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Short Note

Systematic Reduction of a Stochastic Signalling
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Abstract. Biochemical systems involve chemical reactions occurring in low-number regimes, wherein
fluctuations are not negligible and thus stochastic models are required to capture the system behaviour.
The resulting models are often quite large and complex, involving many reactions and species. For
clarity and computational tractability, it is important to be able to simplify these systems to equivalent
ones involving fewer elements. While many model simplification approaches have been developed
for deterministic systems, there has been limited work on applying these approaches to stochastic
modelling. Here, we propose a method that reduces the complexity of stochastic biochemical network
models, and apply this method to the reduction of a mammalian signalling cascade. Our results
indicate that the simplified model gives an accurate representation for not only the average number
of all species, but also for the associated fluctuations and statistical parameters.
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The goal of achieving a quantitative, systematic understanding of biological phe-
nomena has driven a recent surge of interest in the formulation of mathematical
models in biology [1, 2]. The resulting models tend to be complex, exhibiting both
nonlinear and stochastic behaviours; further, detailed models quickly grow to in-
clude large numbers of interacting species and their associated chemical reactions.
Signalling cascades are a classic example of this complexity, involving many partic-
ipating species interacting in highly branched networks [3]. Models of such systems
are computationally expensive and difficult to understand and analyze, and thus any
reduction in their complexity is welcome, provided it can be achieved without sub-
stantially altering the system’s behaviour. Here, we propose a systematic method
for reducing the complexity of stochastic biochemical models while keeping their
statistical properties unchanged. We apply the method to a mammalian receptor
tyrosine kinase signalling cascade, reducing it to substantially fewer reactions and
species while maintaining the same overall behaviour.
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In time-scale analysis [4], models are reduced by identifying slowly-varying
species, and the key problem is the determination of the lower-dimensional space on
which the slow species’ nonlinear differential equations are constrained to evolve.
Several different methods have been proposed to determine this lower dimensional
space [6], but none are designed for stochastic models, and difficulties can arise in
this case. Based on an approach for deterministic nonisothermal systems [7], we
have developed a method specifically to reduce stochastic reaction systems:
1. Convert the reaction system into differential equations dx

dt = v(x) · r (x), where
v(x) is the stoichiometric matrix and r (x) is the reaction rate vector. Identify fast
and slow reactions, separate the r (x) into fast ones r f (x)and slow ones rs(x),
and pick out the corresponding v f (x) and vs(x). Then we get dx

dt = f (x) +
v f (x) · r f (x), where f (x) = vs(x) · rs(x).

2. Calculate the column rank p′ of v f (x). If v f (x) has full column rank, v f
′(x) =

v f (x), r f
′(x) = r f (x). Otherwise select the independent columns of v f (x) as

v f
′(x), and set r f

′(x) = {[v f
′(x)]T [v f

′(x)]}−1[v f
′(x)]T · [v f (x)]r f (x). We get

dx
dt = f (x) + v f

′(x) · r f
′(x).

3. Calculate the Jacobian of the vector r f
′(x) : J = ∂r f

′(x)
∂x and the row rank

p∗ = rank(J ). If p∗ = p′,v∗
f (x) = v f

′(x) and r∗
f (x) = r f

′(x). Otherwise
construct the nonsingular matrix E(x) such that r∗

f (x) = E(x) · r f
′(x) has

the first p∗ rows with independent scalar functions, and the last p′ − p∗ rows
identically equal to 0. v∗

f (x) = v f
′(x) · E(x)−1 and the differential equations

become dx
dt = f (x) + v∗

f (x) · r∗
f (x).

4. Solve r∗
f (x) = 0, and put the solutions into these differential

equations: dx
dt = f (x) + v∗

f (x) · (Lv f r∗
f (x))−1(L f r∗

f (x)), where (L f r∗
f (x))i =∑Ns

j=1(
∂(r∗

f (x))i

∂x j
) · ( f (x)) j (i = 1...p∗), (Lv f r∗

f (x))i j = ∑Ns
k=1(

∂(r∗
f (x))i

∂xk
) · (v∗

f (x))k j

(i, j = 1...p∗). Then we get the reduced differential equations.
5. Translate the differential equations back into a set of reactions whose time

evolution may then be simulated stochastically [8].
The mammalian signalling cascade used here as a case study begins at the cell

surface with the binding of epidermal growth factor (EGF) to its associated re-
ceptor. This binding induces a series of protein binding and phoshorylation events
that culminate in the activation of extracellular signal-regulated kinases (ERK) [5].
The subsequent activities of activated ERK (also known as ERKPP), which in-
clude translocation into the nucleus of the cell where it activates transcription
factors, are not included in the model. The original deterministic model of the sig-
nalling cascade contains 41 species and 63 reactions [5], of which a few species
are of particular biological interest, including activated ERK. A stochastic model
reduction requires the conversion of the chemical reaction system into differential
equations; this conversion is then reversed following the reduction process. Due
to the different time scales present in the original signalling cascade model, time
scale analysis provides a suitable method for reducing the intermediate differential
equations.
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Figure 1. Comparisons of statistical parameters as a function of time for the ERKPP species,
from the original and reduced models. In each case, statistics were accumulated over 10000
runs. (a) Mean number of ERKPP. (b) Standard deviation. (c) Skewness. (d) Kurtosis.

The original and reduced signalling cascades were simulated using the Biochem-
ical Network Stochastic simulator (BioNetS), a software package developed for the
purpose of efficiently and accurately simulating stochastic models of biochemical
networks [8]. The simplification work was carried out using Mathematica. The re-
action model is read directly from a BioNetS file and transferred into Mathematica,
making it simple to apply to other biochemical network systems.

The reduced model contains 27 species and 34 reactions with an overall reduc-
tion in computational time of 50% as compared to the original model. To compare
the fluctuations in the original and reduced models, both were run 10000 times
with varying random number generator seeds, with a simulated extracellular signal
applied to the network at time zero. This yields 10000 realizations of the random
process, and statistics (mean, standard deviation, skewness, and kurtosis) are cal-
culated over this ensemble at each point in the time series, as shown in Figure 1. All
random sample paths converge to a consistent final value of ERKPP after an initial
transient, and the standard deviation drops to near zero after this transient. The dis-
tribution of ERKPP values over the ensemble converges to a Gaussian distribution
for large time values, with a skewness of zero and a kurtosis of three. The reduced
model gives an accurate representation for all statistical parameters in the species of
interest. Some species that have been removed in the model reduction existed only
in numbers fewer than 10; the statistical information present in the original model



176 C. GUANGQIANG DONG ET AL.

is satisfactorily preserved despite these excisions. This result points out that small
particle numbers in intermediate species do not necessarily translate to significant
fluctuations in the “output” of a biochemical cascade. A few species in the reduced
model show deviations in their skewness and kurtosis, but the remainder match as
well as ERKPP (results not shown).

The method used to reduce the stochastic model gives an accurate representa-
tion of the original model while significantly reducing the computational time and
presenting the information in a manner that is simpler and easier to manipulate.
Extension of this approach to other biochemical networks is straightforward, and
offers the prospect of a systematic means of stripping away unnecessary detail when
examining biological reaction systems.

This work was supported by NSERC Canada. We thank Tony Pawson and Bruce
Seet of the Samuel Lunenfeld Research Institute for their insights into signalling
cascades.
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