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Abstract
A completed pregnancy at a young age reduces a woman’s lifetime risk of breast cancer by up to
50%. A similar protective effect of an early pregnancy has been observed in rodent models using
chemical carcinogens. However, the mechanisms responsible for this protective effect remain
unclear. Stem cells have been proposed to be the cells of origin for breast cancer. We hypothesized
that an early pregnancy reduces adult levels of either mammary stem cells or mammary multipotent
progenitor cells. Unsorted mammary cells from adult mice that had undergone an early parity had
the same mammosphere formation efficiency as cells from age-matched virgin mice. However, when
we transplanted adult mammary cells in limiting dilutions into cleared fat pads of syngeneic mice,
we found a significant reduction in the outgrowth potential of the cells from early parous mice as
compared with age-matched virgin mice. The extent of fat pad filling in successful outgrowths did
not change, suggesting that while mammary stem cells in parous mice retained their functional
competence, the number of mammary stem cells was reduced. Our results provide the first direct
evidence that an early pregnancy has an effect on mammary stem cells.
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Introduction
Women completing their first pregnancy before age 20 have about half the risk of breast cancer
compared to nulliparous women 1–6. This protective effect has also been observed in rodent
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models of carcinogenesis 7–9. The mechanisms underlying the protective effect of an early
parity remain unclear, though several explanations have been proposed10–23.

Stem cells exist in the mammary gland 24–34, and have been proposed to be the cellular origin
of cancer 33, 35–42. Although it has been speculated that changes in mammary stem cells
following an early pregnancy could be responsible for reducing breast cancer risk 8, 43, 44,
the effect of an early pregnancy on mammary stem cells has not been rigorously studied.

Methods
Mice and cells

Female FVB mice were allocated into age-matched pairs, with ages differing by no more than
one week. One mouse of each pair was mated at five weeks of age and allowed to complete
one pregnancy. Pups were weaned at 21 days, and parous mice were maintained a minimum
of eight weeks after weaning to allow complete involution before being used for assays. Single
cell suspensions were prepared as described 33.

Mammosphere formation & mammary transplantation
Mammosphere assays were performed essentially as reported 45. Single cell suspensions from
each parous donor mouse, serially diluted in DMEM/F12 + 5% FBS, were injected immediately
after preparation into the #4 cleared fat pads of recipient virgin mice (age: 3–15 weeks; cleared
at 3 weeks) as reported 46. The contralateral fat pad received an equal number of mammary
cells from an age-matched virgin donor. Eight weeks later, transplanted glands were stained
in carmine alum.

Results
Pregnancy causes mammary gland alterations, including an expansion of the ductal tree and
the development of alveoli, which regress during involution. We first ascertained that an early
pregnancy did not alter the total number of cells, or the luminal epithelial or myoepithelial cell
content in the adult mammary gland (5–15 months of age) (Figure 1A & 1B).

In non-adherent cultures, a small subset of mammary cells form mammospheres containing
both epithelial and basal cell types, implying a multipotent progenitor origin 45. Cells from
both parous and age-matched virgin adult mice (8–15 months of age) formed mammospheres
that were similar in appearance and cell composition (Figure 1C) to each other and to
mammospheres derived from human mammary cells 45. Cells from parous mice had the same
capacity to form both primary and secondary mammospheres as cells from virgin mice (Figure
1D). Therefore, an early pregnancy does not induce lasting changes in the multipotent
progenitor cell population detectable by the mammosphere assay.

The classical assay for mammary stem cells is serial dilution transplantation into epithelium-
cleared fat pads to evaluate ductal tree regeneration potential. We used this assay to compare
mammary cells isolated from parous and age-matched virgin mice. Donors ranged in age from
5 months (n=3 for both virgin and parous mice) to 10–15 months of age (n=8). The overall
take rate from virgin donors (Figure 2A) is in general accordance with other studies using
similar methods of cell preparation 33, 46. The take rate from parous donors was significantly
less than that from virgin mice (Figure 2A & 2B, p=0.017; main effect of parity across all
dilutions). Even when only transplants from older (10–15 month) donor mice are considered,
a significant parity-induced decrease in take rate was observed (p=0.03). Therefore, we
conclude that an early age pregnancy has an adverse effect on the mammary stem cell
population.
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The extent of the fat pad filled by parous donor cells was comparable to that of virgin donor
cells, even at higher dilution points (Figure 2C), suggesting that our observed decrease in take
rate is due to a parity-induced loss of stem cells. By a single-hit Poisson model, the frequency
of regenerative stem cells in virgin mice was 1 per 6,423 cells with a 95% confidence interval
of [4,493, 9,187], similar to the estimation reported by other groups using comparable
transplantation methods 33, 46, 47. In parous mice, the frequency of regenerative stem cells
was 1 per 13,221 cells [8,442, 20,708] (Figure 2A). The confidence intervals overlap only
slightly, and by a Wald test the frequency difference was significant (p=0.01). Therefore, we
conclude that an early age pregnancy decreases the mammary stem cell population by ~50%
(Figure 2A).

Discussion
We report here a long-term decrease in the number of mammary repopulating units in the
mammary glands following an early pregnancy. This decrease is most likely due to a reduction
in the number of mammary epithelial stem cells. Since mammary stem cells are likely a major
cellular target of breast cancer, our observation of reduced mammary stem cells may help
explain why early pregnancy reduces the risk of breast cancer.

The cancer-protective effect of an early pregnancy persists throughout a woman’s lifetime.
However, there is a heightened risk of breast cancer in the years immediately following
pregnancy 6, 48–50. For this reason, we allowed parous mice a minimum of eight weeks
between the onset of involution and analysis, so that transitory changes in this potential window
of increased risk would not complicate our analysis and that our test would reveal persistent
changes in mammary stem cells. Of note, most other reports on parity-induced changes in the
mammary gland examined the gland only a few weeks after the initiation of involution 14,
15, 51.

Stromal, immune, and systemic changes have also been reported in animals following
pregnancy 15, 17; these changes may have an impact on mammary stem cells and their
susceptibility to tumorigenesis 9, 17, 52. Our study does not address the impact of hormonal
and immune changes on mammary stem cells. We do not know if parity-induced changes in
stromal cells incidentally transplanted with the mammary epithelial cells might have
contributed to our observed decrease in the take rate.

Mammary stem cells have been reported to be enriched in the subset of mammary cells that
are lin−/CD24+/CD49fhi, lin−/CD24+/CD29hi, or CD24low 30, 33, 34. However, the poor extent
of stem cell enrichment (up to 1 stem cell in 64 lin−/CD24+/CD29hi cells 33) makes it unlikely
that changes in the number of stem cells can be detected by examining these stem cell-enriched
populations as a whole. Indeed, we did not observe a significant difference between parous
and virgin mice in the lin−/CD24+/CD29hi population, nor in the lin−/CD24+/CD29low

progenitor population (Supplementary Figure 1). This finding is in agreement with a recent
report of no difference between virgin and primiparous mice in the percentage of CD24+/
CD49f+ cells, although the age of pregnancy was not described 51. Flow cytometry using more
specific stem cell markers may unmask differences in stem cell numbers between these two
groups of mice.

In conclusion, we present strong evidence that an early pregnancy reduces the number or
function of mammary stem cells. Further progress in understanding an early pregnancy’s
protection from breast cancer requires determining the cellular targets of oncogenic
transformation. It is crucial to test whether virgin mice with depleted numbers of mammary
stem cells have reduced tumorigenesis upon carcinogen exposure. If so, targeting mammary
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stem cells becomes a new approach towards clinical interventions to replicate in nulliparous
women the protective effect of an early childbirth.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An early pregnancy does not induce a persistent change in total mammary cells or
epithelial content, and does not cause a persistent change in mammosphere forming cells
(A) Single cell suspensions were made from the pooled #2–4 mammary glands of each mouse,
and the total number of viable cells recovered from each mouse was determined by FACS and
hemocytometry. n=19 (virgin) or 20 (parous). (B) Single cell suspensions made from parous
and age-matched virgin mouse mammary glands were spotted on slides and probed by
immunofluorescence for luminal (keratin 8) and myoepithelial (keratin 5) markers. n=3. (C)
Mammary cells from early parous or age-matched virgin mice were plated at 10,000 cells/well
under ultra-low adherent culture conditions. Sample mammospheres that formed after 10 days
in culture are shown. Scale bar = 50 μm. Primary mammospheres were fixed, sectioned, and
stained for myoepithelial (keratin 5, left, arrows) and luminal (keratin 8, center) cell markers.
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All mammospheres contained keratin 8+ cells; approximately one in three also contained
keratin 5+ cells. Scale bar = 10 μm. (D) Primary mammospheres larger than 50 μm were
quantitated at 10 days, dissociated to single cells (by digestion in 0.05% trypsin EDTA followed
by pipetting), and replated at 5000 cells/well to measure secondary mammosphere formation.
The number of mammospheres formed as a percentage of cells plated is shown. n=9 (primary
mammospheres) or 5 (secondary mammospheres).
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Figure 2. An early pregnancy reduces the number of mammary stem cells
(A) The indicated number of mammary cells isolated from parous (n=11) or age-matched virgin
mice (n=11) was injected into the cleared #4 fat pads of recipient mice. The number of
successful outgrowths (>5% fat pad-filling) after 8 weeks and total number of transplants
performed are shown. These data were analyzed by using Generalized Estimating Equations
in a Generalized Linear Model with a logit link function (PROC GENMOD, SAS V9.1, Cary,
NC)53. This ANOVA-like analysis, which tests for overall effects of parity while accounting
for dilution and the paired nature of the outgrowth data, found that an early parity significantly
reduced the take rate compared to virgin (p=0.017). Limiting dilution analysis was conducted
to estimate the frequency of mammary stem cells per total mammary cells by fitting the single-
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hit Poisson model (SHPM) to the limiting-dilution data from (A) using a complementary log-
log generalized linear model54. The fit of the model was checked using the method proposed
by Bonnefoix et al 55. (B) Regression lines of the estimated outgrowth frequency and 95%
confidence intervals are graphed. The Wald confidence intervals were calculated via delta
method for the frequency of regenerative stem cells. Limiting-dilution statistical analyses were
performed using the limdil function in the Statmod package 56 in the software R 57. (C) The
extent of the cleared fat pad filled by outgrowths in (A) is shown.
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