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ABSTRACT

Motivation: Several functional gene annotation databases have
been developed in the recent years, and are widely used to infer
the biological function of gene sets, by scrutinizing the attributes
that appear over- and underrepresented. However, this strategy is
not directly applicable to the study of non-coding DNA, as the
non-coding sequence span varies greatly among different gene loci
in the human genome and longer loci have a higher likelihood of
being selected purely by chance. Therefore, conclusions involving
the function of non-coding elements that are drawn based on the
annotation of neighboring genes are often biased. We assessed the
systematic bias in several particular Gene Ontology (GO) categories
using the standard hypergeometric test, by randomly sampling non-
coding elements from the human genome and inferring their function
based on the functional annotation of the closest genes. While no
category is expected to occur significantly over- or underrepresented
for a random selection of elements, categories such as ‘cell
adhesion’, ‘nervous system development’ and ‘transcription factor
activities’ appeared to be systematically overrepresented, while
others such as ‘olfactory receptor activity’—underrepresented.
Results: Our results suggest that functional inference for non-
coding elements using gene annotation databases requires a special
correction. We introduce a set of correction coefficients for the
probabilities of the GO categories that accounts for the variability
in the length of the non-coding DNA across different loci and
effectively eliminates the ascertainment bias from the functional
characterization of non-coding elements. Our approach can be easily
generalized to any other gene annotation database.
Contact: ovcharei@ncbi.nlm.nih.gov
Supplementary information: Supplementary data are available at
Bioinformatics Online.

1 INTRODUCTION
Almost 20 vertebrate genomes have been fully sequenced up to date.
Gene annotation of the human, mouse and several other genomes
reaches high confidence levels (Pruitt et al., 2007), and functional
classification databases provide valuable information to understand
the biological processes associated with different groups of genes
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in these genomes. Gene Ontology (GO) (Ashburner et al., 2000),
KEGG (Kanehisa et al., 2006, 2008), OMIM (Boyadjiev and Jabs,
2000; Hamosh et al., 2002, 2005) and OBO Cell Ontology (Smith
et al., 2007), are just some of the most widely used functional
annotation databases, which have enabled intriguing discoveries
during the last decade (Hvidsten et al., 2001; King et al., 2003).

The classical approach to functional inference identifies
annotation terms that are significantly over- or underrepresented
within a given class of genes; over- or underrepresentations are
identified by comparing the count of occurrences for each annotation
term to the expected value, which usually arises from considering the
number of genes assigned to each category in the complete genome.
Several tools have been developed to perform the classification
analysis that are mainly based on the hypergeometric test [among
them BiNGO (Maere et al., 2005), GO::TermFinder (Boyle EI,
2004) and GOToolBox (Martin, 2004)] or Fisher’s exact test, which
relies on properties of the hypergeometric distribution [like GOstat
(Beissbarth and Speed, 2004) and FatiGO (Al-Shahrour et al., 2004,
2007)].

However, the vast majority of the genome consists of non-protein-
coding (non-coding) sequences. Functional non-coding sequences
may be associated with protein-coding sequences by either directly
or indirectly regulating the expression of protein-coding genes,
or playing structural roles in chromosome architecture or encoding
RNA genes. In any case, annotation databases for non-coding
elements are still in their infancy. In particular, there are at least
two databases that store and openly share functional annotation of
candidate gene regulatory elements in vertebrates, tested in vivo in
mice and zebrafish—Vista Enhancer Database (VED) (Pennacchio
et al., 2006) and CONDOR (Woolfe et al., 2007). However, ∼1000
elements profiled in these databases represent only a small fraction of
gene regulatory elements in a vertebrate genome, which are expected
to exceed the number of exons (∼200 000) (Waterston et al., 2002).
In practice, this precludes the application of these databases to
the functional annotation of non-coding elements, which could be
represented by a set of non-coding SNPs (Schwarz et al., 2008), a set
of transcription factor binding sites from ChIP-chip experiments
(Hu et al., 2007), or a set of candidate regulatory elements scattered
across a vertebrate genome (Ovcharenko et al., 2005; Woolfe et al.,
2005), for example. A sensible solution to this problem proposes to
infer the function of a given non-coding element from that of the
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gene it belongs to or the closest neighboring gene; this strategy is
especially well justified for promoter or UTR elements. However,
the interpretation of the results is not always straightforward—
promoter elements only represent a small component of the complex
gene regulatory machinery, also constituted by distant intergenic and
intronic elements (Machon et al., 2002; Nobrega et al., 2003), which
do not necessarily regulate the gene they are inserted in or close to
(Lettice et al., 2003; Santagati et al., 2003).

Uncertain association of putative regulatory elements and genes
aside, gene annotation databases can be useful to characterize
non-coding elements. While the association with the gene is
often straightforward for promoters and UTR elements, intronic
elements are commonly associated with the gene containing them
and intergenic elements are usually associated with the nearest
gene. After that, it is reasonable to infer the function of non-
coding elements by examining the function of the corresponding
set of genes. In a classical approach, the number of genes assigned
to a given functional category in this set is compared with the
number of genes assigned to that category in the entire genome, and
deviations are evaluated according to a statistical test. The problem
with this logic is the implicit assumption that the probability of
sampling a particular annotation term is equal to the fraction of genes
associated with it in the genome, which does not depend on the total
number of non-coding elements a particular gene is associated with.
Basically, a gene with many non-coding elements and a gene with
zero non-coding elements are assumed to have equal probability
of discovery through the analysis of their non-coding DNA space,
which is obviously wrong and leads to a GO ascertainment bias.
As a result, non-coding elements will be predicted in some loci
of the genome more often than in others purely by chance, and
any random subset of non-coding DNA may appear significantly
enriched or depleted for some annotation terms, i.e. the above-
mentioned strategy for an indirect functional analysis is biased due to
the variable locus length. To correct for the GO ascertainment bias,
within the context of functional inference on non-coding elements,
the probability of a given annotation term should be set proportional
to the fraction of the length of non-coding DNA assigned to it, which
is strongly correlated with the length of the locus that contains it,
and is highly variable across different loci (Supplementary Fig. 1).

The aim of this work is to evaluate the effect of the variability
in locus length on the functional analysis of non-coding DNA. We
consider the total population of non-coding DNA elements in the
human genome and the annotation terms attributed to their neighbor
genes, and assess whether a set of non-coding DNA elements
randomly sampled from the genome will appear artificially enriched
and/or depleted for any annotation term. In our study, we report
systematic false positive associations for a particular set of GO
categories; the choice of the GO database is just exemplary. Finally,
we propose a statistical method and a set of correction coefficients
to perform an unbiased functional analysis for a set of non-coding
elements in a genome.

2 METHODS

2.1 GO assignment
We performed the functional classification of non-coding elements based on
the GO gene annotation database. Each non-coding DNA element can be
associated with a set of GO categories that corresponds to either the gene
containing that element or the closest flanking gene, in case of intergenic or

promoter elements. Therefore, a locus will consist of a gene together with half
of its adjacent intergenic regions; a delimitation closer to the real transcription
units would be desirable, but impracticable, while the boundaries proposed
here eliminate any ambiguity in the gene assignment of the non-coding
elements.

Also, each gene usually has several associated GO categories.
Furthermore, the structure of the GO database is hierarchical, so that each
GO category is connected to other categories, which may be associated with
other genes. The version of the GO database that we employed contained
6592 terms, each assigned to an average of 17 genes. Three quarters of
the GO categories are ascribed to at most five genes, while the average
gene count for the remaining quarter is 64. Only 18 GO categories are
attributed to 1000 or more genes; from these, five describe some molecular
‘binding’, and seven refer to cellular components. We downloaded the
RefSeq gene annotation of the human genome (NCBI Build 36.1; hg18) from
the UCSC Genome Browser (Karolchik et al., 2003), and identified 17 475
discrete gene loci, with an average locus length of 152 057 bp (the shortest
locus was 612 bp, while the longest locus was 4 767 747 bp). The average
locus length for a GO category was 159 918 bp, ranging from 1979 bp to
3 204 335 bp; the average locus length of 25% GO categories was longer
than 194 230 bp.

2.2 Sampling
For the purpose of this study, we define a non-coding DNA element as a
non-repetitive non-coding DNA sequence stretch within a gene locus, much
shorter than the complete locus length. This allowed direct sampling of genes
from the genome with a probability being a function of the non-coding non-
repetitive length of the gene locus.

The population of non-coding DNA elements in the genome is finite,
and its probability distribution is discrete. The probability of a given non-
coding DNA element is given by its length divided by the total non-coding
DNAin the genome (LHG

nc =1359884776 nucleotides). We took 1000 random
samples for each sample size (n ranging from 100 to 200 000), using the
algorithm described in Supplementary Figure 5. We computed the frequency
of the GO categories corresponding to each different gene associated with
the non-coding elements in each of the 1000 samples.

2.3 GO enrichment/depletion
The usual statistical test for functional enrichment compares the count of
GO category associations for a given set of genes to the expected number,
which is derived from the count of GO category associations in the complete
genome. For each GO category, the test evaluates the probability of observing
a number of genes associated with a particular GO category, by comparing
it with the total number of genes in the genome that are assigned to that
category. This analysis assumes that all genes are equally likely, and the
probability of attributing a given function or GO category to a gene only
depends on the total number of genes carrying that GO category.

Under such hypotheses, the probability of associating a certain non-coding
DNA element to a given GO category can be regarded as

PGO = NGO

NHG
(1)

where NGO is the number of genes/loci associated with a given GO
category in the set of NHG genes analyzed. Enrichment in a certain GO
category can be quantified by computing the probability that the number of
non-coding DNA elements in a sample of size n that are associated with a GO
category, NGO, is larger than or equal to the observed value m assuming the
frequency PGO in all genes. This follows a hypergeometric distribution which
approximates the binomial distribution when n/NHG is small

(
n/NHG <20

)
.

For each of the 1000 random samples, we identified the set of different
genes associated with non-coding elements, and subsequently counted the
frequency of the GO categories associated with these genes. The frequencies
of the GO categories were compared with the genomic frequencies.
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Fig. 1. Distribution of GO categories with respect to the locus length. Left
and right tables list the GO categories particularly associated with short and
long loci, respectively.

This procedure allows distinguishing enrichments or depletions of specific
GO categories in the sample. The probability of obtaining k non-coding
DNA elements for a given GO category among a sample of size n by
chance, knowing that the reference dataset contains NGO such annotated
genes/loci out of NHG = 17 475 genes/loci, can be calculated using the
hypergeometric distribution. The significance of the enrichment in each of
the GO categories was evaluated by summing over the upper tail of the
hypergeometric distribution (α = 0.05) and applying Bonferroni’s multiple
test correction. For the later, we multiplied the nominal P-values calculated
as described above by the number of tests performed, i.e. the total number
of GO categories.

3 RESULTS

3.1 Variable locus length of GO categories
In the present study, we utilized RefSeq gene annotation to define
the genomic location of genes and their corresponding loci. First, we
utilized all available transcripts to identify 17 475 non-overlapping
genes. Next, we split the genome into a set of loci by dividing
intergenic intervals in half. We also tested an alternative locus
definition, in which the locus boundaries were determined by
proximity to the transcription start site, and did not observe an impact
on our conclusions (see next section for details).

In assessing the variation in the average locus length of
different GO categories belonging to the three hierarchies ‘biological
process’, ‘molecular process’and ‘cellular component’, we observed
a wide distribution of average locus lengths centered at around
100 kb (Fig. 1). A substantial fraction of GO categories was
found to be assigned to genes with either unusually short or
unusually long loci. Interestingly, we noted a particular bias towards
specific GO categories, and therefore, biological functions, in
short and long loci. Concretely, several GO categories related
to metabolic processes, as well as some involved in specific
responses, are particularly overrepresented in short loci (<80 kb),
while GO categories corresponding to development, morphogenesis,
regulation and signaling are significantly overrepresented in loci
longer than 120 kb (Table 1). Although the substrate of this study
is the GO database, other functional annotation databases will most
probably present a conceptually similar bias in locus length, as this
bias has a biological origin, namely the heterogeneity in the locus
length.

Table 1. GO categories significantly associated with genes in shorter loci
and in longer loci

Process/function Locus length (kb) P-value

Genes in shorter loci
Response

To unfolded protein 28.7 2.4e-5
To bacterium, defense 58.5 1.3e-5
To biotic stimulus 58.8 1.8e-12

Oxidative phosphorylation 32.6 6.1e-9
Oxidoreductase activity 38.3 1.2e-5
Electron transport

Mitochondrial 34.3 1.1e-5
ATP synthesis coupled 36.1 1.4e-6

Ribosome
Structural constituent 36.8 1.7e-8
Biogenesis and assembly 44.9 1.8e-7

Keratinization 38.2 1.2e-6
Epidermal cell differentiation 43.3 1.2e-5
rRNA

Processing 50.2 9.1e-7
Metabolic process 51.3 8.4e-7

Genes with longer loci
Morphogenesis

Embryonic limb 525.2 6.8e-7
Neurite 185.2 1.4e-7

Development
Limb 483.1 6.0e-8
Lung 283.2 7.3e-6
Respiratory tube 277.0 4.4e-6
Brain 228.2 1.3e-7
Central nervous system 228.1 1.3e-11
Tube 202.0 4.4e-9

Regulation of
Developmental process, positive 325.3 2.1e-5
Cell differentiation, negative 316.4 2.5e-5
Transcription, positive 183.4 1.8e-6

Axon guidance 320.5 2.5e-5
Signaling

Cyclic-nucleotide-mediated 214.7 2.7e-6
G-protein 214.7 1.3e-6

3.2 Ascertainment bias impact
The effect of the ascertainment bias caused by the locus length non-
uniformity in GO categories will vary depending on the number
of genes each GO category is assigned to and the number of non-
coding elements used in a study. A GO category associated with
very few genes is less likely to result in an incorrect prediction than
a GO category associated with many genes, simply because a GO
category with few genes is less likely to be detected at all. A small set
of non-coding elements is also less likely to produce false positive
associations, as it is less likely to produce any associations at all.

To explore the need of accounting for such ascertainment bias,
we randomly selected sets of non-coding elements in the human
genome, associated them with their closest genes, and performed
a classical GO analysis on the indirectly selected sets of genes.
(It should be noted that although this study concentrates on the
GO database, the conclusions can be generalized to any other
system of functional classification.) We also excluded repetitive
elements from the analysis, as functional non-coding elements are
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Fig. 2. The average number of GO categories that show up as significantly
over- or underrepresented in experiments with random sets of non-coding
elements for different sample sizes.

expected to be mainly non-repetitive. We will refer to the process
of sampling n non-coding DNA elements from the human genome
as an experiment. We performed 1000 independent experiments for
each sample size n, which ranged from 100 to 200 000, and evaluated
enrichment and depletion for different GO categories. We adjusted
the significance level by applying the strict Bonferroni’s multiple-
testing correction (Bonferroni, 1935). Unexpectedly often, aleatory
sets of non-coding DNA elements were found to be significantly
associated with multiple GO categories (Fig. 2 shows the number
of GO categories that appeared to be significant in at least 5%
of the experiments for different sample sizes). The number of
significantly overrepresented GO categories reached the maximum
of 22 for sample size 20 000, and decreased to five as the sample size
increased to 200 000. The number of underrepresented categories
rapidly plateaued at 10 GO categories in the range of sample
sizes plotted. By sampling non-coding elements we indirectly select
genes, but the occurrence of each gene is considered only once.
For that reason, 20 000 non-coding samples result in ∼43% of the
total number of genes in the human genome. When the sample
size is large enough so that every gene is effectively represented,
the sample coincides with the population. In this case, the number
of occurrences for each category meets its expected value. In
other words, the number of occurrences of a given GO category
converges to the expected value as more genes become represented
in the sample, and this accounts for the variation in the number
of artificially over- or underrepresented GO categories with the
sample size.

To test whether this effect is a simple consequence of our locus
definition, in which intergenic space is split in half, we repeated
this experiment using an alternative locus definition, in which a
non-coding element is associated with the gene that has the most
proximal transcription start site to the element. We found that the

Fig. 3. Significantly over- and/or underrepresented GO categories (showing
only categories which are significant in at least 25% of the experiments).
The x-axis represents different sample sizes, only within a range in which
the number of GO categories over- and/or underrepresented shows high
variation.

alternative locus definition has no impact on the observed effect
(Supplementary Fig. 2).

In summary, we found that up to 31 GO categories were
significantly over- or underrepresented, depending on the sample
size. Specifically, within the usual sample size ranges, over 10
GO categories were overrepresented with a striking confidence
level. Considering that each experiment consisted of randomly
sampled non-coding DNA elements, and that the experiment was
independently repeated a large number of times, this result is
not expected. However, the outcome can be easily explained by
considering that the non-coding DNA elements do not all have the
same probability of being assigned to a gene, but instead have a
probability that depends on the locus length.

3.3 Systematically biased GO category assignments
The fact that random sets of non-coding elements appear to
be significantly enriched in certain GO categories is alarming.
Nevertheless, an even more worrisome question is whether any of
such associations between random sets of non-coding elements and
GO categories occurs systematically, as this would suggest that some
particular GO categories are likely to be reported as significant on
a regular basis. For that purpose, for a given sample size n, we
analyzed GO categories that were reported as significantly over- or
underrepresented in at least 25% of the experiments (Fig. 3). We
observed a systematic significant association for a total of 13 GO
categories (nine overrepresentations and four underrepresentations).
It is interesting to note that the majority of the overrepresented GO
categories relate to basic cellular processes (cell adhesion, binding,
transcription factors and development), while underrepresented GO
categories correspond to lineage-specific and adaptive features
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Table 2. Significantly over/underrepresented GO categories (showing only
categories which are significant in at least 25% of the experiments)

GO id Description L̄GO

L̄HG

Overrepresentation

GO:0007156 Homophilic cell adhesion 4.7
GO:0007155 Cell adhesion 2.3
GO:0007399 Nervous system development 1.9
GO:0005509 Calcium ion binding 1.7
GO:0007242 Intracellular signaling cascade 1.4
GO:0043565 Sequence-specific DNA binding 1.4
GO:0007275 Multicellular organismal development 1.3
GO:0006468 Protein amino acid phosphorylation 1.3
GO:0003700 Transcription factor activity 1.2

Underrepresentation
GO:0007186 G-protein coupled receptor protein

signaling pathway
0.7

GO:0050896 Response to stimulus 0.6
GO:0007608 Sensory perception of smell 0.4
GO:0004984 Olfactory receptor activity 0.3

Overrepresented GO categories appear to have ratios >1, while underrepresented GO
categories consist of shorter loci, on average.

(response and receptor categories). Not surprisingly, these constitute
a subset of the GO categories for which we observe a large deviation
from the uniform distribution in relation to the locus length (Table 2
summarizes the ratio between the average locus length for the loci

associated with each particular GO category
[
L

GO
]

represented in

Figure 3 and the average locus length in the human genome
[
L

HG
]
).

For example, the category ‘homophilic cell adhesion’ appeared
to be consistently overrepresented in random sets of 500 and
more non-coding elements. More precisely, sets of 500 non-coding
elements were significantly associated with this category in 25% of
independent experiments, while sets of 2500 non-coding elements
were significantly associated with this category in more than 85%
of experiments. Interestingly, 55 of the 94 genes associated with
homophilic cell adhesion are cadherins. Cadherins (Supplementary
Table 2) are a superfamily of adhesion molecules with function
in cell recognition, tissue morphogenesis and tumor suppression
(Angst et al., 2001). Cadherin genes are often flanked either on
one or on both sides by a so-called gene desert [an extremely
long intergenic region (Ovcharenko et al., 2005)], and this genome
architecture is well conserved in mammals and birds (Angst et al.,
2001; Wu and Maniatis, 2000; Wu et al., 2001). The characteristic
long locus length of these cadherins contributes to the association
bias of the homophilic cell adhesion category, which appears as one
the top candidates for the systematic false positive annotation of
non-coding elements.

In summary, these results indicate that the effect of the
locus length heterogeneity and the unevenness of the GO
category distribution with regards to it are not negligible and
should be appropriately accounted for in functional inference of
non-coding elements. The consequence of observing artificially
overrepresented categories is conceptually different from that of
detecting underrepresented categories. Given a non-coding element,
in the former case the results might suggest a function that it does

not actually fulfill (false positive), while in the latter case, evidence
for a certain function might be simply omitted (false negative).

3.4 Locus length correction
We have shown that the distortion in the distribution of the GO
categories in relation to the locus length may lead to erroneous
conclusions in the context of the functional annotation of non-coding
elements. However, such bias can be excluded by simply introducing
probability correction coefficients that depend on the average locus
length of each GO category. To account for the heterogeneous locus
length in the human genome, we suggest considering the length of
the non-coding DNA associated with each GO category, as described
below.

If we randomly sample non-coding elements from the human
genome, the probability of observing a certain GO category is

P̂GO = LGO
nc

LHG
nc

(2)

where LGO
nc is the total length of the non-coding DNA in the loci

a given GO category, and LHG
nc is the total length of the non-coding

DNA in the human genome (Supplementary Fig. 3).
The probability of observing a certain GO category assuming

that all genes in the human genome occur randomly with the same
frequency is

P̂GO = NGO

NHG
(3)

where NGO is the number of genes/loci associated with a given GO
category and NHG genes is the number of genes/loci in the human
genome.

Then, we define a correction coefficient CCGO for each GO
category (Supplementary Table 1), such that

P̂GO =CCGO ·PGO (4)

and

CCGO = P̂GO

PGO
= LGO

nc /LHG
nc

NGO/NHG
= LGO

nc

NGO
· NHG

LHG
nc

= L
GO
nc

L
HG
nc

(5)

The selection of n GO categories at random from the entire genome
can be modeled as a binomial distribution where the success of an
event is defined as selecting a certain GO category with a probability
that depends on the length of the non-coding DNA in the loci that
GO category is associated with.

If we observe m instances of a GO category, we can calculate its
P-value under a random model, as 1 minus the cumulative binomial
probability of selecting that particular GO category with a frequency
m−1, which is calculated as

1−
m−1∑
k=0

(
n

k

)
·P̂k

GO ·
(

1−P̂GO

)n−k
(6)

In order to correct for multiple testing, we must multiply that
probability by the number B of hypothesis we test for (Bonferroni’s
multiple-comparison correction). The expected frequency of a GO
category is n ·P̂GO.

We propose to use the ratio of observed to expected frequencies
as a rough indicator of enrichment; a ratio above one indicates
that the GO category is enriched in the sample with respect to its
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average expectation, while a ratio below one indicates a depleted GO
category. However, it must be noted that this ratio will overestimate
GO categories with few expected occurrences.

3.5 Validation
In addition to the aforementioned experiments, we discarded
artifacts caused by the sampling method, correlation between GO
categories or the threshold chosen for establishing the significance
by repeating 1000 sampling experiments from the finite population
of non-coding DNA elements at random and testing each GO
category for enrichment/depletion using a binomial distribution.
As expected, when we computed the P-values using a binomial
distribution with parameters n (sample size) and P̂GO, where P̂GO
is the probability of observing the total length of non-coding DNA
indirectly assigned to a particular GO, we could not detect any
particular GO category significant in 5% or more of the experiments.
However, when we repeated the calculations using a binomial
distribution with parameters n (sample size) and PGO, where PGO is
the probability of observing all genes in the genome that are assigned
to a particular GO, we obtained a list of over- and underrepresented
categories very similar to that produced with the hypergeometric
distribution.

Finally, we would like to mention that the inclusion of repetitive
elements in the analysis does not alter the results, as their locus span
is strongly correlated with the locus length (data not shown). Also, to
confirm that the observed effect is not associated with either repeat-
rich or repeat-poor regions we analyzed the relation between the
number of non-coding non-repetitive elements in a locus and repeat
density. We found that loci with the excessive number of non-coding
non-repetitive elements that contribute to an enrichment of artificial
GO associations have average repeat density and are not biased
towards either repeat-rich or repeat-poor regions (Supplementary
Fig. 4).

4 DISCUSSION
GO databases provide a variety of tools for the functional analysis
of genes. Due to the current lack of exhaustive databases describing
functional non-coding DNA elements, it has become a usual practice
to indirectly infer the biological role of selected non-coding elements
from the functional analysis of their flanking genes. As we have
shown, the high heterogeneity locus length in the human genome
and the uneven distribution of the GO categories in relation to the
locus length can bias functional inference. Therefore, the P-values
for the GO categories that clearly deviate from the assumptions made
by the hypergeometric test should be computed considering that the
probability of a given GO category does not only depend on the
number of genes assigned to it, but also on the length of their loci.
Otherwise, categories that are particularly associated with very long
or very short loci might appear artificially over- or underrepresented,
respectively. As an approximate solution to the problem caused by
the variability in the locus length, we propose the use of correction
coefficients, which take into consideration the genome span of
non-coding DNA corresponding to different GO categories. The
coefficients in Supplementary Table 1 can be easily recomputed
for other genomes and other annotation databases according to the
procedure described in Section 2.

Table 3. Overrepresented GO categories computed using the usual
hypergeometric test (panel A) and accounting for variable locus length (panel
B) on the datasets described by Ovcharenko et al. (2004) and Woolfe et al.
(2005)

GO P-value Description

(A) Classical approach

GO:0043565 4.44E-42 Sequence-specific DNA binding
GO:0003700 4.04E-41 Transcription factor activity
GO:0006355 2.13E–33 Regulation of transcription, DNA-dependent
GO:0007275 4.36E-10 Multicellular organismal development
GO:0006350 6.65E-09 Transcription
GO:0007399 1.18E-04 Nervous system development

(B) GO ascertainment bias correction
GO:0006355 2.08E-22 Regulation of transcription, DNA-dependent
GO:0003700 3.56E-17 Transcription factor activity
GO:0043565 2.74E-15 Sequence-specific DNA binding
GO:0003677 1.39E-06 DNA binding
GO:0006350 1.61E-06 Transcription

Categories removed by the GO ascertainment correction are highlighted, as well as
additional categories found after applying the correction.

An increasing number of studies report that conserved non-coding
sequences tend to cluster in the vicinity of genes implicated in
development and transcriptional regulation (termed trans-dev genes)
(see for example, Bejerano et al., 2004; Dermitzakis et al., 2005;
McEwen et al., 2006; Ovcharenko, 2008; Sandelin et al., 2004;
Woolfe et al., 2005). We observe the association of similar GO
categories with random sets of non-coding DNA, suggesting that the
heterogeneity of the locus length might have had an adverse effect on
previous reports. In a reanalysis of studies describing ultraconserved
elements (Bejerano et al., 2004) and non-coding elements conserved
between human and fish (Ovcharenko et al., 2004; Woolfe et al.,
2005), we found that the originally reported association with
transcriptional regulation and transcription factors can be strongly
confirmed even after the application of the correction for the GO
ascertainment bias, while the P-values for associations related to
the nervous system and multicellular organismal development fall
below the level of statistical significance (Tables 3 and 4). However,
it is important to note that our results do not necessarily object the
validity of previously published conclusions—if the extreme length
of some loci is the result of evolutionary selection and not simply
of the locus length variability, the proposed non-coding length
correction might artificially reduce the significance of biologically
important associations. Obviously, without the availability of
extensive annotation databases for non-coding elements, it might
be quite difficult to establish a bulletproof approach for using
gene annotation databases for an indirect annotation of non-coding
elements, but it is also unwise to ignore the potential impact of
the locus length on the inference of the function for non-coding
elements. Therefore, until we have a large-scale sampling of non-
coding functional elements in the human genome that we can use to
infer function of other non-coding elements, a practical solution
might consist of utilizing the classical GO analysis approach,
applying the proposed correction, and analyzing differences and
commonalities in the results.
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Table 4. Overrepresented GO categories computed using the usual
hypergeometric test (panel A) and accounting for variable locus length
(panel B) on the datasets described by Bejerano et al. (2004)

GO P-value Description

(A) Classical approach

GO:0006355 5.34E-25 Regulation of transcription, DNA-dependent
GO:0003700 1.62E-24 Transcription factor activity
GO:0043565 2.56E-20 Sequence-specific DNA binding
GO:0006350 1.24E-07 Transcription
GO:0007275 8.14E-05 Multicellular organismal development
GO:0007399 1.59E-03 Nervous system development

(B) GO ascertainment bias correction
GO:0006355 2.05E-22 Regulation of transcription, DNA-dependent
GO:0003700 5.33E-18 Transcription factor activity
GO:0043565 1.46E-13 Sequence-specific DNA binding
GO:0006350 3.85E-07 Transcription
GO:0003677 3.20E-03 DNA binding

Categories removed by the GO ascertainment correction are highlighted, as well as
additional categories found after applying the correction.
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