
Immunostaining for allatotropin and allatostatin-A and -C in the
mosquitoes Aedes aegypti and Anopheles albimanus

Salvador Hernández-Martínez1,2, Yiping Li1, Humberto Lanz-Mendoza2, Mario H.
Rodríguez2, and Fernando G. Noriega1

1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL
33199, USA

2 Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública,
Cuernavaca, Morelos, 62100, Mexico

Abstract
Confocal laser-scanning microscopy was used to carry out a comparative study of the
immunostaining for three families of neuropeptides, viz., allatostatin-A (AS-A), allatostatin-C (AS-
C) and allatotropin (AT), in adult female mosquitoes of Aedes aegypti and Anopheles albimanus.
The specific patterns of immunostaining for each of the three peptides were similar in both species.
The antisera raised against AT, AS-A, and AS-C revealed intense immunoreactivity in the cells of
each protocerebral lobe of the brain and stained cells in each of the ventral ganglia and neuronal
projections innervating various thoracic and abdominal tissues. Only the AS-A antiserum labeled
immunoreactive endocrine cells in the midgut. The distribution of the peptides supports the concept
that they play multiple regulatory roles in both species.
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Introduction
Allatostatins (AS) and allatotropins (AT) are structurally diverse peptides that were first
described as modulators of juvenile hormone (JH) biosynthesis in the corpora allata (CA) of a
number of insect species (Kataoka et al. 1989; Woodhead et al. 1989; Kramer et al. 1991;
Lorenz and Hoffmann 1995; Gilbert et al. 2000). AS and AT have subsequently been
recognized as having multiple physiological effects, controlling processes such as heart rate
and gut motility, nutrient absorption, migratory preparedness, and modulation of the circadian
cycle (Bendena et al. 1999; Nässel 2002; Petri et al. 2002; Elekonich and Horodyski 2003).

Three families of AS have been identified in insects: YXFGL-amide-AS (cockroach or type-
A; AS-A), W2W9-AS (cricket or type-B; AS-B), and PISCF-AS (Manduca or type-C; AS-C);
(Stay et al. 1994; Tobe et al. 1995; Duve et al. 1998; Weaver et al. 1998; Bendena et al.
1999). In contrast, only one type of AT has been isolated and functionally characterized; this
AT was originally identified from the heads of pharate adult Manduca sexta (Mas-AT), with
analogs being isolated from brain of Spodoptera frugiperda (Kataoka et al. 1989; Oeh et al.
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2000), from the male accessory glands of Locusta migratoria (Paemen et al. 1991), and from
the mosquito Aedes aegypti (Veenstra and Costes 1999; Li et al. 2003).

The ability of these peptides to modulate JH synthesis in A. aegypti has recently been evaluated.
Anopheles gambiae AS-C (homolog to M. sexta AS-C) significantly inhibits JH synthesis,
whereas A. aegypti AS-A (homolog to cockroach AS-A) does not affect CA activity (Li et al.
2004). A. aegypti AT (Ae-AT) stimulates JH synthesis in a strong and dose-dependent manner
(Li et al. 2003).

The aim in this work was to compare immunoreactivity for AT, AS-A, and AS-C in adult
females of two important species of disease vector mosquitoes, viz., A. aegypti and Anopheles
albimanus, by using confocal laser-scanning microscopy. The specific patterns of
immunostaining for each of the three peptides were similar in both mosquito species. The AT,
AS-A and AS-C antibodies stained brain and ventral ganglia cells and projections innervating
various thoracic and abdominal tissues. Only AS-A antiserum showed immunoreactivity in
midgut endocrine cells.

Materials and methods
Mosquitoes

A colony of A. albimanus white-striped pupa phenotype was established with insects collected
in the state of Chiapas, Mexico (Chan et al. 1994). A colony of A. aegypti was established with
insects collected in the state of Morelos, Mexico. Adults of both species were reared under a
photoperiod cycle of 12 h light: 12 h dark, at 28°C and 70%–80% relative humidity, and were
fed ad libitum with 5% sugar solution. All mosquitoes used in this study were 2–3 day-old
mated females.

Tissue preparation
Mosquitoes were immobilized by brief exposure to ice, washed with 70% ethanol, and air-
dried. Tissues were dissected in a drop of phosphate-buffered saline (PBS: 140 mM NaCl, 2.6
mM KCl, 1.5 mM KH2PO4, 20.4 mM Na2HPO4, pH 7.2) containing a cocktail of protease
inhibitors (2 mM phenylmethylsulfonyl fluoride, 0.1 mM Nα-p-tosyl-L-lysine chloromethyl
ketone, 1 mM EDTA, and 0.1 mg/ml leupeptin; Sigma, St. Louis, Mo., USA). The head and
thorax were separated from the abdomen by making a small tear on both lateral pleural
membranes. The abdomen was pulled off, and the gut was removed. Abdomens without gut
were cut along the pleural membrane by using a needle. The abdominal body wall containing
the fat body, epidermal sub-tegumental cells (mainly in pleural membranes), the dorsal vessel,
the tracheal system, and the ventral abdominal ganglia will be referred to here as “abdomens”.
The brain and subesophageal ganglion were removed with the corpus cardiacum–corpus
allatum complex attached (Br–CC–CA). The three pairs of thoracic ganglia (prothoracic,
mesothoracic, and methathoracic) were obtained by removing the coxae and dorsal thoracic
area. Excess protease inhibitors in all tissues was removed by washes in PBS.

Primary antibodies against neuropeptides
Rabbit polyclonal antisera against A. gambiae AS-C and A. aegypti AT were produced against
synthetic peptides conjugated to keyhole limpet hemocyanin by Genemed Synthesis (San
Francisco, Calif., USA). Antisera titers were established, by enzyme-linked immunosorbent
assay, to be adequate at dilutions of 1/10,000. The specificity of the AT and AS-C antisera was
tested by liquid-phase preabsorption with the parent antigen at a concentration of 5.5 nmol/ml
diluted antiserum (1/500), overnight at 4°C. Immunostaining was abolished following this
treatment. The rabbit polyclonal antiserum against AS-A was a gift of Dr. Rene Feyereisen
(Reichwald et al. 1994).
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Immunocytochemistry
Midguts, Br–CC–CA complexes, thoracic ganglia, and abdomens were fixed for 4 h at room
temperature with 4% formaldehyde in PBS. After fixation, tissues were rinsed in PBS (5×10
min each), permeated with 1% Triton X-100 in PBS at 4°C overnight, washed in PBS (3×20
min each) at room temperature, incubated for 2 h at 37°C in a solution of 2% bovine serum
albumin in PBS containing 0.1% sodium azide (PBS-A; blocking solution), incubated at 4°C
overnight with the primary antisera (anti-AT, anti-AS-A, or anti-AS-C) diluted 1:500 in PBS-
A, and washed (5×10 min each) with 0.1% Tween-20 in PBS (PBS-T). All subsequent
procedures were carried out with the samples being kept in the dark. Tissues were incubated
for 2 h at 37°C with the secondary antiserum, a fluorescein isothiocyanate (FITC)-conjugated
goat anti-rabbit immunoglobulin (Oncogene Researchc Products, Boston, Mass., USA),
diluted 1:100 in PBS-A. Tissues were washed in PBS-T (5×10 min each) and mounted on glass
slides in a fluorescence-preserving medium (Vectashield, Vector, Burlinghame, Calif., USA).
Twenty females were analyzed in each of the studies.

Confocal microscopy
Images of the immunostained preparations were obtained with an Ultra View laser-scanning
confocal system (model CSU10, Perkin-Elmer, Wellesley, Mass., USA) with an air-cooled
argon-krypton laser and a 488 single-filter block (excitation 488 nm, emission 510 nm). The
confocal system was used on an epi-fluorescent microscope (Nikon E-600, Japan). Images
were processed by using Imaging Suite (Spatial Module) version 3.0 from Perkin-Elmer and
by Power Point programs. Three-dimensional (3D) reconstructions were obtained from Z-stack
data sets. Results are presented as 3D views in a single projection.

Results
The patterns of immunostaining for each of the three peptides were similar in both mosquito
species. No staining was observed in the controls in the absence of the three primary antisera.

AT immunoreactivity
Seven to ten neurons were intensively stained in each protocerebral lobe, whereas others were
weakly stained (Figs. 1a, 2a). A small group of stained cells was always observed in a posterior
location, projecting processes toward the frontal region of the brain (Figs. 1a, 2a, arrowheads).
We did not observe labeled varicosities along the nerve extending to the CC–CA complexes
or inside the CC–CA complex.

All the abdominal ganglia of the ventral nerve cord showed AT immunoreactivity. Three cells
were labeled in each ganglion, two in the posterior region and one in the anterior region (Figs.
1b–d, 2b, c). Immunostained projections from these cells were prominent in the ventral nerve
cord (Fig. 1d, arrowhead) and emerging laterally (Figs. 1b, 2b, c, arrowheads). These varicose
processes were observed innervating abdominal tissues (hindgut, heart, and oviducts; Figs. 1b,
c, 2b, c, arrowheads). Strong staining was observed in many processes projecting from the
nerve cord directly to the dorsal vessel; in addition, labeled varicosities were seen along the
wall of the dorsal vessel (Fig. 2d). Immunoreactivity was not found in neurons of the thoracic
ganglia or in midgut endocrine cells of either of the two species.

AS-A immunoreactivity
Six neurons were recognized in each protocerebral lobe (Figs. 3a, 4a). These cells had long
processes (Figs. 3a, 4a, arrowheads) projecting toward the stomatogastric nervous system and
leaving the brain most probably via the nervi corporis cardiaci. Only A. albimanus exhibited
labeled processes innervating the CC–CA complex (Fig. 4b, arrowhead).
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In the abdominal nerve cord (Figs. 3b–d, 4c, d), only one cell was stained per ganglion, except
in the last ganglion (neuromeres 7+8) in which eight cells were stained (Figs. 3d, 4d).
Immunoreactive processes projecting from the labeled cells of the last abdominal ganglion
(Figs. 3d, 4d, arrowheads) innervated oviducts, bursa, and spermatheca (data not shown). In
the other ganglia, only one process from a single cell bifurcated within the ganglion and
projected laterally to the abdomen (Figs. 3b, 4c, arrowheads).

Oenocytes in the fat body were stained by anti-AS-A only in A. albimanus (Fig. 4d). The
antiserum to AS-A intensely labeled processes projecting toward the pericardial cells but
showed no staining that reached the wall of the dorsal vessel (Fig. 4f). About 50 endocrine
cells located in the posterior midgut were strongly stained (Figs. 3e, 4e). Two prominent
processes were labeled that extended along the hindgut and ended in the rectal papilla (Figs.
3e, f, 4e, arrowheads). Immunoreactivity was not observed in thoracic ganglia cells of either
of the two species (data not shown).

AS-C immunoreactivity
Four cells were labeled in each protocerebral lobe (Fig. 5a–c). They had large nuclei (Fig. 5a,
2; Fig. 5c, 1) and large labeled vacuoles in their cytoplasm (Fig. 5b, inset). These cells projected
toward the stomatogastric nervous system (Fig. 5a, b, arrowheads). We did not observe
immunostaining in the CC–CA of either species (data not shown).

In the ventral cord nerve, two cells were labeled in each of the first six abdominal ganglia (Fig.
5d, e), whereas in the last ganglion (neuromeres 7+8), four cells could be recognized (Fig. 5f).
In general, we did not observe immunostaining in processes extending from the ganglia,
although weakly labeled varicosities were seen on a few occasions (data not shown).
Immunoreactivity was not observed in neurons of the thoracic ganglia or in midgut endocrine
cells of either of the two species (data not shown).

Discussion
This study provides evidence of major similarities in the expression of three neuropeptides in
A. aegypti and A. albimanus, representing the first comparative study of regulatory peptides in
members of two mosquito subfamilies with more than 100 million years of separate evolution
(Knudson et al. 2002). A. aegypti has been an excellent model for the study of mosquito
physiology for more than 50 years, and ample information thus exists regarding the
neuroendocrine regulation of its reproductive physiology. On the other hand, knowledge of
these aspects of species of Anopheles is much more limited.

In the brains of A. aegypti and A. albimanus, each of the tested antisera reveals strong patterns
of immunoreactivity exclusively in a small specific number of neurosecretory-like cells in the
protocerebral lobes (summarized in Fig. 6a). Five paired groups of neurosecretory cells have
been described in species of Aedes, Culex, and Culiseta (Clements 1992); these cells have
processes extending from the brain in the nervi corporis cardiaci I and II and projecting into
the stomatogastric nervous and the CC–CA complex. The labeled cells in our studies are
difficult to categorize into the five groups described by Clements (1992). However, the three
antisera recognize some of the medial neurosecretory cells located in the posterior pars
intercerebralis (Fig. 6a, arrowheads). Differences are discernible in the labeled processes
extending from the immunostained neurons. The processes from all the labeled neurons are
well stained with anti-AS-A, but only processes projecting from the posterior neurosecretory
cells are well stained with anti-AT. The processes are weakly stained with anti-AS-C.

Immunoreactivity of peptides from these three families has been described in the CC–CA
complex of Lepidoptera (Zitnan et al. 1995; Duve and Thorpe 2003). In Diploptera punctata
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and Gryllus bimaculatus, protocerebral neurosecretory cells show AS-A or AS-B
immunoreactivity, respectively, and immunoreactivity in nerves projecting into the CA (Stay
et al. 1992; Neuhäuser et al. 1994). AS-A and AS-C immunoreactivities have been
demonstrated in a large number of neurons in the adult brain of Drosophila melanogaster
(Zitnan et al. 1993; Yoon and Stay 1995), whereas nerves to the CA are not stained by the AS-
A antiserum (Yoon and Stay 1995). In contrast, protocerebral neurosecretory cells in D.
melanogaster larvae send AS-C-immunoreactive processes to the ring gland, reinforcing the
idea that this peptide is an endocrine regulator in Diptera. Although an AT precursor has not
been identified in the Drosophila genome, M. sexta-AT immunoreactivity has been detected
in small median neurosecretory cells and numerous interneurons of the brain of adult D.
melanogaster (Zitnan et al. 1993).

We have only found AS-A immunoreactive processes innervating the CC–CA complex of A.
albimanus. In contrast, processes innervating the CC–CA complex in A. aegypti are not
immunostained for AS-A. Moreover, the CC–CA complex is not stained with antisera against
AT or AS-C in either mosquito. This absence of immunoreactivity may be the result of the
presence of only small amounts of the peptides because of the minute size of mosquito CC–
CA and the physiological state of the females evaluated.

The three antisera recognize neurons in the seven abdominal ganglia of the ventral nerve cord,
with differences in the numbers and types of neurons and their projections (Fig. 6b). Anti-AT
normally recognizes three cells per ganglion, whereas anti-AS-A stains only one neuron from
the first to the sixth ganglion and eight cells in the last one (7+8). The AS-C antiserum
recognizes two neurons from the first to the sixth ganglion and four in the last one (7+8). The
locations of the stained neurons in the ganglia suggest that different cells are labeled by each
antiserum (Fig. 6b). If immunoreactivity against AT and AS-A was detected in the perikarya
of a particular neuron, it was also observed in the projecting processes; in contrast, AS-C
antiserum stained the ganglion neurons but not their projections (Fig. 6b).

Immunoreactivity against AS-A has been previously described in a specific group of endocrine
midgut cells in female A. aegypti (Veenstra et al. 1995). We have found a similar result in A.
albimanus. In addition, in situ hybridization has shown the expression of AS-A mRNA in the
same group of midgut cells in A. aegypti (F.G. Noriega et al., unpublished). In adult D.
melanogaster, AS-A immunoreactivity has also been described in endocrine cells of the midgut
and in the hindgut axons (Yoon and Stay 1995). Veenstra and Costes (1999) have described
the absence of AT immunoreactivity in midgut endocrine cells of A. aegypti. We have
confirmed this observation in A. albimanus and the absence of immunoreactivity to AS-C in
the midguts of both mosquitoes.

What does the distribution of the three peptides tell us about their functions? AT was first
isolated from M. sexta as a factor that stimulates the synthesis of JH in the CA (Kataoka et al.
1989). Previously, we have reported that the CA of a newly emerged A. aegypti female needs
to be exposed to AT before it is capable of synthesizing JH (Li et al. 2003). We have also
reported that only females that emerge with large amount of nutrients have CA capable of
synthesizing enough JH to activate reproductive maturation (Caroci et al. 2004). Factors from
the head are essential for CA activation and reproductive maturation in mosquitoes;
decapitation of A. aegypti females within 1 h after adult ecdysis prevents normal development
of the previtellogenic follicles (Gwadz and Spielman 1973). A similar effect has been described
when the brain medial neurosecretory cells are removed (Lea 1967). Cells in the brain of some
species of Aedes and Anopheles are immunostained by the anti-AT antiserum, and thus AT can
be proposed as being one of these critical factors from the head playing a role in the nutritional
activation of JH biosynthesis.
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AT-immunoreactive cells in the first six abdominal ganglia of the nerve cord have processes
that innervate the dorsal vessel, indicating that the dorsal vessel is a target organ of this peptide.
AT is a cardioacceleratory peptide in M. sexta (Veenstra et al. 1994) and Pseudaletia
unipuncta (Koladich et al. 2002). Rudwall et al. (2000) have reported that AT increases the
heart rate in Leucophaea maderae and Periplaneta americana and have described AT
immunostaining in processes projecting to the heart in these two species of cockroaches.

Intense labeled has also been observed with anti-AT in varicosities in processes innervating
abdominal tissues, such as the hindgut, dorsal vessel, and oviducts. Veenstra and Costes
(1999) have reported that Aedes aegypti-AT stimulates oviduct contractions in the blowfly
Phormia sp. Mas-AT stimulates hindgut contractions in L. maderae (Rudwall et al. 2000) and
gut motility in Heliothis virescens (Oeh et al. 2003).

The reason for the specific staining of oenocytes associated with the fat body by the anti-AT
antibody remains to be explained. Oenocytes are large abdominal cells that are rich in smooth
endoplasmic reticulum and mitochondria and have been implicated in hydrocarbon and lipid
synthesis (Chapman 1998; Fan et al. 2002). Cuticular hydrocarbons and pheromones are
produced by abdominal oenocytes and are shuttled through the hemolymph by high-density
lipophorin (Gu et al. 1995; Schal et al. 1998; Sevala et al. 1999). In mosquitoes, oenocytes
might produce AT or might be a target for the peptide. It should be noted however that
oenocytes were stained in A. albimanus but not in A. aegypti.

AS-A was initially identified by its inhibitory activity on JH production in the cockroach D.
punctata (Pratt et al. 1989; Woodhead et al. 1989). We have previously reported that Aedes
AS-A have no effect on JH biosynthesis in female A. aegypti (Li et al. 2004).

AS-A has been described as an inhibitory regulator of visceral muscle contraction in several
parts of the digestive tract in a number of insects (Stay 2000; Nässel 2002). Immunostaining
of AS-A has been found in various tissues of several insects, including endocrine midgut cells
of A. aegypti (Veenstra et al. 1995). These AS-A endocrine cells are “open type” cells. They
have a bottle shape and extend from the basal lamina to the midgut lumen. The apical part of
the cell is in contact with the lumen and might be able to sense the midgut contents (Brown et
al. 1985; Stracker et al. 2002). AS-A-immunoreactive endocrine cells are located in the most
posterior part of the midgut, close to the muscles of the pyloric sphincter; these cells might
directly or indirectly affect the activity of midgut muscles. Caroci and Noriega (2003) have
proposed that free amino acids in the midgut lumen might be sensed by these midgut endocrine
cells and might play a key role as a signal used by the midgut to control the retention of its
lumen contents.

The AS-A antiserum has not been seen to stain varicosities along the wall of the dorsal vessel,
although stained processes seem to innervate the pericardial cells in both species. Putative roles
for pericardial cells (nephrocytes) are the filtration, clearance, and regulation of the
composition of hemolymph (Wigglesworth 1970; Dallai et al. 1994). Nephrocytes have both
secretory and degradative functions; in M. sexta, pericardial cells remove JH esterase from the
hemolymph (Bonning et al. 1997). In A. gambiae, scavenging nephrocytes, which are present
alongside the dorsal vessel, harbor numerous peroxisomes and catalase-rich organelles that are
active in the detoxification and neutralization of reactive oxygen species (Kumar et al. 2003).
Yeast particles are aggregated by A. albimanus pericardial cells and induce a strong increase
in lysosomal activity, indicating that this tissue could be important in cell-mediated immune
responses (S. Hernández-Martinez, unpublished). The strongly AS-A-immunoreactive
varicosities in processes innervating the nephrocytes suggest either that this peptide plays a
role in the regulation of pericardial cell physiology or that these cells are involved in the
clearance of the peptide.
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AS-C was originally identified in M. sexta (Kramer et al. 1991). In this species and other moths,
it inhibits JH biosynthesis (Kramer et al. 1991; McNeil and Tobe 2001). In D. melanogaster,
an AS-C homolog slows heart contraction (Price et al. 2002). We have previously described
that the biosynthetic activity of the A. aegypti CA in vitro is inhibited by factors present in the
head and by physiological concentrations of synthetic A. gambiae AS-C (Li et al. 2004). The
presence of AS-C immunostaining in the brain strengthens the hypothesis that AS-C is the
brain factor involved in the regulation of JH biosynthesis in mosquitoes. Using a combination
of high performance liquid chromatography and mass spectrometry, we have isolated and
characterized a putative AS-C peptide from the brain of A. aegypti (Y. Li et al., unpublished).

In summary, we have performed a comparative study of the distribution of AT, AS-A, and AS-
C and provided evidence of major similarities in the expression of these three neuropeptides
in two species of mosquitoes. Our results support the idea that AT and AS-C are factors from
the brain playing a role in the regulation of JH synthesis and oogenesis in mosquitoes, whereas
AS-A is an important modulator of the contraction of visceral muscle.
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Fig. 1.
Immunostaining of AT in A. aegypti tissues. a Left protocerebral lobe of the brain (br) with a
posterior group of labeled cells (arrowhead). Bent arrow Front (arrowhead) and left side
(arrow end) of the brain. b–d Abdominal preparations with three cells labeled in ventral ganglia
(vg) and varicosities labeled in ventral processes (arrowhead). Arrows Anterior part of the
mosquito. d Combined images from confocal fluorescence (green) and light (red) microscopy.
Bars 50 μm
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Fig. 2.
Immunostaining of AT in A. albimanus tissues. a Left protocerebral lobe of the brain (br) with
a posterior group of labeled cells (arrowhead). Bent arrow Front (arrowhead) and left side
(arrow end) of the brain. b, c Abdominal preparations with three cells labeled in ventral ganglia
(vg) and varicosities labeled in ventral processes (arrowheads). c Combined images from
confocal fluorescence (green) and light (red) microscopy. d Heart (arrowheads processes
directly connected to the dorsal vessel containing immunostained varicosities, dv dorsal vessel
of heart, pc pericardial cells). Arrows Anterior part of the mosquito. Bars 50 μm
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Fig. 3.
Immunostaining of AS-A in A. aegypti tissues. a Left protocerebral lobe of the brain. Neurons
(n) with labeled processes (arrowhead) innervating the stomatogastric nervous system. Bent
arrow indicates the front (arrowhead) and left side (arrow end) of the brain. b–d Abdominal
ventral ganglia. Only one cell was stained in each ventral ganglion (vg), except in the last
ganglion (d) in which eight cells were labeled. Note the immunostained varicosities in ventral
processes (arrowheads). e, f Midgut. Endocrine cells (ec) showing immunoreactivity in the
posterior midgut (mg) (mt Malpighian tubule). Two processes (arrowhead) can be seen running
along the hindgut (hg) and ending in the rectal papillae (rp). Arrows Anterior part of the
mosquito. b,c,e, f Combined images from confocal fluorescence (green) and light (yellow-
red) microscopy. Bars 50 μm
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Fig. 4.
Immunostaining of AS-A in A. albimanus tissues. a Right protocerebral lobe of the brain.
Neurons (n) with labeled processes (arrowhead) innervating the stomatogastric nervous
system. Bent arrow Front (arrowhead) and left side (arrow end) of the brain. b Processes
(arrowhead) with varicosities projecting into the corpus cardiacum–corpus allatum (CC–CA)
complex. c, d Abdominal ventral ganglia: only one cell was stained in each ventral ganglion
(vg), except in the last ganglion (d) in which eight cells were labeled. Note the immunostained
varicosities in ventral processes (arrowhead). d Oenocytes (eo) ventrally located in abdominal
fat body showing immunoreactivity. e Midgut (mt Malpighian tubule). Endocrine cells (ec)
showing immunoreactivity in the posterior midgut (mg). Note the two processes (arrowhead)
running along the hindgut (hg) and ending in the rectal papillae. f Heart. Inmmunolabeled
varicosities in processes (arrowhead) ending in the proximity of pericardial cells (pc) around
the dorsal vessel (dv). Arrows Anterior part of the mosquito. c, e Combined images from
confocal fluorescence (green) and light (yellow-red) microscopy. Bars 50 μm
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Fig. 5.
Immunostaining of AS-C in A. aegypti and A. albimanus tissues. Immunoreactivity in brain of
A. aegypti (a, b) and A. albimanus (c). Bent arrows Front (arrowhead) and left side (arrow
end) of the brain (arrowheads labeled processes, numbers location of the cells as depicted in
Fig. 6a). Inset: Cell with large labeled vacuoles in the cytoplasm. d–f Abdominal ventral
ganglia. Two cells were stained in each ventral ganglia (vg), except in the last ganglion (f) in
which four cells were labeled. Arrows Anterior part of the mosquito. Bar 50 μm
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Fig. 6.
Representation of neuropeptide distribution in the central nervous system of A. aegypti and A.
albimanus. The pattern of immunostaining for each of the three peptides is similar in both
mosquito species. a Brains showing neurons and processes stained in the protocerebral lobes.
Bent arrow Front (arrowhead) and left side (arrow end) of the brain (numbers relative location
of cells). b Abdominal ganglia in the ventral nerve cord showing neurons and processes stained
with the three different antibodies (numbers position of the ganglia). Arrow Anterior part of
the mosquito
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