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The recent completion of the Human Genome Project has made
possible a high-throughput “systems approach” for accelerating
the elucidation of molecular underpinnings of human diseases, and
subsequent derivation of molecular-based strategies to more effec-
tively prevent, diagnose, and treat these diseases. Although altered
phenotypes are among the most reliable manifestations of altered
gene functions, research using systematic analysis of phenotype
relationships to study human biology is still in its infancy. This article
focuses on the emerging field of high-throughput phenotyping
(HTP) phenomics research, which aims to capitalize on novel high-
throughput computation and informatics technology developments
to derive genomewide molecular networks of genotype–phenotype
associations, or “phenomicassociations.” The HTP phenomics research
field faces the challenge of technological research and development
to generate novel tools in computation and informatics that will
allow researchers to amass, access, integrate, organize, and manage
phenotypic databases across species and enable genomewide analy-
sis to associate phenotypic information with genomic data at differ-
ent scales of biology. Key state-of-the-art technological advance-
ments critical for HTP phenomics research are covered in this review.
In particular, we highlight the power of computational approaches
to conduct large-scale phenomics studies.
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Since the first observation by Gregor Mendel that phenotypic
traits of pea plants are faithful manifestations of their genetic
inheritance, altered phenotypes, which are readily observed, de-
scribed, and quantified, have been central to the discovery of
gene functions and molecular relationships among genes in the
field of genetics. Thomas Hunt Morgan’s demonstration that
genes linked in a chromosome (gene loci) may determine observ-
able hereditary traits further illustrated the close relationship
between genetic contents and phenotypic expression. The recent
completion of the Human Genome Project has made possible
a high-throughput “systems approach” for accelerating the eluci-
dation of molecular underpinnings of human diseases, and subse-
quent derivation of molecular-based strategies to more effec-
tively prevent, diagnose, and treat these diseases. Although the
platform of molecular networks primarily derived from gene
profiling under homeostatic or disease conditions has been inten-
sively explored as a gateway to “systems medicine,” this molecu-
lar approach to analyzing genomic data is often complicated by
genetic heterogeneity and the lack of cellular, tissue, organ,
anatomic, or environmental context to accurately interpret the
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GLOSSARY

• Directed acyclic graph: a directed network structure with
no loops

• “Granularity” of phenotypic descriptors: level of detail
provided to define a phenotype (class level of nomencla-
ture level)

• Ontology: structured hierarchy of classifications for
entities

• Pedigree: a familial history of ancestors

• Phenomics: the genome-scale study of the relation of
phenotypes to their molecular underpinnings in genetics,
protein interactions, and so forth

• Text mining: techniques used for identifying and ex-
tracting key concepts and terms and their relationships,
often on a large scale

gene functions, which are highly context dependent. Further-
more, because mutations in different genes may yield identical
or related phenotypes, a molecular characterization solely based
on genes may neglect important relationships among molecularly
distinct diseases at the phenotypic level. Although altered pheno-
types are among the most reliable manifestations of altered
gene functions, research using systematic analysis of phenotype
relationships to study human biology is still in its infancy. The
lack of high-throughput technologies to access well-networked
and integrated phenotypes from heterogeneous sources and
across multiple scales of biology under homeostasis or disease
conditions has prevented the effective use of phenotypic infor-
mation. As a result, development of phenotypic databases dra-
matically lags behind the rapid advance in genomic databases.
A greater integration of medicine and biology calls for innovative
computational and informatics tools and high-throughput dis-
covery technologies for phenotypic research that aims to unlock
gene–disease relationships, a key step for better understanding
the genetic basis of human diseases and more effective gene-
based disease management.

This article focuses on the emerging field of phenomics, which
aims to capitalize on novel high-throughput computation and
informatics technologies to derive genomewide molecular net-
works of genotype–phenotype associations, or “phenomic associ-
ations.” Currently, such large-scale high-throughput phenotyp-
ing (HTP) phenomic studies are limited due to our lack of
knowledge about the relationships between molecular-level ge-
notypes and their organism-level phenotypic manifestations.

To address this challenge in HTP phenomics research, several
technological advancements will be critical in enabling the collec-
tion, organization, and computable encoding of large-scale, high-
throughput phenotypes, and will be discussed in this review. In
this article, we first provide a detailed analysis of the challenges
facing HTP phenomics research, followed by an introduction of
the current state of high-throughput phenotypic data collection
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(1), representation and encoding of phenotypes for computation,
development of phenomic databases, and genomewide HTP
phenomic analyses. In this last section, Whole Genome HTP
Phenomic Analyses, we will also explore the feasibility of using
computational phenomics approaches to enhance our under-
standing of genotype–phenotype relations and networks across
different biological scales, from molecular biology to systems
medicine.

CURRENT CHALLENGES FOR HTP PHENOMICS

One of the main factors hindering the progress of phenotypic
discovery research is the limited accurate and timely access to
comprehensive gene–phenotype networks associated with
knowledge about biology and diseases. There are several obsta-
cles restricting such access, as discussed in the following sections.

Lack of Understanding of Gene–Phenotype Relationships

In the emerging field of phenomics, the pace of developing com-
putable phenotypic databases and deriving networks of relation-
ships among phenotypes and genes for use in constructing geno-
type–phenotype databases trails behind the rapid evolution of
genomic databases. Currently, although many genomic data-
bases of model organisms contain some phenotypic information,
phenotypes are often coded at different levels of granularity, in
different formats, and with different aims. In this case, we refer
to “granularity” as the level of detail by which phenotypes are
defined (e.g., “chronic obstructive lung disease” is less detailed
than “centriacinar emphysema”). For example, PhenomicDB
(2) allows only comparative genomic studies containing limited
queries of textual (uncoded) phenotypic information associated
with genes of interest. In contrast, state-of-the-art phenome-
oriented methods require organization and encoding of pheno-
types to genes before conducting combined genotypic/pheno-
typic analyses. However, most of such phenotypic databases are
manually curated, and are thus limited in their breadth for high-
throughput computing. Although high-throughput genotype–
phenotype analyses were permitted via mining the wealth of
scientific literature, such efforts yielded limited success due to
the lack of expressiveness and granularity of text mining technol-
ogy. To overcome these obstacles in developing phenotypic data-
bases, our research group developed PhenoGO, a large-scale,
ontology-anchored gene–phenotype network that we engineered
and optimized for integration, classification, and analysis of well-
encoded phenotypes. As shown in Figure 1, PhenoGO currently
has the largest collection of relationship networks among pheno-
types, genes, and the Gene Ontology (GO).

Phenotypes Are Poorly Integrated across the Model Organism
Databases, Literature, and Human Disease Databases

Representation of phenotypic information is more complicated
than biological data, and consequently there are few data stan-
dards and models for managing phenotypes across species and
within human repositories. In addition, the granularity of pheno-
typic data varies from database to database, and current methods
for accessing phenotypic information across databases are insuf-
ficient. Thus, there is an urgent need for the development of
technologies to encode and organize phenotypic information for
high-throughput computing. For example, although the Online
Mendelian Inheritance in Man (OMIM) database has the largest
collection of human diseases (3), the unstructured narrative con-
tent of its phenotypes makes it unsuitable for computational
analysis. In contrast, the phenotypic concepts organized in our
PhenoGO database are structured under standard ontology
codes, allowing computation through networks of phenotypes.

Scarcity of Phenotypic Discovery Methods, Theories,
and Predictions

There is a scarcity of phenotypic discovery methods, theories,
and predictions to exploit the rich and untapped phenotypic
data repositories in current genetic model organism databases
and, soon, the databases of the National Institutes of Health
(NIH) “Whole Genome Association” studies.

HIGH-THROUGHPUT COLLECTION OF PHENOTYPES

Over the past few years, several advances using experimental
or imaging methods have made it possible to gather phenotypic
information from different organisms in a high-throughput fash-
ion. However, gene–phenotype analyses are currently limited to
quantitative trait loci (QTL) studies requiring carefully curated
pedigrees of individuals. For example, to map large-scale QTL
to phenotypes, Solberg and colleagues (4) developed a protocol
to collect multiple phenotypic measurements for high-
throughput parallel phenotyping in populations of mice, and
significantly reduced the high cost of genotyping in relation to the
amount of information that can be derived from each phenotypic
measurement. This protocol led to the detection of statistically
significant variations among several inbred strains of mice from
a population of over 2,500. However, because this method relies
heavily on pedigree, it cannot be readily applied to clinical re-
cords and genetic databases because the pedigree associated
with phenotypes is often absent. In other arenas, advances in
imaging technologies, such as preclinical magnetic resonance
imaging, have facilitated high-throughput phenotype imaging
and reduced both the financial cost and time to characterize each
individual animal (5). Similarly, advances in micro–computed
tomographic scanning technology have brought down the ex-
pense of high-precision imaging. This technology has been ap-
plied to “virtual histology,” saving both the time and cost of
phenotyping murine embryos while retaining image fidelity (6).
In addition, genome-scale RNAi screens have been widely used
in invertebrate systems for cellular-level phenotyping, and are
now increasingly applied to more complex organisms (7).

REPRESENTATION OF PHENOTYPES FOR
HIGH-THROUGHPUT ANALYSES

Although technological advancements have accelerated the pace
of collecting phenotypic data, the task of coding and interpreting
the output of high-throughput data collection is still left largely
to humans, a labor-intensive and rate-limiting process in estab-
lishing phenotypic databases. Image-processing technologies,
such as those used to automatically analyze imaging data from
zebrafish (8), will play an increasingly important role in automat-
ing the evaluation and quantification of the massive amounts
of phenotypic data. However, automated and accurate encod-
ing and integration of heterogeneous phenotypic data remains
challenging.

Applications of ontologies are now becoming a prevalent
topic in the biomedical informatics field, largely due to the suc-
cessful launch of GO. Scientists have invested considerable effort
in establishing standards for the integration of phenotypes using
ontologies. Since the launch of GO, a number of other ontology-
based databases have been developed and have demonstrated
the power of ontologies as the best standards for accelerating
the data integration and analysis processes of biological and
genomic data, which generally use unconstrained text and are
too complicated to interpret. GO (9), which has been very suc-
cessful in annotating genes with molecular functions, processes,
and cellular locations, provides a good resource for the associa-
tion of genes with cellular phenotypes. The Cell Type Ontology
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Figure 1. Comparison of the
number of distinct pheno-
types and the number of
gene–phenotype relationships
in gene–phenotype databases
and networks, showing that the
PhenoGO is the largest network
and that both literature text-
mining techniques and OMIM
provide the broadest annota-
tions of distinct phenotypes with
genes. Solid circle, ontology-
anchored database; open circles,
database with unstructured phe-
notypes; solid squares, ontology-
anchored high-throughput
phenotyping (HTP) phenomics;
open square, HTP phenomics
with unstructured phenotypes.
MGI � Mouse Genome In-
formatics; OMIM � Online
Mendelian Inheritance in Man;
QMR � Quick Medical Refer-
ence; UMLS-GEO � Unified
Medical Language System–Gene
Expression Omnibus.

(CTO) (10) includes over 680 cell types covering the prokaryotic,
fungal, animal, and plant worlds (11). The Mouse Genome In-
formatics (MGI) databases (12) and Rat Genome Database (13)
contain genes, phenotypes coded in the Mammalian Phenotype
Ontology (MPO) (12), unstructured phenotypic narratives, and
references to PubMED. In the clinical domain, the Systematized
Nomenclature of Medicine (SNOMED) (14), which is part of
the Unified Medical Language System (UMLS), contains over
a half million clinical concepts, such as disease, anatomy, mor-
phology, functions, drugs, procedures, and treatments. To pro-
vide a unified framework for representing attributes of pheno-
types requiring the composition of more than one code in any
given ontology, the GO consortium has also initiated the devel-
opment of the Phenotype Attribute Ontology (15) to reduce the
structural barriers that limit the reuse of phenotypic databases.
GO, SNOMED, CTO, and MPO are arranged as directed acyclic
graphs (16), a data structure that allows standardized computa-
tional methods to process data in high throughput. These founda-
tional ontology initiatives in both the biological and medical
communities have set the stage for increasing the productivity
of phenotypic research. However, many phenotypes stored in
model organism databases remain buried in narratives or coded
in terminologies specific to a community that are not cross-
indexed with widespread standards.

In addition to the challenges associated with experimental
methods for gathering phenotypic information are those associ-
ated with automatically encoding phenotypes collected in het-
erogeneous, unstructured forms. Although there has been a re-
cent growth in text-mining research geared toward capturing
gene–phenotype relationships from the literature (1, 17–21), it
has failed to provide deep semantic and nested levels of associa-
tions from which ternary or higher order relations (e.g., a cell-
type–dependent specific gene function) across concepts can be
derived. Alternatively, some natural language processing (NLP)

techniques can provide a deeper level of semantic relationship
and a nested level of associations across concepts, allowing for
more sophisticated computational studies. The Medical Lan-
guage Extraction and Encoding NLP system (MedLEE), devel-
oped by Friedman and colleagues (22), was the first and most
general NLP system, shown to be as accurate as clinicians in
extracting phenotypic information from clinical reports (24). It
has been evaluated in many different fields of clinical medicine,
as evidenced by results of numerous independent evaluations (23–
28). NLP systems are generally designed to extract phenotypes,
but not to encode them in ontologies. Friedman and colleagues
(29) and Tulipano and colleagues (30) have extended the capabili-
ties of MedLEE to accurately encode phenotypes from clinical
and imaging reports in comprehensive terminologies, such as the
UMLS and SNOMED. Other NLP systems have also been shown
to be robust but restricted in the specific task of extracting pheno-
types from medical records (30–32). Although a few commercial
NLP systems are currently available, to our knowledge they are
incapable of encoding concepts from narratives in clinical reports.
Rather, they classify concepts into simple classifications such
as International Classification of Diseases Clinical Modification
(ICD-9-CM), containing about 15,000 diseases (33). In contrast to
clinical and imaging narratives, co-occurrence–based text-mining
systems abound for mining the scientific literature, as reviewed
by Jensen (34). However, they do not encode in terminologies,
and thus generally are useful only for specifically designed studies
and are not reusable in more general settings. Lussier and col-
leagues (35) and Friedman and colleagues (36) have recently
completed BioMedLEE, the first NLP system for coding pheno-
types in the scientific literature, which also allows for mining
semantic relationships between genes and phenotypes that could
not be captured by co-occurrence–based or statistics-based text-
mining systems. BioMedLEE was successfully applied in high
throughput over thousands of scientific abstracts and amassed the
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largest collection of gene–phenotype associations in PhenoGO
(35), which will be described further in the following section.

Representing and encoding phenotypes in ontologies is an
essential, yet insufficient step for automating the integration of
coded phenotypes across heterogeneous databases. Indeed, many
different terminologies and ontologies offer overlapping represen-
tations, sometimes at different levels of granularity. Cimino and
Barnett first conceived lexical methods for creating translation
tables across heterogeneous medical terminologies (37). Others
thereafter have incrementally improved these techniques (37–49).
For example, the UMLS has an extensive number of related tools
such as MetaMap (MMTx), which can map terms to concepts in
the UMLS Metathesaurus (38). Lussier and Li (50) and Sarkar
and colleagues (51) pioneered the automated translation between
heterogeneous phenotypic terminologies. An alternative ap-
proach to integrating phenotypes across terminologies is to rely
on large-scale metathesauri designed specifically for that purpose,
such as the NIH UMLS (52), or the National Cancer Institute’s
Metathesaurus (53), which includes hundreds of distinct biomedi-
cal terminologies that have been semiautomatically mapped to
one another. Although the automated terminology integration
approaches are limited in accuracy, they are scalable to any pair
of terminologies and can be conducted in real time. In contrast,
the metathesauri are more accurate but are rate-limited due to
the many terminologies that have not yet been integrated, and
perhaps more important, because the mappings may be out of
synchronization with newer versions of the source terminologies.

In summary, it is noteworthy that automated coding and har-
monization technologies are not widely available and remain the
panacea of bioinformatics networks and research groups, whereas
the metathesauri are freely available. Comprehensive dissemina-
tion of technologies and training will be required in the future
for phenotypic datasets to be computer processable in real time
(54).

DEVELOPMENT OF PHENOTYPIC DATABASES

In the process of associating phenotypes with genes, data integra-
tion plays a key role in correlating heterogeneous phenotypic
data with genomic data at different scales. The current efforts to
organize phenotypic information for high-throughput phenomics
studies focus on both manual and computational methods for
gathering phenotypes and their related genomic information. Both
methods have their distinctive advantages and disadvantages. Al-
though manual methods provide more accurate gene–phenotype
relations, they are more time and labor consuming. In contrast,
computational methods are able to generate large networks of
gene–phenotype relationships in a relatively short amount of time,
but generally lack accuracy when compared with the results of
manual methods.

Manually Curated Databases

There are several databases that contain manually curated pheno-
typic information, including OMIM (3), the Online Mendelian
Inheritance in Animals (OMIA) (55), and all model organism
databases. The OMIM and OMIA databases contain unstructured
phenotypic narratives and references to PubMED, from which
it is computationally difficult to extract coded phenotypic data.
Similarly, although many genomic databases of model organisms
contain some phenotypic information, phenotypes are often coded
at different levels of granularity, in different formats, and with
different aims (56). Realizing the difficulties of using phenotypic
narratives in organizing phenotypic information, the MGI data-
base (12) chose to use coded and computable phenotypes in the
MPO, as described above, to organize phenotypes in different
mouse strains (12). Although phenotypic narratives can be more

nuanced and detailed, coded phenotypes are classified in the MPO
and are readily computable. The contents of these different data-
bases are summarized in Figure 1, in which we present the quantity
of distinct phenotypes (breadth) and the quantity of gene–
phenotype associations (depth) for OMIM and MGI. Of the cu-
rated databases, MGI remains the best-organized database with
the most variety of coded phenotypes and coded binary and ter-
nary relationships (Figure 2).

Computationally derived Databases

To overcome the limitations of manual annotation for creating
phenotypic datasets, scientists use computational techniques for
identifying phenotype–gene relations. These approaches are gen-
erally based on high-throughput methods, such as text mining the
scientific literature for phenotype–genotype co-occurrences (57,
58). In addition, some efforts have been made to integrate and
standardize phenotypic data for the purposes of sharing. For exam-
ple, the PhenomicDB (2) database provides a single portal for
heterogeneous phenotypic information from a number of different
model organisms, including humans. It contains over 15,000 dis-
tinct uncoded textual phenotypic terms and 120,000 genotypes for
the mouse and human species. Similarly, GeneCards provides a
single portal for integrating human genetic data with their related
genomic information and textual disease relationships (59–61).
The Genetic Association Database (16) provides a collection of
standardized genetic association datasets, in which associated dis-
eases are classified and structured. In addition, Gene2Disease was
constructed over OMIM using text-mining methods coupled with
analysis of the chromosomal locations of diseases (62). Although
these resources allow scientists to browse phenotypes and their
associated genes, and to conduct comparative genomics studies
among different organisms, their analyses are limited to functional
genomics datasets organized according to textual terms containing
phenotypic information.

In contrast, Lussier and colleagues used NLP over the scientific
literature combined with the GO database to amass and encode
phenotypes in high throughput (35). The resulting database, Pheno-
GO (http://www.PhenoGO.org), contains the largest number of
gene–phenotype associations (Figure 1), and provides the broad-
est variety of binary and ternary relationships between genes,
GO concepts, and phenotypes (Figure 2 and Table 1). The
PhenoGO database also differs from other gene–phenotype
databases in that it also provides ternary relationships, such as
biological process of a specific gene in a particular phenotypic
context. For example, the PhenoGO database refines GO con-
cepts though the assignment of phenotypic information, such as
the cell type, tissue, and organ to GO–gene annotations. The addi-
tion of such phenotypic context to gene expression information
could be a crucial step for understanding the development and
the molecular underpinnings of the pathophysiology of diseases,
as not all potential biological processes associated to a gene
are possible in every cell type. Currently, PhenoGO consists of
532,406 phenotype–GO relations, with 33,224 distinct genes in 10
species, 5,680 unique GO concepts and 4,650 unique phenotypes
coded in SNOMED, MPO, CTO, and UMLS. Manual evaluation
of a random sample of gene–GO–(phenotype or disease) rela-
tionships revealed a precision (positive predictive value) of 85%
(95% confidence interval [CI], 82–89%) and a recall of 76%
(95% CI, 69–83%). To our knowledge, this is the first system
that offers a level of precision not too far from that of manual
curation.

In summary, given the size of current phenomic databases,
computational approaches certainly have the edge over manual
methods for quickly collecting and integrating large amounts of
phenotypic information. However, computed techniques gener-
ally have a lower precision than manual curation (� 95%). Term
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Figure 2. Descriptions of the
conceptual content and expres-
siveness of relationships in gene-
phenotype databases. The fig-
ure shows that the current
gene-phenotype databases are
limited in expressiveness be-
cause binary and higher-order
relationships are scarce and
available only in unstructured
form. Solid circle � coded in ter-
minology; thick circle � semi-
structured text; thin circle �

unstructured (free) text; solid
square � automated (struc-
tured concepts); open square �

rate-limiting curation (structured
concepts); open diamond �

semistructured concepts.

co-occurrence and statistical NLP generally produce up to 75%
precision, whereas semantic NLP, such as BioMedLEE and
MedLEE, can reach above 85% precision. To illustrate the dif-
ferences and similarity between these genome–phenome net-
works, Table 2 provides an example of the subset of a manually
curated network (MGI) and additional computed phenotypes
(found in the PhenoGO database).

TABLE 1. DESCRIPTION OF GENOTYPIC AND PHENOTYPIC DATABASES

Phenomic Databases Description

MGI Mouse Genome Informatics (MGI) provides integrated access to data on the genetics, genomics, phenomics, and biology of the
laboratory mouse.

OMIM The Online Mendelian Inheritance in Man (OMIM) is a database that catalogs relationships between human genes and genetic
disorders.

OMIA The Online Mendelian Inheritance in Animals (OMIA) is a database that catalogs genes, inherited disorders, and traits in more than
135 animal species (other than human and mouse).

PhenoGO The PhenoGO is a computed database that provides phenotypic contexts and their associated GO terms for multiple organisms,
including human, mouse, and rat.

PhenomicDB The PhenomicDB is a multiorganism phenotype–genotype database, which is built by integrating data from several model organism
databases.

Genetic Association Database The Genetic Association Database archives human genetic association studies on complex diseases and disorders.
GeneCards The GeneCards is a database of human genes with their associated genomic, proteomic, single nucleotide polymorphism, and

disease information.
QMR-OMIM This database integrates clinical knowledge and genomic data to define human trait–disease–gene relationships.
Mining OMIM This study used OMIM to study relationships between human disease and genes.
GenesTrace The GenesTrace defines ontology-anchored phenotypes from the UMLS and their statistical and semantic relationships to GO and

model organism databases.
UMLS-GEO network This study defines highly related phenotypic concepts and gene expressions by integrating phenotypically related concepts in UMLS

and the microarray gene expression data from the NCBI’s Gene Expression Omnibus (GEO).
Literature-based techniques These methods mine literature by high-throughput computational method to identify relations between genes and unconstrained

phenotypic contexts.

Definition of abbreviations: NCBI � National Center for Biotechnology Information; QMR � Quick Medical Reference; UMLS � Unified Medical Language System.

WHOLE GENOME HTP PHENOMIC ANALYSES

Text-based HTP phenomics is designed to predict gene–disease
associations; however, its methods vary broadly. To overcome
the limitations of manual annotation to create phenotypic data-
sets, others in the field conducted high-throughput phenotype–
genotype analyses by mining text on phenotype–genotype rela-
tionships from the scientific literature (57, 58), with limitations



Lussier and Liu: High-Throughput Phenomics 23

of text mining as described above. Korbel and colleagues con-
ducted an analysis that combined data mining of the MEDLINE
abstracts to extract terms of prokaryotic traits, and comparative
genome analysis to identify association of phenotype to genotype
relationships (57). Approximately 2,700 significant gene–trait
associations were identified. Gene2Disease was constructed over
OMIM using text-mining methods coupled with analysis of the
chromosomal locations of diseases (62). However, in these two
systems, the integration of phenotypes relies on the juxtaposition
of the original lexical string of text in the same field across
species. Thus, a textual search for a concept may miss synonyms,
as well as related or subsumed concepts. Although these litera-
ture-based approaches allow scientists to browse phenotypes
and their associated genes and to conduct comparative genomics
analyses among different organisms, their analyses are merely
functional genomics studies constrained to datasets organized
according to textual terms containing phenotypic information.
In addition, the resultant binary textual relationships lack
context.

Lussier and coworkers pioneered ontology-anchored HTP
phenomics in clinical databases. They integrated the Quick Med-
ical Reference (QMR) with OMIM, from which relationships
among genes, diseases, and traits of diseases were generated.
Clustering of genes with traits of diseases demonstrated classifi-
cation of diseases according to genes (63) and enabled associa-
tion studies of environmental factors, such as drug intake and
smoking, found in QMR with genes found in OMIM. This study
was followed up with the GenesTrace method, a large-scale
integrative study of ontology-anchored phenotypes from the
UMLS and their statistical and semantic relationships to GO
and model organism databases (64). We were able to infer
approximately 3 million phenotype–gene associations among
22,040 phenotypic concepts in the UMLS and 16,894 gene prod-
ucts annotated using GO and its associated databases (64). Infer-
ences were validated by comparing them to known gene–disease
relationships, as defined in OMIM’s Morbidmap. Approximately
30% of the predictions could be found in OMIM, and conversely,
9% of OMIM’s relationships were found in Genestrace (64). In
addition, our methods provided direct links to clinically signifi-
cant diseases through established terminologies or ontologies.
These observations demonstrate the significance of exploiting
the existing manually curated relationships in biomedical re-
sources as a tool for the discovery of potentially valuable new
gene–disease relationships. Recently, Butte and Kohane (65)
conducted the first ontology-anchored HTP phenomics study
with phenotypically related concepts in UMLS (66) and microar-
ray gene expression data from the NCBI’s Gene Expression

TABLE 2. SUBSETS OF GENE–PHENOTYPE NETWORK SHOWING MANUALLY CURATED KNOWLEDGE AND
COMPUTED KNOWLEDGE

Phenotypic Context Computed in
Gene and Reference Found in GO and in PhenoGO Biological Process Curated in GO PhenoGO

Nerve growth factor � (Ngfb;MGI: 97321) Perception of pain (GO: 0019233) Afferent neuron (UMLS: C0027883)
Vascular endothelial growth factor C (Vegfc; MGI: 109124) (82) Morphogenesis of embryonic epithelium (GO: 0016331) Lymphatic vessel (UMLS: C0229889)

Definition of abbreviations: GO � Gene Ontology; MGI � Mouse Genome Informatics; UMLS � Unified Medical Language System.
Curated relationships of biological processes are found in GO. Manual curation, a rate-limiting process, is generally considered more accurate than knowledge that

can be computed in high throughput. The GO Consortium manually curated over 1,617,028 annotations of genes to Gene Ontology code in the last 5 yr and
intercurator reliability of curated relationships in GO was estimated at about 93% (83). In contrast, it took about 3 yr to develop BioMedLEE and PhenoGO, a natural
language processing system and a text-mining tool, together capable of encoding gene–GO–phenotypes in high throughput with a precision of 85% (35). The PhenoGO
system can now process vast quantities of text within a reasonable time. The PhenoGO database, which contains about 550,000 gene–GO–phenotype annotations,
can substantially facilitate whole genome association research by providing a well-organized and ontology-anchored genome–phenome network mined from massive
amounts of information found in biomedical journal articles. These annotations, refined with phenotypic context, such as the cell type, tissue, and organ in which a
gene is expressed and has a function, often specific to the cell type, provide a crucial step for understanding the development and the molecular underpinning of
embryogenesis and possibly the pathophysiology of diseases. In the table, the biological process associated with each gene via curation is further refined with phenotypic
context via computations.

Omnibus (67) using a term presence/absence method. Signifi-
cantly expressed genes above a threshold were correlated with
UMLS phenotypic concepts via a resampling-based multiple
testing simulation generating 64,003 relations among 281 bio-
medical concepts and 7,466 genes (65). This study provided an
HTP phenomic method for identifying genes related to pheno-
type and environment.

Although HTP phenomics is in its early stages, there is suffi-
cient evidence through validations that it is promising. In 2001,
Jimenez-Sanchez and colleagues established a proof-of-concept
study for HTP phenomics by manually relating about 1,000 disease-
related genes to their molecular functions and observed that the
frequency distribution of lethality of genes according to their
molecular function recapitulates current knowledge about these
molecular families (68). Since that proof of concept, GenesTrace
provided additional evidence that integrating and systematically
analyzing genome–phenome networks can accurately predict
disease genes. More precisely, the GenesTrace study was based
on patterns of GO annotations of genes (9) with the UMLS
clinical knowledge base (66). Using the 1,407 single gene diseases
of the OMIM (69) dataset as a control, GenesTrace predicted
124 distinct genes in the context of being related to their specific
disease concept, and 290 distinct genes were erroneously associ-
ated with concepts, for a precision of 30% and recall of 8.8%
(64). Kohane and Butte also merged the UMLS knowledge base,
this time with microarray datasets, and accurately predicted
novel findings corroborated in a new microarray study (65).
Recently, Aertz and colleagues predicted gene phenotypes
through a fusion of a large amount of heterogeneous genetic
and clinical knowledge bases, including text mining of the litera-
ture (70). This technique, called “Endeavor” data fusion, identi-
fied a novel gene involved in craniofacial development and likely
with DiGeorge-like birth defects. This prediction was further
corroborated in zebrafish embryos that showed an underdevel-
oped lower jaw. The properties of these studies are summarized
in Table 1 and their respective dataset size in Figure 1.

FUTURE CHALLENGES

HTP phenomics research faces the challenge of technological
research and development to generate novel tools in computa-
tion and informatics to amass, access, integrate, organize, and
manage phenotypic databases across species and enable ge-
nomewide analysis to associate phenotypic information with ge-
nomic data at different scales of biology. Currently, the lack
of high-throughput technologies to access well-networked and
integrated phenotypes from heterogeneous sources and across
multiple scales of biology has prevented the effective usage of
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phenotypic information. Therefore, HTP phenomics research
that aims to unlock gene–disease relationships will play a key
role in a “systems approach” to molecular medicine and individu-
alized medicine. In this review, we highlighted the state of the art
in computational approaches to conduct large-scale phenomics
studies. Among various strategies that could facilitate computa-
tional phenomics, ontologies have proved to be particularly
effective at integrating and organizing a large number of phe-
notypic concepts on a computable platform. The success of GO
underscores the importance of ontologies in phenotypic re-
search. Similarly, the NLP techniques have increasingly shown
their unique and efficient capacity to associate genes with the
narrative phenotypic descriptions in the literature, which are
often unconstrained and unstructured and could not be other-
wise handled by other technologies. Although there are novel
computational approaches proposed for conducting high-
throughput association analysis, they generally lack a common
benchmark for comparison, thus often yielding results that are
difficult to compare. Because the NIH recently recognized the
urgent need for a well-organized resource of human phenotypes
and diseases, it launched Whole Genome Association studies.
The Whole Genome Association will link genetic data with the
rich phenotypic datasets of large-scale clinical studies accumu-
lated over several generations of patients to generate large-scale
common sharable datasets. Such unified efforts will accelerate
the process of identifying the genetic and environmental factors
associated with human disease. It will also provide a framework
to use HTP phenomics methods in conjunction with methods
based on quantitative trait loci methods. The emerging field of
HTP phenomics is likely to have a focus on therapeutic predic-
tions and delineate gene–disease associations.
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