumbersome, given the sheer volume and complexity of the
5-D image data. Exhaustive comparison of automatically generated measurements against
manual analysis is not only impractical, but also unnecessary, since the automated methods
usually have a high success rate with only occasional failures. With this in mind, we developed
computer-assisted method (Figure 4) for efficiently inspecting the automated results, and
making corrective edits where necessary. Briefly, we use statistical tools to highlight potential
errors to the human operator, and identify the nature of the error to aid the user.

Segmentation Errors
Four types of segmentation errors are possible: under-segmentation, over-segmentation, false
negatives, and false positives. Efficient detection of segmentation errors requires a method to
highlight potential errors automatically. For this, we build a multivariate statistical model
describing correctly segmented cells from a training set specified by the operator. This model
is built using morphological features of the cells. Cells whose features deviate significantly
from this model, i.e., statistical outliers, are highlighted for the user to inspect.

The volume of cells is an important indicator of under segmentation and false detection. In the
under-segmentation case, multiple cells are falsely grouped as one cluster, so the measured
volume vi deviates far from the distribution mean toward the high end. Most falsely detected
cells have very small volumes. With these considerations in mind, we model the volumes of
cells as follows:
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(2)

Under this model, under-segmented clusters and falsely detected cells are outliers, since they
have low f(vi) values (Figure 5, row A). Comparing the cell volume to the population mean
provides an indication of the type of error. Specifically, vi < μv indicates a false detection, and
vi < μv indicates under-segmentation.

The solidity of a cell, denoted si, and defined as the ratio of its volume to the volume of its
convex hull is another valuable indicator. It is an effective indicator of under-segmentation,
especially when adjacent thymocytes are poorly separated by a narrow spatial gap (Figure 5,
row B). Solidity values are modeled by the following exponential distribution:

(4)

Another interesting feature results from the observation that fragments of an over-split cell
share boundaries (Figure 5, row C). The extent of this shared boundary can be quantified in
terms of the distance (di) between the boundary voxels of one fragment to the closest voxels
in the other fragment. We use the exponential distribution to model these distance values
statistically, as follows:

(5)

Outliers relative to this distribution indicate over-segmented objects. Next, we computed the
extent to which a segmented cell is ellipsoidal. For this, we computed a feature based on actual
fitting of an ellipsoid model, and measuring the fitting error ei. Assuming that these errors are
normally distributed yields the following distribution:

(6)

High error values indicate poorly segmented cells (Figure 5, row D). This approach is similar
to the method described by Lin et al., (2007).

The outlier detection methods described above represent the simplest choices. They were
developed based on visualizing the data using box plots, histograms, and scatter plots (not
shown here). In principle, far more sophisticated methods can be employed.

We compute the above confidence scores for every voxel cluster. Clusters with low confidence
values are highlighted by color coding for manual inspection using a graphical interface
program written in MATLAB (Figure 4). This program also provides tools to make corrective
edits such as splitting a cluster, merging multiple fragments, adding a missed cell, and rejecting
an invalid object. Table 1 is a summary of automated segmentation performance as measured

Chen et al. Page 7

J Immunol Methods. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the number of corrective edits made by the operator. Note that the entries in Table 1 (and
also Table 2 below) are the result of thorough manual inspection, and not just the outlier based
identification. In other words, the role of the outliers is to assist the user by highlighting
potential errors, but not to replace manual inspection. We did not attempt to quantify the
specificity and sensitivity of the outlier detection in this study. The corrected segmentations
are processed by the multiple-hypothesis tracking algorithm.

Tracking Errors
The detection of tracking errors is also driven by outlier analysis. We first group possible
tracking outliers into three classes: (i) failure to find a successor; (ii) no match with a
predecessor; and (iii) an incorrect tracking match. Each of these situations is handled as
described below.

i. Failure to find a successor: This can happen for two reasons – a cell exits the field of
view of the microscope during the imaging interval [t,t+1], or there is a false-negative
error in the cell segmentation. Should a tracked cell exit the field of view, we consider
it a valid one-to-none match. Since there is no reliable clue indicating a cell that leaves
the field and then re-enters later, we simply terminate its migration path. A failure to
find successors due to false negative segmentation errors is diagnosed using a flicker
animation display (alternately displaying I(r,t) and I(r,t+1) as a movie animation),
and adding the missed cell manually.

ii. No match with a predecessor: Since a number of new thymocytes are observed
entering the field of view, we allow new trajectories of cells to start at frame (t+1).
In a few cases of invalid none-to-one matches, the graphical tool enables the operator
to locate and delete falsely detected cells in image I(r,t+1).

iii. Incorrect match: To accelerate detection of incorrect cell-cell correspondences, we

sort the migration likelihood scores  of matched T cells (i, j) in
ascending order, and pick out cells with the lowest scores for further inspection.

Table 2 summarizes the performance of the automated tracking, as estimated from the
corrective edits made by the user.

Quantifying Cell-Cell Interactions
To quantify the association between thymocytes and dendritic cells, we center a search window

Г at the centroid of each thymocyte. Then, we collect the nearest 5% DC voxels 
to each thymocyte (instead of just the single nearest DC voxel), and compute the average of

Euclidean distances  from the thymocyte center  to each neighboring DC
voxel . This measure is robust to imaging noise, but may not always capture the notion of
cell-cell contact. As illustrated in Figure 6, thymocytes with different radii may have similar
distance measures  ‡. For this reason, we normalize the center-to-edge distances by the

thymocyte radii, i.e., , to yield a more effective measure for quantifying the association
between thymocytes and adjacent DCs. The frequency of thymocyte-DC contacts is quantified

as , where Ca is the number of time points at which the normalized distance 

‡Separate flow cytometric measurements confirmed the existence of variability in thymocyte volumes across image sequences for the
same cell type, and across different cell types.
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drops below a user-defined threshold θd, and CT is the total number of thymocytes. Our reason
for choosing the center-to-edge criterion rather than a straightforward edge-to-edge criterion
is to enable manual validation. The center-to-edge distance is easy to measure manually, but
an edge-to-edge distance is much harder and less reliable to generate manually in our study.

Quantifying the Dynamics of Thymocytes
In addition to geometric features, we computed 9 dynamic features of thymocytes to provide
insight into movement behaviors of thymocytes regulated by signal selection events.
Quantitation of these parameters is a commonly used approach that allows for the
characterization of cell motility and migration (Cahalan & Parker, 2008).

Given a tracked thymocyte it located at , t = t1, …, tn, the instantaneous displacement,
denoted  is the 3-D difference between  and . In addition, we measure
the overall displacement, denoted Ti from the initial time point t1 to the last time point tn of the
cell lifetime. The magnitude of the instantaneous translation is measured as . The
migration path length, denoted Li, is the total distance traveled through the cell lifetime T, i.e.,

. The average speed is measured as . The instantaneous speed is quantified in
two different ways. The Type-I instantaneous speed over a time interval Δt is computed as

. The Type-II instantaneous speed is computed as . The turning angle,
denoted , is the angle between displacement vectors  and . Finally, the directionality

index, denoted δi : the ratio of displacement over migratory path, .

In summary, the overall sequence of processing steps is: (i) spectral unmixing; (ii) automated
segmentation of each channel; (iii) computer-assisted inspection and editing of segmentation;
(iv) automatic tracking of corrected segmentation results; and (v) inspection/editing of tracking
results. The resulting segmentation and tracking data form the basis for measuring geometric
features and the dynamics of thymocytes.

Experiments and Discussion
One purpose of the experiments described here is to show that the automated system
successfully generates data on cell migration and cell-cell interactions that agree with
previously reported results. Here we use the interactions between T cells and DCs as an example
of robust cell-cell associations, and the interactions between thymocyte and DCs as an example
of subtle cell-cell associations. In both cases, our automated results recapitulate observations
that were previously recorded manually. Another purpose is to illustrate the ability of the
automated system to uncover new observations (e.g., size differences between wild-type and
P14 thymocytes) that are difficult to notice manually.

Table 3 summarizes the extent of of T cell-DC contacts computed on published lymph node
datasets (Bousso & Robey, 2004), and thymocyte-DC contacts computed on 4 sequences for
wild type (wt → B6), 6 series undergoing (P14 → B6) selection, and 3 sets for P14 → (DBA
× B6) selection. To explore type-to-type difference, various datasets from the same kind are
combined together and analyzed as a group. A threshold of θd = 1.7, determined empirically
by the biological user based on visual inspection, was used for distance thresholding. A fully
automated method to select this threshold value remains a topic for future research. The
resulting cellular interaction frequency computed by the automated method was found to
concord with un-published manual analysis data (Ladi et al., 2008) to within 8%. The
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discordance rate is computed by the absolute difference between automated result and manual
measurement.

We compiled all thymocyte or T Cell data for all time points to yield a sample set of distance
measures . The empirical cumulative distribution function (CDF) of  provides insight
on dataset-to-dataset differences in DC association for T cell populations (Figure 7A) or
thymocyte populations (Figure 7(B-C), where both the intra- (e.g. among (P14 → B6) runs)
and variations between P14 selections are presented simultaneously.

To show differences in the distribution of two cell populations, it is valuable to use the quantile-
quantile plot (Q-Q plot) which displays the quantiles of one population versus those of the
other; here, we use wild type and P14 selections as examples (Figure 7(D, E)). Should the
distance measures of wild type and P14 selections come from the same underlying distribution,
the points in the Q-Q plot were expected to approximately fit a straight line (Martinez, et al.,
2002). On the contrary, a noticeable deviation from a straight line occurs in both cases (i.e.
wild type against (P14 → B6), and wild type versus P14 → (DBA × B6)), indicating a
significant shift in the distributions.

To summarize run-to-run variations in thymocyte-DC associations, for an individual run of
specific sample type (i.e. wild type, (P14 → B6), or P14 → (DBA × B6)), the quantitative
measure of thymocyte-DC contacts is plotted against the normalized DC volume (Figure 7F).

We also used the tracking data to quantify the dynamics of cell migration. Our purpose in
presenting these data is to show that the automated system (i) successfully recapitulates
observations that were made in previous studies using manual analysis, and (ii) is capable of
uncovering new patterns. Here, each thymocyte track is processed as a unit, which covers the
complete lifetime of that thymocyte within the imaging period. Using these parameters to
quantitate the results of our automated analysis, we generated histograms in Figures 8(A–C)
that show the frequency distributions of some dynamic attributes. In agreement with the results
of the manual scoring (Ladi et al submitted), the percentage of time points thymocytes are in
contact with DCs is greater for P14 thymocytes as compared to wt thymocytes (Figures 8A).
Also, the average instantaneous speed and the directionality index are also greater for P14
thymocytes than wt thymocytes (Figures 8(B, C)), as has previously been reported (Witt, et al
2005b).

In addition to these standard approaches to quantitate 4-D data, our method allows for the
comparison of the cell size of these two populations. In the histogram shown in Figure 8D, we
show that P14 thymocytes are larger in volume than wt thymocytes, which we have confirmed
using flow cytometry measurement of forward scatter (data not shown).

The 2-D scatter-plots reveal additional information about the migration of thymocytes. Figure
8(E, F) shows normalized thymocyte-DC distance or the directionality index as it relates to the
average speed of the thymocyte. P14 thymocytes with a faster average speed are closer to DCs
(Figure 8E and Ladi et al submitted), and also migrate straighter (Figure 8F and Witt, et al
2005b) when compared to wt thymocytes, or the total population of P14 thymocytes.
Importantly, differences in statistical characteristics among various cell types are observable
in these graphs and measurements such as the spreads and peaks of the distributions. Table 4
also reveals a visible shift of mean values between wild type and P14 selections, which
concords with results of manual analysis (Ladi et al., 2008).

Hypothesis Testing
It is straightforward to utilize our automatically generated measurements to test hypotheses.
As a concrete example, we investigate the observation that thymocytes expressing (P14 → B6)
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selection have higher percentage of time points in contact with DCs, compared with wild-type
thymocytes.

We computed the normalized center-to-edge distances  as described above for all detected
thymocytes for three image sequences corresponding to wild-type, (P14 → B6) selection, and
P14 → (DBA × B6) selection, respectively. We then computed the empirical cumulative
distribution function (CDF) of these distances, given by F(d) = Pcontact(D ̂ ≤ d). For example,
the distribution FP14+(d) plotted as a blue line in Figure 9(A) is higher than the corresponding
distribution for wild-type thymocytes, denoted FWT(d), and plotted as a dotted red line,
suggesting that the normalized center-to-edge distances for (P14 → B6) selection are smaller
than for wild-type cells. Figure 9(B) similarly compares wild-type with P14 → (DBA × B6)
selection. These plots correspond to a single run.

We compared these distributions using the Kolmogorov-Smirnoff test (Martinez et al.,
2002). This test for determining if two datasets differ significantly has the advantage of making
no assumption about the distribution of the data, unlike the t-test that assumes normality. This
test is also robust to outliers. The null hypothesis corresponds to the situation that the two
distributions are not different. The alternate hypothesis corresponds to the situation that the
two distributions are significantly different. For this, the test requires identification of the
distance value (d) corresponding to the maximum absolute value of differences between the

cumulative distribution functions, i.e., . This value is indicated by green
arrows in Figure 9. Table 5 shows p-values of hypothesis testing on wild-type versus P14
selections. The null hypothesis is rejected if the p-value is less than or equal to a significant
level α. Those entries depicted in grey color indicate a failure to reject the null hypothesis. The
test results of datasets illustrated in Figure 9 are shown in bolded and underlined font, which
confirm our visual observations.

In addition, the non-parametric Mann-Whitney test was also performed to evaluate a possible
shift of the median values of two distributions. The null hypothesis suggests that two sample
sets are generated from identical distributions with equal medians, while the alternative
hypothesis indicates that they do not have equal medians. Table 6 illustrates p-values from
testing performed on wild-type vs. P14 selections. This test rejects the null hypothesis if p ≤
α. In terms of rejecting/accepting the null hypothesis, most of the testing results in Table 6 are
found to agree with those shown in Table 5.

Conclusions & Discussion
This work was motivated by the advent of 5-D microscopy as an investigational tool with
unprecedented potential for understanding complex and dynamic immunological processes in
their 3-D spatio-temporal microenvironment. This study confirms the power and practicality
of building effective associative image analysis systems to quantify cell-cell interactions.
Automated systems are unavoidably prone to segmentation and tracking errors. In this context,
we have shown the practicality of computer-aided inspection and corrective editing of the
automated results with minimal labor. The manual labor roughly scales with the error rate of
the automated algorithms rather than the total number of cells in the image data. The use of
statistical modeling and outlier analysis to highlighting potential errors made by the automated
system, and automatically identifying the nature of these errors is a simple idea that can be
extended much further. The editing process also yields data for performance assessment and
error analysis that can be used for planning algorithm improvements. One recognized limitation
of this method is the potential for the observer to miss some errors. This is not important when
the null hypothesis is defeated with adequate confidence. In subtle situations, our protocol can
be extended to include additional observers, if needed. Finally, there is plenty of room to
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develop far more sophisticated and user-friendly visualization & editing tools in the future that
further minimize the manual effort and improve the detection of subtle errors.

Although the methods described here were designed for specific questions, our approach to 5-
D associative image analysis can be adapted/extended to other problems. The present work
mostly involved blob-shaped objects in the image. In general, 5-D image analysis problems
could involve more complex object morphologies (e.g., neurites and vasculature). The present
work can be extended to include multiple object morphologies, and a corresponding set of
associative measurements, by building upon efforts such as the FARSIGHT project (Bjornsson
et al., 2008). All of the software tools described here is available freely to interested colleagues
on a collaborative basis from the authors.
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Figure 1.
(A, B) Maximum intensity projections of sample 3-D image frames showing GFP-labeled
thymocytes (green) and YFP-labeled dendritic cells (red) in thymic lobes for wild-type cells
(A), and thymocytes expressing P14 TCR transgene (B), respectively. (C, D) Illustrating the
spectral overlap for a sample optical slice from the 3-D image in panel A. The YFP-tagged
DCs are dominant in the red channel, while GFP-tagged thymocytes are prominent in the green
channel. (E,F) Results of computational unmixing that eliminates the spectral overlap.
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Figure 2.
(A) Sample image shown as a 2-D maximum-intensity projection of a full 3-D stack at a
randomly chosen sampling time; (B) Results of detecting thymocytes and dendritic cell voxels
– thymocyte voxels are displayed in green and DC voxels are displayed in red. Partially imaged
cells appear as fragments. (C) Numbered voxel clusters corresponding to thymocytes. (D) An
oblique 3-D view of the segmented thymocytes for the same image stack.
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Figure 3.
(A – C) Sample cell tracking results for wild-type thymocytes at three successive time points:
each tracked thymocyte is numbered, and displayed in consistent colors. (D) Sample display
of cell migration paths (red lines) for wild-type thymocytes over 40 time points. Thymocytes
segmented in the first frame are displayed in green. The colored paths represent trajectories of
migrating thymocytes, coded to depict their temporal ordering (initial points are shown in bright
red and later points in dark red).
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Figure 4.
Screen view of the graphical tool for computer-assisted inspection and editing of automated
analysis results. The operator can choose features for detecting each type of outliers, and the
outliers are displayed in pink, while normal cells are displayed in green. The cells highlighted
in pink are statistical outliers that are proposed by the software as candidates for closer
inspection and editing.
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Figure 5.
Illustrating the outlier based method to highlight potential errors for closer inspection and
editing. The detected outliers marked by the pink ellipse in the left column correspond to the
objects highlighted in pink in the right column. (A) Thymocytes with low f(vi) values are under-
segmented, over-segmented, or falsely detected. (B) Thymocytes with low f(si) values are
under-segmented. (C) Thymocytes with low f(di) values are fragmented. The fragments
displayed in dark pink and bright blue should be merged into a complete cell. (D) Low f(ei)
values usually indicate poorly segmented thymocytes.
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Figure 6.
Illustrating the fact that with an un-normalized center-to-edge distance measure, thymocytes
of different sizes may have the same center-to-edge distance to a DC. Panel A illustrates a true
positive: the case when Thymocyte A (green) with a distance  indeed touches its neighboring
DC body (red). Panel B illustrates a false positive, the case when Thymocyte B having the
same distance measure  is incorrectly classified as contacting with the DC. Normalizing
the distances by the radii of the thymocytes yields a distance measure that avoids the above
problem and compensates for variations in thymocyte volumes between and within populations
of various types of cells.
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Figure 7.
Quantifying thymocyte or T cell-DC associations using the normalized distance measure: (A)
Sample empirical CDF of normalized center-to-edge distances for lymph node T cells with
and without antigen (Bousso & Robey, 2004); (B) Sample empirical CDFs of distances for
wild-type and (P14 → B6) thymocytes computed from 2 image sequences; (C) Percentile plots
for individual image sequences; (D) Quantile-quantile plot comparing wild-type and
thymocytes in P14 → B6 hosts; (E) Quantile-quantile plot comparing wild-type and P14 →
(DBA × B6) thymocytes; (F) Percentage of time points when thymocytes were in contact with
DCs as a function of cell type and DC volumes normalized by the volume of the respective
image stacks.
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Figure 8.
Exploring the dynamics of thymocytes using the automatically generated measurements: (A)
Histogram of percentage of time points over its observed lifetime that a thymocyte is in contact
with DCs. (B) Histogram of average instantaneous speed (Type I) over the lifetime of a
thymocyte. (C) Histograms of the directionality index of thymocytes. (D) Histograms of
thymocyte volumes. (E) Scatter plots of average speed against directionality index. (F) Scatter
plots of average speed against average normalized thymocyte-DC distance.
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Figure 9.
Examples illustrating dissimilarity between the distributions of wild type and P14 selections
characterizing the thymocyte-DC center-to-edge distances. The cumulative distribution
functions (CDFs) in both Panel A and B indicate that normalized center-to-edge distances for
P14 selections have many more smaller values compared to wild-type thymocytes. The green
arrows indicate the location of highest dissimilarity between CDFs of wild type and P14
selections for a single run. The Kolmogorov-Smirnov test and Mann-Whitney U-test confirm
that the distributions are statistically different (shown as entries in bolded and underlined font
in Table 5 and Table 6).
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