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Abstract
Flaviviruses are a major cause of infectious disease in humans. Dengue virus causes an estimated 50
million cases of febrile illness each year, including an increasing number of cases of hemorrhagic
fever. West Nile virus, which recently spread from the Mediterranean basin to the Western
Hemisphere, now causes thousands of sporadic cases of encephalitis annually. Despite the existence
of licensed vaccines, yellow fever, Japanese encephalitis and tick-borne encephalitis also claim many
thousands of victims each year across their vast endemic areas. Antiviral therapy could potentially
reduce morbidity and mortality from flavivirus infections, but no effective drugs are currently
available. This article introduces a collection of papers in Antiviral Research on molecular targets
for flavivirus antiviral drug design and murine models of dengue virus disease that aims to encourage
drug development efforts. After reviewing the flavivirus replication cycle, we discuss the envelope
glycoprotein, NS3 protease, NS3 helicase, NS5 methyltransferase and NS5 RNA-dependent RNA
polymerase as potential drug targets, with special attention being given to the viral protease. The
other viral proteins are the subject of individual articles in the journal. Together, these papers
highlight current status of drug discovery efforts for flavivirus diseases and suggest promising areas
for further research.

Keywords
Flavivirus; dengue virus; West Nile virus; yellow fever virus; Japanese encephalitis virus; envelope
glycoprotein; RNA-dependent RNA polymerase; helicase; protease; methyltransferase; antiviral
therapy

Introduction
This article introduces a collection of papers in Antiviral Research focusing on targets for
flavivirus drug discovery, which recognizes the importance of flaviviruses as agents of human
disease and the urgent need to develop new vaccines and effective therapies. The genus
Flavivirus contains more than 53 members, including yellow fever (YF), dengue (DEN), West
Nile (WN), Japanese encephalitis (JE) and tick-borne encephalitis (TBE) (Gubler, 2007).
Although licensed vaccines are available for YFV, JEV and TBE (Mackenzie et al., 2004),
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none have been developed for other flaviviral diseases. Efforts for vaccine development for
dengue have been a continuous challenge for decades, the main issue being the inability of
vaccines to protect simultaneously against all four antigenically distinct serotypes. A further
barrier to vaccine development is the sporadic nature of infections caused by agents such as
WNV, JEV and TBEV, which could only be completely prevented by carrying out universal
immunization across huge geographic regions. In the absence of vaccines, drugs for specific
therapy are needed, but no antiviral medications are approved for use against the flaviviruses.
Ribavirin suppresses the replication of some agents in vitro, but demonstrations of in vivo
activity have been limited to a few rodent models (Leyssen et al., 2008). There is thus a need
for new antivirals that can reduce viremia during early stages of infection, block viral
replication in the brain in cases of encephalitis, or modulate host responses to prevent or treat
disease (Bray, 2008).

This article begins by describing the flaviviral replication cycle, then, briefly summarizes the
role of each viral protein in entry, replication, assembly and maturation and its potential as a
drug target. Five other papers examine the same proteins in much greater detail. One describes
individual steps in the processing and maturation of the envelope (E) glycoprotein and shows
how they could potentially be blocked by small-molecule drugs (Perera et al., 2008), while
another describes novel approaches to developing anti-helicase compounds (Lescar et al.,
2008). Two different activities of the NS5 protein are then considered as therapeutic targets:
the methyltransferase (Dong et al., 2008) and the RNA-dependent RNA polymerase (Malet et
al., 2008). The fifth paper reviews the current status of mouse model development for dengue
fever and dengue hemorrhagic fever/shock syndrome (Yauch and Shestra, 2008).

II. Flavivirus virion and genome structure
The mature flavivirus virion is smooth and spherical, with a diameter of 500 Å. The genome
is packaged by the viral capsid protein (C) in a host-derived lipid bilayer in which 180 copies
of the envelope protein (E) are embedded (Mukhopadhyay et al., 2005). The E protein is
initially complexed with the precursor membrane protein (prM) during assembly of the virions
in the endoplasmic reticulum forming immature particles. The immature particles are
transported to trans-Golgi compartment where they undergo maturation by the cellular serine
protease, furin, which mediates cleavage of prM to M resulting in homodimerization of E
protein to form fusion-competent mature particles before release into circulation (Stiasny and
Heinz, 2006). The single-stranded positive-sense RNA genome contains a single long open
reading frame flanked by 5′-and 3′ untranslated regions, which have secondary structures that
are essential for the initiation of translation and for replication (Figure 1) (Lindenbach et al.,
2007). The 5′ end of the genome has a type 1 cap, but the 3′ end lacks a poly-A tail. Translation
of the genome by the host cell machinery produces a polyprotein comprising the viral structural
and non-structural proteins that are required for replication and assembly of new virions.

III. Viral replication cycle
Host cells for flaviviral infection include monocytes, macrophages and dendritic cells
(Marianneau et al., 1999, Tassaneetrithep et al., 2003, Barba-Spaeth et al., 2005, Lozach et al.,
2005, Krishnan et al., 2007). The virus attaches to the cell surface, mediated by the E protein,
and enters the cell by receptor-mediated endocytosis (Figure 2). Low pH in the endosomal
compartment triggers fusion of the viral and host cell membrane mediated by structural
reorganization of E, which leads to the release of the nucleocapsid and viral RNA into the
cytoplasm. Translation of the RNA generates a polyprotein that is co-translationally and post-
translationally processed by the virus-encoded serine protease, NS2B/NS3, and by host-
encoded proteases, including signalase and furin, to produce the 3 structural proteins and 7
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nonstructural proteins in the order C-prM-E -NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5 (Rice
et al., 1985).

NS3 (70 kDa) and NS5 (104 kDa) are the best characterized nonstructural proteins, with
multiple enzyme activities that are required for viral replication. NS3 has three distinct
activities: serine protease together with the cofactor NS2B, required for polyprotein processing;
helicase/NTPase activity, required for unwinding the double-stranded replicative form of
RNA; RNA triphosphatase, required for capping nascent viral RNA (Falgout et al., 1991;
Zhang, L. et al., 1992; Arias et al., 1993, Li, H. et al., 1999; Benarroch et al., 2004). Mutations
that affect each activity impair viral replication (Matusan et al., 2001a,b). NS5 is the largest
and most highly conserved flaviviral protein, with greater than 75% sequence identity across
all DEN serotypes. It contains two distinct enzymatic activities, separated by an interdomain
region: an S-adenosyl methyltransferase (SAM) (Egloff et al., 2002, Ray et al., 2006) and an
RNA-dependent RNA polymerase (RdRp) (Grun and Brinton, 1986, Chu and Westaway,
1987, Tan et al., 1996, Ackermann and Padmanabhan, 2001, Guyatt et al., 2001). NS1 (46 kDa)
is required for flavivirus replication and presumably involved in negative-strand synthesis by
an unknown mechanism. A large deletion in YFV NS1 abolished viral replication but can be
complemented in trans by functional expression from Sindbis virus vector (Lindenbach and
Rice, 1997). Furthermore, a temperature-sensitive mutation (Arg-299) is defective in viral
replication at 39°C and fails to accumulate negative strand RNA but is functional at 32° C,
suggesting that NS1 is required for negative strand RNA synthesis (Muylaert et al., 1997).
NS2A (22 kDa) is a small hydrophobic transmembrane protein that is involved in generation
of virus-induced membranes during virus assembly (Leung, 2008). NS4A (16 kDa) is an
integral membrane protein which may induce membrane rearrangements to form the viral
replication complex (Miller et al., 2007; Roosendaal et al., 2006). NS4B (27 kDa) inhibits the
type I interferon response of host cells (Munoz-Jordan et al., 2005), and may modulate viral
replication via its interaction with NS3 (Umareddy et al., 2006).

Viral RNA replication occurs in the rough endoplasmic reticulum (ER) and in Golgi-derived
membranes called vesicle packets (VP) (Chu and Westaway, 1992; Mackenzie, 2005). The
nonstructural proteins and dsRNA are concentrated in the VP, constituting the site of viral
RNA synthesis (Mackenzie et al., 1998; Westaway et al., 1997, 1999). The newly synthesized
viral RNA is extruded in the intermembrane space of the double-membrane VPs, from which
it exits into the cytoplasm by an unknown mechanism (Uchil and Satchidanandam, 2003).
Assembly of virus particles occurs in the lumen of the rough ER. The first step in this process
is the coating of the newly synthesized viral RNA with the C protein (Khromykh and
Westaway, 1996; see also Perera et al. in this volume). Next, E and PrM hetero-dimerize and
envelope the nucleocapsid, forming an immature virus particle that buds from the RER lumen
into the Golgi (MacKenzie and Westway, 2001). However, the mechanism of interaction of
the C protein within the nucleocapsid is still not clear. Maturation of virus particles occurs in
the trans-Golgi network, where prM is cleaved to M by furin, along with conformational
rearrangements of E (Li, L., et al., 2008; Mukhopadhyay et al., 2005; Yu, I.M., et al., 2008).
This is an essential step for the virus in the transition from fusion-incompetent and non-
infectious virus particles to mature, fusion-competent, and infectious virions. The mature
particles eventually exit from the host cell by exocytosis.

IV. Targeting critical functions of individual flaviviral proteins
Identification of small molecules that specifically inhibit critical steps in the viral life cycle
requires detailed biochemical and structural characterization of the essential viral proteins.
Development of high through-put screening assays that include both biochemical assays and
cellular assays is also an essential step in the lead-finding process. Both types of assays have
their pros and cons. Although in vitro assays can be more target-specific and can utilize
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available structural information for optimization of inhibitors before testing in cells, there is
always a risk that active compounds will be unable to penetrate the cellular membrane. Cellular
assays obviate this issue, but target de-convolution can be a laborious process. Once interesting
lead compounds have been identified, the next stage is to test them in a physiologically relevant
small animal model. The review by Yauch and Shreshta (2008) discusses the current status of
the development of mouse models of dengue and dengue HF. Rodent models are also available
for WN, YF and JE viral infection (Charlier et al., 2004; Holbrook and Gowen, 2008).

A. Structural proteins as drug targets
As described above, the viral C, prM and E proteins undergo a number of conformational
changes during the entry, assembly and exit of viral particles during the course of their
maturation. These changes potentially offer targets for inhibition by antiviral drugs.

1. C protein—The highly basic 11 kDa C protein interacts with viral genomic RNA, forming
the nucleocapsid (NC). The minimal functional region required for dimerization for virus
assembly has been characterized (Jones et al., 2003; Patkar et al., 2007). The capsid protein
comprises an internal hydrophobic sequence that mediates membrane association (Ma et al.,
2004). The capsid folds into a dimer, in which each monomer contains four alpha helices. The
N and C termini contain charged residues, of which the C-terminal region may be involved
with RNA association (Ma et al., 2004; Wang et al., 2002). Dimerization of C is induced by
interaction with DNA or RNA (Kiermayr et al., 2004). The development of an in vitro assembly
system would be very useful for identifying compounds that block capsid dimerization or
capsid-RNA interaction which could lead to identification of inhibitors that block either of
these steps.

2. M and E proteins—The 26-kDa glycosylated precursor of M protein, prM, is processed
from a polyprotein in the ER by the host signalase by cleavages at capsid-prM site at its N-
terminus and prM-E site at its carboxy terminus. The association of prM with E produces non-
infectious, immature virus particles. The arrangement of prM in the prM-E heterodimers in the
immature particles protects the fusion loop of E protein from premature fusion. The “immature”
particles transit through a low pH environment of the Golgi compartment, and a reversible
conformational/morphological change occurs in E protein prior to processing of prM. Cleavage
of prM to M by cellular serine protease, furin, in the trans-Golgi network results in an
irreversible conformational change in E. The peptide cleaved off from prM (pr) is retained on
the virion, and is released only after the virion has been secreted out and exposed to neutral
pH, thus protecting the E protein from premature fusion (Li, L., et al., 2008; Yu, I.M., et al.,
2008). The 53 kDa E protein in its mature dimeric form is the major surface component of the
virion. In this form, the E protein is competent for cell surface attachment, fusion and virus
entry into host cells as described by Perera et al. (2008).

Virus entry followed by endosomal acidification induces structural changes, in which E
rearranges from 90 homodimers in neutral pH to 60 homotrimers in acidic pH (Allison et al.,
1995; Stiasny et al., 2004; Stiasny and Heinz, 2006). The fusion loop on the DII domain that
was buried in the DI/DIII pocket is now exposed in the fusogenic state of E trimer prior to its
insertion into the host cell membrane,

In the drug discovery point of view, development of a robust high-throughput assay based on
protein-protein interactions would be very useful to screen conformational transitions of prM
and E. Perera et al. (2008) review recent advances in understanding the dynamics of the
flavivirus E protein and suggest three regions within the protein that could be targeted by
antivirals: the β-OG ligand binding pocket, E-protein rafts in the mature virus and E
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homotrimers. The availability of structural information from immature and mature particles is
thus paving the way for rational drug design.

B. Non-structural proteins as drug targets
1. Protease—Within the N-terminal 180 amino acid residues of NS3 protein, was identified
to include a trypsin-like serine protease domain (the catalytic triad residues being His51-
Asp75-Ser135) by sequence comparison (Bazan and Fletterick, 1989, Gorbalenya et al., 1989).
Using in vitro transcription and translation of precursor protein containing the NS2B-NS3
protease domain as well as polyprotein precursors expressed from recombinant vaccinia virus
vectors established that for cleavages of protease sensitive sites, in cis and trans, NS2A-NS2B,
NS2B-NS3 (a cis-cleavage), NS3-NS4A, NS4B-NS5, are performed by a heterodimeric
complex of NS2B and NS3 (Chambers et al., 1990; 1991; 1993; Preugschat et al., 1990;
Wengler et., 1991; Falgout et al., 1991; 1993; Zhang, L., et al., 1992; Clum et al., 1997). The
viral protease has a preference for two basic amino acid residues (Arg-Arg, Arg-Lys, Lys Arg
or occasionally Gln-Arg) at the P2 and P1 positions preceding the cleavage sites, followed by
Gly, Ala or Ser at the P1′ position (Chambers et al., 1990). Since this polyprotein processing
is a prerequisite for assembly of viral replicase complex, the viral protease represents an
attractive therapeutic target.

NS2B is an integral membrane protein (Clum et al., 1997). NS2B and NS3 were colocalized
within distinct paracrystalline or convoluted membranes structures suggesting that these may
be the sites of polyprotein processing (Westaway et al., 1997). The hydrophobic regions of
NS2B are likely required for membrane association of the polyprotein precursor rendering the
protease sensitive sites in the optimal context for cis- and trans-cleavages. An in vitro protease
assay using a DENV2 NS2B-NS3 protease precursor demonstrated that cotranslational
insertion of NS2B into exogenously added canine pancreatic microsomal membranes is
required for efficient cis cleavage of 2B-3 site in vitro. NS2B contains 3 hydrophobic domains
flanking a conserved hydrophilic region of ~45 amino acid residues. Deletion of the three
hydrophobic regions abrogated the membrane requirement for the NS2B-NS3 cleavage in vitro
suggesting that for the cis cleavage of the NS2B-NS3 site in vitro, the hydrophobic regions are
dispensable (Clum et al., 1997). A precursor devoid of the hydrophobic regions but containing
the conserved hydrophilic domain linked to the NS3 protease domain through a carboxy
terminal region of NS2B containing the NS2B-NS3 cleavage site was expressed in E. coli. The
precursor, expressed as insoluble inclusion bodies, was purified by denaturation and refolding.
The purified protein was active in cleaving the [35S]methionine-labeled NS4B-NS5N-ter
precursor as well as a fluorogenic peptide substrate, t-butyl-oxycarbonyl(Boc)-Gly-Arg-
Arg-7-amino-4-methyl coumarin, AMC (Yusof et al., 2000).

The kinetic parameters and substrate specificity of DENV2 protease were reported
(Khumthong et al., 2002, 2003; Chanprapaph et al., 2005). Recently, it was shown that
shortening the linker to five amino acid residues from the C-terminal region of the NS2B
hydrphilic domain yielded a soluble, noncovalently associated heterodimeric WNV protease
which was active in cleaving a fluorogenic peptide substrate, Boc-Gly-Lys-Arg-AMC (Mueller
et al., 2007). Leung et al. showed that the linker between the cofactor, NS2B hydrophilic region,
and the NS3 protease domain (NS3-pro) could be substituted with G4-S-G4 linker and the
precursor could be expressed in E. coli as a very active protease in a soluble, non-cleavable
form, thus obviating the denaturation and refolding steps in the purification of the protease
(Leung et al., 2001). Using this active non-cleavable form of DENV2 and WNV proteases, a
number of groups reported the substrate specificity, kinetic parameters, and profiles of peptide-
based viral protease inhibitors. A suitable enzymatic substrate was identified by functional
profiling using tetra peptide and octapeptide libraries comprising ~13,000 substrates (Li, J., et
al., 2005). Detailed specificity studies have led to the design of robust screening assays in high-
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throughput formats, employing both colorimetric and fluorescent readouts (Nall et al., 2004;
Li, J., et al., 2005; Chappell et al., 2005; 2006; 2007; Gouvea et al., 2007; Knox et al., 2006;
Lohr et al., 2007; Radichev et al., 2008; Shiryaev et al., 2006; Shiryaev et al., 2007a, b, c; Yin
et al., 2006a,b)

While all these studies utilized a truncated NS3 containing NS3-pro domain alone, Bera et al.
(2007) recently reported characterization of the biochemical properties of WNV protease in
which the NS2B hydrophilic domain and the full length NS3 were connected by the non-
cleavable Gly-rich linker, described above. These authors identified two autolytic and
intramolecular cleavage sites; the one at the NS2B/NS3 site was rapid and occurred during
protein purification, whereas the cleavage at the second site, Arg459↓Gly460, located within
the C-terminal RNA helicase region, was slower. These studies, taken together, revealed that
the protease activity of NS2B-NS3 does not require cleavage of NS2B/NS3 site or free N-
terminus of NS3 protease domain (Leung et al., 2001; Bera et al., 2007).

The crystal structure of the non-cleavable form of the WNV protease with a Gly-rich linker
between the ~47 amino acid residue NS2B hydrophilic domain and the WNV NS3 protease
domain was solved (Erbel et al., 2006); subsequently, a second crystal structure of WNV
protease was reported in which the bovine pancreatic trypsin inhibitor replaced the tetrapeptide
substrate-based inhibitor used in solving the first structure (Aleshin et al., 2007). In the presence
of the cofactor, the WNV protease domain is complexed with a peptide inhibitor, revealing a
direct interaction of NS2B with the active site of NS3pro. The C-terminus of the WNV NS2B
wraps around NS3pro, and is involved in the formation of the S2 and S3 pockets (Erbel et al.,
2006). The interaction of the protease with the inhibitor results in an induced fit conformation
of the active site. In contrast, the DEN2 NS2B does not interact with the substrate binding site
in the absence of the inhibitor as suggested from the crystal structure of the noncleavable form
of DENV2 NS2B cofactor peptide linked to the NS3pro through the Gly-rich linker (Erbel et
al., 2006). One of the challenges foreseen in developing an active-site serine-protease inhibitors
is to identify compounds that block the viral enzyme, but not host serine proteases.

In a recent study, the previously described in vitro protease assays (Yusof et al., 2000, Mueller
et al., 2007) were adapted to a high-throughput format using WNV (EG101 strain) protease
expressed and purified from E. coli. From a screen of ~32,000 compounds against WNV
protease, 212 compounds were identified to inhibit the protease activity using the substrate
Boc-Gly-Lys-Arg-AMC in the 50% to 86% range. Other selection criteria were applied such
as (i) being active at ≤ 50 μM, (ii) molecular weight < 500 daltons, (iii) calculated value of the
logarithm of octanol-water partition coefficient (C lop P) < 5, (iv) the sum of nitrogen and
oxygen atoms (H-bond acceptors) < 10, (v) < 5 H-bond donor atoms, (vi) < 10 rotatable bonds
and finally those containing peptide-like (e.g. N-H-C=O) bonds that would mimic protease
substrate. After applying these criteria, 98 compounds were selected which were clustered into
three core structures and five groups based on their relatedness of chemical structures. Among
the limited number of compounds selected for further characterization, the core structure 1
containing the 8-OH quinoline (R1) derivatives with different R2 and R3 substitutions were
found to be the most active. The Ki values of compounds A and B for the WNV protease were
3.2 ± 0.3 μM and 3.4 ± 0.6 μM, respectively, whereas they were 10-fold less effective in the
assays performed with the DENV2 protease and its preferred substrate, Boc-Gly-Arg-Arg-
AMC (28.6 ± 5.1 μM and 30.2 ± 8.6 μM, respectively). Compound A was cytotoxic to Vero
cells over a wider range of drug concentrations tested, whereas compound B had a moderate
cytotoxicity (CC50 =140 ± 1.98 ± μM

Compound B was assayed for its inhibition of WNV replication in Vero cells infected with
virus-like particles containing WNV replicon that encodes Renilla luciferase reporter (Pierson
et al., 2006). In this system, the WNV replicon RNA encoding the reporter is delivered into
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the cytoplasm by infection of cells with virus-like particles, which then initiates a cascade of
events such as translation, polyprotein processing, assembly of viral replicase complex and
viral RNA replication. This system can be used to assay the effects of inhibitors of any of these
steps. Since an inhibitor of the viral protease is expected to interfere with polyprotein
processing, an early step affecting all subsequent steps, its potency could be assessed precisely
by monitoring the reporter gene expression as a function of inhibitor concentration. Using this
system, compound B was found to inhibit WNV replication with an EC50 value of 1.4 ± 0.3
μM and the selectivity index of ~ 100. The kinetic analysis and molecular docking studies
indicated that compound B binds near the substrate binding site and thus inhibits the activity
of the enzyme. Further work such as crystal structure of the protease in a complex with the
inhibitor is necessary to better understand the mode of inhibition by this class of compounds,
optimize and identify more potent inhibitors (Mueller et al., 2008 Mueller et al., in press).
Recently, using a HTS approach, a different class of inhibitor compounds was identified from
the National Institutes of Health’s compound library (Johnston et al., 2007). The kinetic
analysis of these “hits” showed that these are uncompetitive inhibitors of WNV NS2B-NS3pro.
These authors concluded that the identified compounds seem to interfere with the functional
interaction between the cofactor NS2B and NS3pro domains (Johnston et al., 2007).

2. NS3 helicase—As described by Lescar et al. (2008), the flaviviral RNA helicase domain
is located following the NS3pro domain within the C-terminal three-fouth of NS3. It contains
7 conserved motifs associated with the Super-Family 2 (SF2) class of NTPases and RNA
helicases. NS3 helicase activity is thought to be required for melting secondary structures prior
to initiation of RNA synthesis or for resolving RNA duplexes, either to separate dsRNA
intermediates formed during viral RNA synthesis or as a translocase that can remove proteins
bound to viral RNA. Strand separation is an energy-dependent reaction driven by ATP
hydrolysis. Therefore, all RNA helicases have ATPase activity; this activity of flaviviral RNA
helicases can hydrolyze non-specifically any nucleoside triphosphate (hence known as
“NTPase”) and purines are preferred over pyrimidine nucleoside triphosphates. This activity
is stimulated by the addition of single-stranded polyribonucleotides (Li et al., 1999; Suzich et
al., 1993; Tamura et al., 1993; Warrener et al., 1993).

A conserved, positively charged motif (RKRK in DENV2) modulates the RNA-stimulated
NTPase, RNA helicase and 5′ RNA triphosphatase activities of NS3. The mutagenesis of the
four basic residues abolished the RNA-stimulated NTPase activity although the basal NTPase
activity of NS3 was still retained. Binding of NS3 to single-stranded RNA was also abolished
as well as other RNA binding dependent activities such as 5′ RNA triphosphatase and RNA
helicase are affected by the mutagenesis of basic amino acid residues (Li, H., et. al. 1999; Yon
et al., 2005). Mutations of critical residues that abolish helicase activity prevent viral replication
(Matusan et al., 2001b). Drugs that target unwinding activity could act in 3 ways: inhibiting
ATPase activity by interfering with ATP binding or hydrolysis; by preventing nucleic acid
binding; or blocking unwinding by sterically hindering the translocation of helicase.

The flaviviral helicase has been a more challenging target for drug development than other
nonstructural proteins, mainly because its mechanisms of action are not well understood. There
is also a problem with selectivity for compounds that inhibit via the ATP binding site and these
compounds are likely to be cytotoxic to the host. At the technical level, traditional assays for
screening helicases are very time consuming. New assays using DNA substrates have recently
been developed in a high-throughput format (Frick, 2003) but few options are available for
assays using RNA as a substrate. The crystal structure of the helicase domain has been reported
for DEN, YF and JE viruses (Wu, 2005 et al;Xu, 2006 et al; Yamashita, 2008). The RNA
binding tunnel is located at the center, surrounded by residues emanating from the three
domains. More recently, the structures of the full-length NS3 protein with the protease and
helicase domains have been reported for Kunjin based on SAX analysis (Mastrangelo et al.,
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2007) and DEN4 virus (Luo et al., 2008), the latter being the first reported 3D structure for a
flavivirus full length NS3 protein.

Several compounds have been identified as RNA helicase of inhibitors of flavi- and other RNA
viruses (Borowski et al., 2007; Carta et al., 2006; Frick, 2007; Johansson et al., 2003; Maga et
al., 2005; Wu et al., 2006; Xi, 2007). Borowski et al., (2002) reported a WNV helicase inhibitor
which also was active in cellular assays (IC50 = 25–30 μM). Halogenated benztrioles have also
been shown to inhibit WNV helicase (Borowski et al., 2003). More recently, ring-expanded
nucleosides (RENs) have also been reported to inhibit JEV and WNV helicases (Zhang, N., et
al., 2003a,b). While most reported inhibitors target the NTPase activity of NS3, mutation
studies by Sampath et al. (2006) showed residual helicase activity for ATPase mutants, leading
to the question whether targeting allosteric sites, such as the pockets lining the RNA binding
tunnel, would be a better alternative.

3. NS5 methyltransferase (MTase)—As described by Dong et al. (2008), the flaviviral
NS5 MTase is a very recently studied enzyme that appears to be an attractive drug target. Four
enzyme activities are required for 5′-capping of nascent RNA. The NS5 MTase functional
domain located in the N-terminal region of the protein (~33-kDa) methylates the N-7 position
of the 5′ guanine cap as well as at the ribose 2′-OH position of the first transcribed nucleotide,
an adenine (m7GpppAm) (Ray et al., 2006; Egloff et al., 2002). Mutation of critical residues
in both methylation activities impair viral replication, indicating that the enzyme plays an
essential role in the viral replicative cycle (Ray et al., 2006; Zhou et al., 2007).

Interestingly, the N-7 methylation of guanine cap by WNV NS5 is specific for viral RNA
sequence, recognizing distinct elements within the 5′-stem loop of the viral RNA (Dong et al.,
2007; Ray et al., 2006). The active site for 2′-OH methylation has been mapped to a tetrad
K61-D146-K182-E218 (Ray et al., 2006) but has not been determined for N-7 methylation,
although D146 was shown to be essential for this activity. Zhang et al. recently analyzed four
variants of D146 mutation, D146L, D146P, D146R, and D146S, for viability in mutant RNA-
transfected cells. Genome sequencing of recovered virion RNAs revealed that two classes of
adaptive mutations, the first within the 5′ SL (G35U or U38 insertion) and the second within
MTase (K61Q) and the polymerase (W751R) domains of NS5 (Zhang, B. et. al., 2008). These
results supported the conclusion of these authors that there is a genetic interaction among the
MTase, the polymerase and the 5′ SL during replication and that these adaptive mutations
conferred survival fitness to D146S mutation which alone confers a lethal phenotype. The
crystal structures of WNV and DEN2 MTases have been reported (Egloff et al., 2002, 2007;
Zhou et al., 2007). Based on that structural information, Luzhkov et al (2007) reported a high-
throughput structure-based virtual screening for 2′-O- methylation inhibitors which resulted in
identification of a novel inhibitor. This is the first step in the development of MTase inhibitors,
but much work remains to be done before these compounds can be developed as drugs.

4. NS5 RNA-dependent RNA polymerase (RdRp)—Because human cells lack RNA-
dependent DNA or RNA polymerases such as the HIV-1 reverse transcriptase or RdRp of
flaviviruses, this class of enzymes appears to be one of the most promising targets for antivirals
against viruses that utilize polymerases for replication. Therefore, it is not surprising that of
the 30 compounds that are currently marketed in the U.S. for treatment of viral infections, 15
of them are polymerase inhibitors, especially nucleoside analogs. the viral polymerase is one
of the two favorite targets for HCV drug therapy (Jensen and Ascione, 2008; Liu-Young and
Kozal, 2008).

Viral polymerase activity can be targeted using either nucleoside analogs or non-nucleoside
compounds, the latter targeting allosteric sites in the protein. Nucleoside analogs must be
phosphorylated to 5′-triphosphate where the pro-drug is converted to the active form in order
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to inhibit the enzyme at the active site. One argument that works in favor of active site inhibitors
is that during therapy, chances of development of resistant mutants are lower as compared to
an allosteric inhibitor.

Inhibitors of flaviviral RNA replication have been characterized using subgenomic RNA
replicon systems (Barklis et al., 2007; Ng et al., 2007; Ray and Shi, 2006) and infectivity assays
(Kajaste-Rudnitski et al., 2006; Leyssen et al., 2006; Michaelis et al., 2007; Migliaccio et al.,
2003; Paeshuyse et al., 2006; Sidwell et al., 2007; Takhampunya et al., 2006). A potentially
useful approach to determine the effect of antiviral compounds is the in vitro RdRP assay which
employ lysates from flavivirus-infected and inhibitor-treated cells containing endogenous
replicative viral RNAs associated with viral replicase components (Chu and Westaway.,
1987; Bartholomeusz and Wright, 1993). This system has not been fully exploited although
the feasibility has been demonstrated (Takhampunya et al., 2006). A second in vitro RdRP
assay system relies on exogenously added subgenomic RNA templates containing the 5′- and
3′-terminal regions including the cyclization sequences (5′- and 3′-CS1 RNA elements) and
infected cell lysates (You and Padmanabhan, 1999; You et. al., 2001) or purified NS5 protein
(Tan et al.,1996; Ackermann and Padmanabhan, 2001; Guyatt et al., 2001; Nomaguchi et. al.,
2003; 2004; Yu, L. et. al. 2008). The flavivirus NS5 RdRp is capable of de novo RNA synthesis
(Ackermann and Padmanabhan, 2001; Selisko et al., 2006). Yap et al., (2007) recently reported
a robust miniaturized assay for high-throughput compound screening. These in vitro RdRP
assay systems are likely to be useful in studying the mode of action of a nucleoside analog in
the triphosphorylated form in de novo initiation, elongation, processivity, or chain termination.

The review by Malet et al. (2008) discusses the drug discovery efforts focused on RdRp with
an emphasis on how the structural information can be used for effective drug design. The crystal
structures of NS5 of both WNV and DENV3 have recently been reported (Malet et al., 2007;
Yap et al., 2007), including a model for the initiation complex and 3′ dGTP binding site. The
RdRp of both viruses shows a typical right-hand structure with finger, palm and thumb
domains. The region of NS5 that contains a nuclear localization sequence for transporting
DENV2 NS5 into the nucleus was also shown to be involved in interaction with NS3
(Johannson et al., 2001). Targeting this interaction between NS3 and NS5 in the context of
viral RNA is an option that could be explored. An in vitro assay that incorporates both of these
proteins with viral polymerase activity as the readout would be very useful in identifying key
replisome inhibitors.

VI. Host proteins as targets of antiviral therapeutics
In any antiviral drug discovery program, it is prudent to consider host cell components as
potential targets because virus-host interactions are not only important for viral life cycle but
also for pathogenesis. Flaviviruses like other viral pathogens gain entry into the host through
specific interaction between a viral protein and host cell receptor(s) and strategy to usurp this
interaction could lead to discovery of candidate antiviral drugs. This topic is discussed elegantly
by Perera et al. (2008) (in this volume).

There are a number of other cellular proteins reported to bind to the viral RNA and in some
cases, the disruption of their binding seem to affect viral replication (for a review, see (Brinton,
2001)). For example, EF-1α, eukaryotic translation elongation factor, binds to the 3′ SL of
WNV RNA and DENV4 RNA (Blackwell and Brinton, 1997; De Nova-Ocampo et al., 2002).
Mutations that interfere with this binding affect minus strand RNA synthesis without having
any effect on translation of viral RNA ((Davis et al., 2007) and the references therein). In
addition to eEF-1a, the autoantigen, La protein, and polypyrimidine tract binding protein, PTB,
also have been reported to bind to the 3′SL of DENV4 RNA (De Nova-Ocampo et al., 2002;
Garcia-Montalvo et al., 2004; Yocupicio-Monroy et al., 2007). Moreover, two members of
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RNA recognition motif family of RNA binding proteins, T cell intracellular antigen-1 (TIA-1)
and TIA-related (TIAR) protein, were also shown to bind to WNV 3′ SL of minus strand RNA
with high affinity (Emara and Brinton, 2007; Li et al., 2002). However, the function of these
cellular proteins binding to viral RNA in virus life cycle has not yet been elucidated. Thus, the
identification and functional characterization of cellular protein in flavivirus life cycle are at
their infancy.

VII. Goals for the flavivirus drug discovery effort
This review and the accompanying papers have demonstrated that there are many potential
molecular targets for antiviral therapeutics against flaviviruses. However, based on past
experience with the development of drugs that are now in clinical use, the RdRP may prove to
be the target with the best chance of success. The enzyme forms part of a multimeric complex
that plays a crucial role in viral genome replication, but because it is encoded by the viral
genome, and has no cellar counterpart, there are no toxicity issues (Malet et al., 2008).
Nucleoside analogues which mimic natural NTP substrates could be potent inhibitors,
especially if they are mistakenly incorporated into newly synthesized progeny RNAs and if
they could potentially be involved in alternate base-pair interactions during replication,
yielding lethal mutations into the genome RNA. This strategy has been amply described by
others in the literature and is an attractive approach for drug development against RNA viruses
that employ RdRP for their replication (Cameron and Castro, 2001; Crotty and Andino,
2002; Crotty et al., 2002; Crotty et al., 2001; Graci et al., 2007; Pariente et al., 2003)

The second attractive target for drug development is the viral protease. The anti-HIV protease
inhibitors are examples of this class of drugs that are already in clinical use as a component of
highly active antiretroviral therapy (HAART). The flavivirus protease might also prove to be
a useful target for drug therapy, although it remains to be seen whether these viral serine
proteases are sufficiently different from cellular serine proteases such as furin (which also
recognizes two basic amino acid residues at P1 and P2 positions) that the anti-flaviviral protease
inhibitors would not pose toxicity issues.

Virus entry inhibitors also offer an attractive choice for antiviral therapeutics. In fact, this class
of inhibitors overcomes some of the problems associated with classical inhibitors of proteases
and DNA or RNA polymerases such as cellular toxicity and emergence of drug resistance.
Virus entry inhibitors have been developed and approved as antivirals for treatment of HIV-1
infections (Bridges, 2003; Cammack, 2001; Citterio and Rusconi, 2007; Daelemans et al.,
2007; DeMarco et al., 2006; Kazmierski et al., 2006; Munch et al., 2007; Rusconi et al.,
2007).

RNA viruses including flaviviruses that replicate in the cytoplasm have evolved their own 5′-
capping machinery and are not dependent on the host enzymes which function in the nucleus.
Because 5′-capping is required for viral replication (Dong et al., 2008), the enzymes which
perform this function are potential targets for drug development. An example of this class are
the inhibitors of 5′-capping of respiratory syncytial viral mRNAs by viral RNA dependent
RNA polymerase (Liuzzi et al., 2005). Bray et al. (Bray et al., 2000) showed that mice infected
with Ebola virus and treated with S-adenosyl-L-homocysteine hydrolase inhibitor were
protected from lethality by inhibiting the methylation of 5′-cap. The NS3 RNA helicase of
flaviviruses is also a novel target, as this enzyme in a multimeric complex with NS5 is required
for viral replication, presumably because it is needed to unwind the double-stranded RNA
intermediate during genome replication (described in detail by Lescar et al., 2008).

This collection of papers in Antiviral Research has demonstrated the existence of a range of
molecular targets for new antiviral drugs against flaviviruses. The availability of structural
information for a number of essential viral proteins and tools for screening the efficacy of
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inhibitors have provided new opportunities for rational drug design. The development of drugs
against multiple and novel targets is a promising approach that will at least partially circumvent
the emergence of drug resistance. As new inhibitors are identified, it will be important to assess
their physicochemical properties, since these are a determining factor for the pharmacokinetics
of any new drug candidate. In the initial stages of lead finding, the choice of targets, the
availability of structural information and the availability of assays to screen for activity will
strongly influence the success of a lead candidate. As the members of the flavivirus family
share similar replication strategies, there is the prospect of identifying broad-spectrum
inhibitors with prophylactic or therapeutic activity against a number of different pathogens.
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Figure 1.
Schematic representation of flavivirus genome organization and polyprotein processing. The
11 kb positive-sense, single-stranded RNA genome contains a single open reading frame which
encodes 3 structural proteins (capsid (C), precursor membrane (prM) and envelope (E)) and 7
non-structural proteins (NS1-NS2A, NS2B, NS3, NS4A, NS4B, NS5). The open reading frame
is flanked by untranslated regions. Sites of polyprotein cleavage mediated by the viral NS2B-
NS3 and by host signalase and furin are shown, and the enzymatic activities of NS3 and NS5
are also indicated. See text for further information. (Courtesy of Pei-Yong Shi).
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Figure 2.
The flavivirus replication cycle. Virions bind to cell-surface attachment molecules and
receptors and are internalized through endocytosis. In the low pH of the endosome, viral
glycoproteins mediate fusion of the viral and cellular membranes, allowing disassembly of the
virion and release of its RNA into the cytoplasm. The viral RNA is translated into a polyprotein
that is processed by viral and cellular proteases. Viral non-structural proteins then replicate the
genomic RNA. Virion assembly occurs at the ER membrane. Capsid protein and viral RNA
are enveloped by the membrane and its embedded glycoproteins to form immature virus
particles, which are then transported through the secretory pathway. In the low pH of the trans-
Golgi network (TGN), prM is cleaved by furin. Mature virions are then released into the
cytoplasm. See text for further information. (Courtesy of Rushika Perera and Richard Kuhn.)
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