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ABSTRACT

Motivation: To efficiently analyze the ‘native ensemble of
conformations’ accessible to proteins near their folded state and
to extract essential information from observed distributions of
conformations, reliable mathematical methods and computational
tools are needed.

Result: Examination of 24 pairs of structures determined by both
NMR and X-ray reveals that the differences in the dynamics of
the same protein resolved by the two techniques can be tracked
to the most robust low frequency modes elucidated by principal
component analysis (PCA) of NMR models. The active sites of
enzymes are found to be highly constrained in these PCA modes.
Furthermore, the residues predicted to be highly immobile are shown
to be evolutionarily conserved, lending support to a PCA-based
identification of potential functional sites. An online tool, PCA_NEST,
is designed to derive the principal modes of conformational changes
from structural ensembles resolved by experiments or generated by
computations.

Availability: http://ignm.ccbb.pitt.edu/oPCA_Online.htm

Contact: Iwy1@iam.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Principal Component Analysis (PCA) is a widely used technique
to retrieve dominant patterns and representative distributions from
noisy data (Jolliffe, 2002). The idea is to map the investigated
complex system from a multidimensional space to a reduced space
spanned by a few principal components (PCs), thus elucidating
the principal/dominant features underlying the observed data. In
structural biology, the ensembles of structures accessible to a given
biomolecule form such complex data, which upon suitable analyses
may provide information on conformational motions (Amadei et al.,
1993; Garcia 1992; Hayward et al., 1993; Kitao et al., 1991).
Studies such as the quasi-harmonic analysis of molecular dynamics
(MD) (Hayward et al., 1993; Kitao et al., 1991; Kitao et al., 1998)
or Monte Carlo (MC) trajectories (Kenzaki and Kikuchi, 2008),

*To whom correspondence should be addressed.

the essential dynamics analysis of MD runs (Amadei et al.,
1993), the analyses of the ensembles generated by non-Newtonian
approaches (Barrett et al., 2004), the definition of human Major
Histocompatibility Complex supertypes (Doytchinova et al., 2004)
and the clustering of NMR ensembles of structural models
determined by Nuclear Magnetic Resonance (NMR) (Howe, 2001)
are just a few examples of PCA applications. Despite its widely
recognized utility, a user-friendly, high-throughput online PCA tool
that takes as input experimentally determined (e.g. X-ray, NMR) or
theoretically generated (e.g. by MD, MC or comparative modeling)
structural ensembles to yield functionally relevant information is
lacking.

The PCA of the native ensemble of structures accessible to a given
biomolecule is shown in the present study to provide information on
functional dynamics and biomolecular design features. Calculations
performed for NMR ensembles of structures show that, in 20 out
of 24 examined proteins, the conformational differences A{®}
observed between the NMR structures and their X-ray counterparts
are consistent with the principal modes of motion identified by
PCA and supported by the physics-based anisotropic network model
(ANM; Atilgan et al., 2001; Eyal et al., 2006) (Section 3.1).
These ‘robust modes’, insensitive to model parameters and methods,
point to directions of conformational changes that are energetically
favored by the particular topology of native contacts. We argue
that the molecules are designed to so move for functional reasons
(Alexandrov et al., 2005; Bahar and Rader, 2005; Ma, 2005;
Tama and Brooks, 2006; Yang and Chng, 2008). Evidence is
given here that catalytic residues of 12 examined enzymes are
shown to occupy highly constrained, ‘immobile’, positions along the
dominant PC profiles (Section 3.2). Notably, the residues identified
to be highly constrained in these robust PC modes are verified to
be evolutionarily conserved, further supporting the utility of the
PCA of structural ensembles for identifying potential functional sites
(PFSs).

Finally, we will present in Section 3.3 a new web resource,
PCA_NEST (PCA of Native Ensembles of STructures), which
uses as input ensembles of protein and/or polynucleotide
structures accessible under native state conditions, and releases the
corresponding principal modes of structural changes and PFSs via
a user-friendly interface.
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Fig. 1. An ensemble of conformations and corresponding variations in
residue positions. (a) An ensemble of NMR models (teal) for ubiquitin (1xqq;
Lindorff-Larsen et al., 2005) and corresponding X-ray structure (lubg;
yellow), are optimally superimposed as described in Method (left). The mean
structure of the NMR ensemble (gray) moves towards its X-ray counterpart
(yellow) along the first PC mode, vV, indicated by the blue arrows (right).
(b) Per residue RMSD, < (Aq;)?>!/2 [based on a-carbons; see Equation
(2)] as a function of residue index i, derived from the NMR ensemble shown
in (a). (c) Difference, A{®}; (blue, solid curve) in the position of residue
i, between the average NMR and the X-ray structures and comparison with
the first PC mode \Vgl)\ (red, dotted curve).

2 THEORY AND METHOD

2.1 Ensembles of structures

In the present study, the term ‘ensemble’ refers to a collection
of structures sampled under native state conditions by a given
biomolecule, namely a protein, a polynucleotide, or a complex
(Fig. la). The members of the ensemble are referred to as
conformations, structural frames or simply ‘models’. The flow
diagram in Figure 2 describes how PCA results are generated for
a given set of input data. The input can be an ensemble of NMR
models (>7000 such ensembles have been deposited in the PDB
as of February, 2008) or a collection of X-ray structures for the
same protein (or those having high sequence identity). The PDB
presently contains >5987 such non-single-member families (Qi
et al., 2005) that share >90% sequence identity. Alternatively,
MD or MC snapshots may be used as structural models. Finally,
models predicted from sequence data using ab initio or comparative
modeling methods may serve as input.

2.2 Optimal superimposition of structural frames

Our main interest is to analyze the internal motions. We remove the
contributions from rigid-body translations and rotations by optimal
alignment of the models using Kabsch (1976) algorithm. This
algorithm gives a unique solution that minimizes the root-mean-
square deviation (RMSD) between the examined models. Each
model f is represented by a 3N-dimensional vector

'y =1d, d) d}...d\, 1" (1)
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Fig. 2. Flow diagram of PCA_NEST. The ensemble of native structures is
subjected to PCA at two levels, atomic (left column) and CG (right column).
See the text for more details.

where q{ = [x]; y{ z{ ] is the position vector of atom i in model
f for a protein of N atoms (or residues in the coarse-grained
(CG) representation where C* atom coordinates are used for each
residue position). The RMSD, <(Aq,-)2 >1/2 in the position of
atom i is found from

2

d-a

<(aq)*>'2=

@3

1 M
M};’

where q; is the position vector of the i-th atom averaged over the
ensemble of M models. Figure 1b displays the < (Aqi)2 >1/2 profile
for ubiquitin, deduced from the NMR models shown in Figure 1a,
for example. The RMSD averaged over all atoms is written as

RMSD =

1 N
N < (Ag)?> 3)
i=1

A best-fitting procedure is iterated until the RMSD between
successive average frames is converged (see flow diagram in Fig. 2).
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2.3 Principal Component Analysis (PCA)

For an ensemble containing M frames (1 <f <M) and N heavy
atoms (or CG-nodes) (1 <i <N) per frame, we build a covariance
matrix

C=QQ" )

Here Q is a matrix of M columns consisting each of 3N-dimensional
vectors of N super-elements (3D vectors). The corresponding i-th
super-element

d-a_ T
Aquﬁzﬁ(Ax{,A){,Azf) 5)

describes the deviation of atom i from its mean position q;. C can
be decomposed as

c=QQT=vsVvT= (Uzl/sz)T(Uzl/sz) 6)

where V is the matrix of the 3N-dimensional eigenvectors v
(1 <k <M) associated with the M non-zero PC modes, and x1/2
is the diagonal matrix of the square root ékl /2 of the corresponding
eigenvalues, obtained from the singular value decomposition (SVD)
of Q. The 3N-elements of vk describe the variations in the
positions of the N nodes associated with PC mode k, each given

by a 3D vector vgk)(l <i<N) (see the arrows in Figs la (right)

and 3a) and the & kl /2 represents the weight of the mode &, the modes
being rank-ordered as &§; > &, > ... > &). The largest contributions
to conformational variations come from the top-ranking PC modes.
For a system of M <3N frames, the decomposition of C yields M
non-zero modes. U is the M x M PC coordinates matrix (UUT =I)
that maps the frames in the PC space back to their original coordinate
system, as may be inferred from Equation (6). The SVD of QT
is computationally faster than the eigenvalue decomposition of C
when M < 3N, which is the case for NMR models; hence the use of
SVD in our web implementation.

2.4 Correlation between structural changes and PC
modes

The conformational change between two conformations for a given
protein is given by a 3N-dimensional vector A{®}. The elements of
A{®} are the x-, y- and z-components of the changes in the position
vectors of the N atoms (or nodes in the CG model). The correlation,
ap i, between A{®} and the k-th PC mode v®) js defined as

A{D} ey

= 7
IA{@}] [v®| @

ap i

where ¢ designates the dot product, and the bars denote the
magnitudes. The cumulative contribution of M PC modes, dpc
is evaluated from Spc = (Zap,iz)l/ 2(1 <i<M). Alternatively, the
summation over M’ (< M) modes gives the cumulative contribution
dpc,m of M’ modes (see the footnote of Table 1). Similar
expressions apply to the correlations with ANM modes.
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Fig. 3. PCA_NEST outputs and interfaces, illustrated for HIV-1 protease
(PDB code: 1bve). (a) Conformational changes along the first PC mode.
The diagram represents a snapshot from a JMol animation describing the
conformational fluctuations favored by this particular mode. The arrows refer
to the elements of the first eigenvector v(1); they describe the directions
of the movements of each CG-node, and their lengths are proportional
to the magnitude of the fluctuations. Active sites Asp25 and Thr26 are
shown in spheres. (b) Residue-residue correlation map for the first PC
mode (see Supplementary Material for details) (¢) My, profiles [see
Equation (8)] for monomers A and B of HIV-1 protease. The minima in
the profile are further analyzed (with regard to the solvent exposure and
spatial clustering of the corresponding residues) to identify PFSs. (d) Ribbon
diagram illustrating the PCA_NEST-defined dynamic domains. Different
colors indicate substructures subject to opposite direction (anticorrelated)
movements in the first PC mode. We note that active sites are located near
the interface between the dynamic domains in the center of the molecule. (e)
Decoys along the PC mode 1. Decoys are created in pairs (along the positive
and negative directions of the first PC), and they are automatically submitted
to DynDom (Hayward and Berendsen, 1998) for dynamic domain analysis.
(f) Distribution of the 128 NMR frames deposited for ubiquitin (1xqq) on
the conformational subspace spanned by PC modes 1 and 2. Such projection
onto a reduced space allows for clustering structures based on their dominant
conformational features.

2.5 Potential Functional Sites (PFSs)

In accord with our previous study (Yang and Bahar, 2005), PFSs are
found from minima in the mobility profiles

2
Mu,FZSk (Vi(k) °V,-(k)> (3)
k=1
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Table 1. Identification of the PC and ANM modes that dominate experimentally observed conformational changes®

Correlation between

Pohrests ST st

Protein M N NMR/X-ray A Oppay Mpmax Hc/Gpcre Mpar, Mpaz OparsOpar Camar Mamer Saxar/avano
Chicken cystatin 16 108 1a67/lcew 452 0.64 2 081/0/79 (2.2)(1.1) 084,064 065 2  0.82/0.81
Serine protease 18 269 lah2/l1c9) 1.28 0.16 14 034016 (3.3)(2.2) 060.0.51 022 18 042/0.24
DHFR 21 163 1ao8/3dfr 0.86 0.29 1 057047 (1.1)(2.3) 066,056 034 1 0.56/0.54

Bov. phospholipase 20 123 1bvm/lbp2 1.16 0.31 2 0.70/0.59 (7.1)(L.1) 051,034 043 1 0.71/0.63
Cyclophilin 12 166 1clh/1j2a 218 033 2 046/046 (1.2)(2.6) 0.86,062 027 2  0.40/0.39
Hen lysozyme 50 129 1e811321 1.61 033 2 0.83/0.57 (2.2)(6.1) 047.044 032 1 0.71/0.50
Cytochrome C 32 129 1leky/lepq 2.66 0.40 1 079065 (1.2)(51) 047.044 036 13 0.67/049
Pyrophosphokinase 20 158 leq0/ldy3 4.22 0.38 3 0.77/0.73 (42)(1.1) 055,050 054 4 0.78/0.72
Maltodextrin binding 10 370 lezo/lanf 4.87 034 1 061/0.61 (1.2)(3.3) 093.0.78 052 1 0.75/0.75
Femicytochrome C 17 108 1fhb/lchh 1.03 032 5 065058 (1.1)(4.5) 0.71,052 036 § 0.67/0.62
Bovine angiogenin 10 125  1gio/lagi 1.80 043 0.59/0.59 (1,1)(1,3) 0.52,046 037 7  0.68/0.68
Pleckstrin domain 50 106 1mph/lbtm 1.55 030 2 0.77/0.50 (2.1)(1.2) 0.61.0.58 045 1 0.79/0.56
Fatty acid binding 10 125 1mvg/ltvq 1.38 0.26 1 047/047 (52)(2,1) 044,039 053 2 0.60/0.60
Ompx 20 148 lorm/lqj8 444 0.28 1 057/049 (2.1)(1.1) 0.56.0.52 044 8 0.76/0.68

Sterol carrier 20 123 1qnd/lc44 576 0.32 1 060/052 (2.1)(1.,7) 0.75.042 041 7 0.72/0.58
Ribonuclease F1 42 106 1rck/Ifus 1.82 0.33 4 0.77/0.58 (5.4)(2.1) 055,054 043 1 0.73/0.53
Frataxin orthologue 20 106 1soy/lewd4 1.28 0.33 4 0.59/0.50 (20.16)(1.3) 0.53.048 031 3 0.48/0.42
Hemoglobin 29 147 1vre/ljf4 1.43 0.25 1 064056 (1.2)(2.1) 0.61.049 038 1 0.69/0.63
Profilin I 19 125 Zprfilacf 2.00 029 6 0.58/0.49 (1.3)(2.3) 046,043 018 9 0.43/0.36

Che Y protein 20 129 1cye/lebk 1.56 0.39 1 0.71/0.67 (2.4)(62) 0.41.041 029 2 0.60/0.53
H.C. variable domain 20 116 1g9e/lhcv 1.41 0.25 3 0.50/0.38 (7.11)(3.24) 0.46,0.38 031 36 0.46/0.32
Ferrocytochrome 20 111 1qn0/1wad 1.18 0.26 1 048035 (1.1)(42) 059,043 034 1 0.56/0.51
Fibronectin *FI’F1 15 89 2ckw2cgé 6.00 062 3 082077 (1.1)(22) 0.76.0.75 0.55 3  0.83/0.82
Ubiquitin 128 76 1xqq/lubq 1.65 0.67 1 100094 (1.1)(2.2) 0.75.0.71 0.51 1 0.98/0.77
Average 26.6 140 240 035 0.65/0.56 0.61,0.51 0.40 0.66/0.57

APDB codes for 24 pairs of homologous NMR and X-ray structures are listed in the column ‘NMR/X-ray’. M and N are the available number of NMR models and the number
of residues for a given protein respectively. A is the RMSD (A) between the average NMR structure and the corresponding X-ray structure. The mpp,y is the index of the PC
mode that shows maximal correlation with A{®}, and ap mayx is the corresponding correlation (Equation 7 with k =mpyqay ). dpc is the cumulative contribution of all PC modes,
Spc = (Zap,iz)l/z(l <i<M). The 8pcy( is the counterpart of Spc based on the first 10 modes (1 <i <10). The mp .y is the index of the ANM mode that shows the highest
correlation with A{®}. The corresponding correlation is @A max- Bold-faced mpmax/mamax values correspond to the 20 cases where robust modes describe most of observed
conformational changes (see main text). §AnNM is the ANM counterpart of pc. The highest and second highest correlations observed between pairs of PC- and ANM-modes are
apa1 and appy respectively. The corresponding pairs of mode numbers are mpa | and mpp o, respectively.

reflecting the weighted sum of the top-ranking two PC modes (1 <
i <N). Minima of interest are based on groups of five sequential
nodes, with the center being lower than the first two neighbors on
each side. We also require that the M5 ; value of the PFSs to be
<10% of that exhibited by the most mobile node in the structure.
Figure 3c illustrates the M, ; profile for HIV-1 protease.

2.6 Minima-screening algorithm to rank-score the

PFSs

Not all the PFSs (or minima) have equal functional importance. We
further score those PFSs based on their relative solvent accessibility
and spatial clustering properties (see Supplementary Material for
details). The algorithm, referred to as minima-screening algorithm,
depends merely on inter-residue contact topology. The top-scoring
eight (or less) PFSs for the examined proteins are listed at the bottom
of the ‘Potential Functional Sites’ page of PCA_NEST.

2.7 Residue conservation

Residue conservation scores are assigned using the Consurf server
(Landau et al., 2005) and used for examining the degree of sequence
conservation at the PFSs. Conservation scores range from 1 (highly
diverse) to 9 (highly conserved).

2.8 Residue correlations and dynamic domains

The residue—residue correlation map generated by PCA_NEST is a
color-coded covariance matrix of N x N dimension, the ij-th element
of which is defined as

(k) (k)
é(k)— v lev;

vl

K|

The covariance values vary in the range [—1, 1]. Positive values
refer to pairs of residues moving in the same direction along mode

®
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k, and negative values refer to those moving in opposite directions.
Moreover, The plus and minus signs of the values in the most

dominant eigenvector, obtained from SVD of Cl(\l/{z])’ classifies the

nodes into two motional subsets, which can be used to define the
dynamic domains (see Supplementary Material).

3 RESULTS

The results are organized in three subsections. First, we show
how the top-ranking PC modes satisfactorily describe the structural
difference between X-ray- and NMR-characterized conformers.
Second, we focus on particular enzymes to demonstrate how
the PCA-predicted PFSs correlate with catalytic residues and/or
evolutionarily conserved sites. Third, we present an overview of
the newly designed resource, PCA_NEST, and its visualization and
comparative analyses features.

3.1 Robust PC modes explain the conformational
change between NMR and X-ray conformers

The top-ranking PC modes derived from a given NMR ensemble
convey information on the most probable changes in conformations
sampled by the examined molecule. We will explore the existence
of a correlation between these conformational variations and a
physical-model (ANM) derived dynamics. Also, due to the ease
of moving along soft PC modes, we will examine to what extent
the differences A{®} in the NMR and X-ray conformers relate to
reconfigurations along these PC modes.

3.1.1 Do structural differences A{®} between NMR and X-ray
conformers correlate with PC modes derived from NMR models?
The results for the examined 24 proteins are presented in Table 1,
organized in three sets of columns: PCA results, ANM results and
their correlations. We identified in each case the PC mode (mpp,x)
that exhibits the highest correlation (e¢tppyax ) With the experimentally
observed conformational change A{®} [see Equation (6)]. Notably,
a correlation coefficient of 0.35 is achieved by this single mode,
averaged over all examined cases (last row in Table 1), while in
some cases the value can be above 0.6 (e.g. 1a67, 2cku and 1xqq).
The single mode that exhibits the highest correlation is the first
mode in 11/24 of the cases, the second mode in 5/24 and the third in
3/24 cases. Column 8 lists the cumulative correlation (dpc) resulting
from all M modes. The corresponding average over all proteins is
<8pc >=10.65 between the PC modes and A{®}. Note that this
correlation is achieved by a small subset (~6%) of the accessible
3N-6 modes (see the average M and N in the last row of Table 1;
<M>/(3<N>—-6)~6%).

3.1.2 How does the physics-based model ANM describe A{®}?
CG normal mode analysis with ANM (Eyal et al., 2006; Yang and
Chng 2008), using a 15A cutoff, shows that it is possible to identify a
single ANM mode for each protein, which also yields a comparable
average correlation (< opmax >=0.40) with A{®}. That ‘single
mode’ is again amongst the lowest frequency modes (first ANM
mode in 9/24 cases, second in 4/24), although this tendency is
not as pronounced as the PC modes. The cumulative effect of the
slowest M modes (out of a total of 3N-6 ANM modes) amounts to
approximately the same average value <8§anMm >,0.67.

3.1.3 The modes that underlie the observed A{®} are shared
between PC and ANM modes A much higher correlation is
observed between the PC modes and the ANM modes. Columns
8 and 9 list the mode numbers mpp| and mpp> corresponding to
the most correlated PC and ANM mode-pairs, and their respective
correlations, apa; and apar. The averages over the 24 proteins
yield <app; >=0.61 and <appj>=0.51. The lack of an even
higher correlation is attributed to the anharmonic effects present
in the slow PC modes (Kitao et al., 1998). Interestingly, the
PC-ANM mode-pairs that exhibit the highest and second-highest
correlations coincide with the particular modes mpp,x and/or
MAmax that best describe A{®} in 20 out of 24 cases (PDB
codes are written in boldface). In other words, the modes that
are closely reproduced by the two different methods correlate with
A{®}. For example, the seventh PC mode and the first ANM
mode of bovine phospholipase (PDB code: 1bvm) are the most
correlated pair while the first PC and the first ANM modes are
the second most correlated. ANM mode 1 and PC modes 1 and
7 are therefore the most robust modes, confirmed by both PCA
and ANM. Here, the first ANM mode explains A{®} the most,
among any other modes. The conformational changes that take
place along these ‘soft’ modes incur, by definition, the lowest
energy increase, and therefore lie along the easiest paths of
deformation.

Growing evidence has shown that biologically relevant motions
are accessed via a few structure-encoded low-frequency modes
(Nicolay and Sanejouand, 2006). However, to determine exactly
which mode predominantly accounts for such motions remains a
difficult task. Also, the above analysis shows that the correlation
between a single PC mode and A{®} is usually low. Here, we
propose to consolidate the NMR-derived PC modes by ANM
analysis to identify the modes that significantly account for observed
changes. The identified robust modes can be advantageously used
in template-based structure refinement (Kidera and Go 1992; Tama
et al., 2004).

3.2 Potential Functional Sites (PFSs)

From the set of 64 NMR protein ensembles previously examined
(Yang et al., 2007), we selected the subset of enzymes with known
Enzyme Class (E.C.) numbers (from Enzyme Structures Database)
and catalytic sites (from Catalytic Site Atlas (CSA; Porter et al.,
2004) or literature). The My ; profiles were examined for the
resulting set of 12 enzymes. These profiles show that the catalytic
sites exhibit a strong tendency to be positioned at the minima (Fig. 4),
with an average mobility score of 2.9% over all enzymes (see
Table 2; 100% for peak residues in the normalized M, ; profile;
0% for immobile residues), consistent with our earlier physics-based
results (Yang and Bahar, 2005).

We also note that the profiles contain many (local) minima, and
not all of them contain catalytic residues. Toward a further screening
of the PFSs for selecting the most probable functional sites, we
score-ranked them based on their relative solvent accessibility and
spatial clustering properties (Bartlett et al., 2002; Gutteridge et al.,
2003). The algorithm, referred to as minima-screening algorithm,
depends on inter-residue contact topology exclusively, irrespective
of residue type or evolutionary information such as conservation
scores (see details in the Supplementary Material). We were able to
locate the majority of catalytic residues within the top-ranking 68

610



PCA_NEST

0.9} i’ \\\
LR

:.;- P \. {y ’
08 d
0.4+

0.3

0.2+
R ]3

b 20 40 80 100 120

Fig. 4. Fluctuation profiles induced by dominant PC modes. Four examples are displayed, which illustrate how the enzyme active sites (green squares) lie
at the minima of the normalized M, ; profiles (ordinate) based on PC modes 1 and 2, drawn a function of residue index (abscissa). The ribbon diagrams
in the insets show the literature- and CSA-reported (Porter et al., 2004) actives sites for ribonuclease F1 (1rck), hen lysozyme (1e81), serine protease (1ah2)
and HIV-1 protease (1bve) in green ball-and-stick representation. The structural regions predicted to be most critically positioned are colored pink. The two

curves in the last panel (1bve) refer to the profiles of the two monomers.

PFSs (see the ranks in parentheses in the column 8 in Table 2) by
using this algorithm.

The aforementioned observations give insights into criteria
underlying the design of active sites: (i) enzymes tend to locate their
key catalytic power in mechanically constrained (low-mobility), but
solvent accessible, positions and (ii) the catalytic sites spatially
cluster, irrespective of their separation along the sequence.

As a further verification of the functional significance of
PCA_NEST-predicted top-ranking PFSs (other than the catalytic
residues), we examined their conservation properties. An average
Consurf conservation score (Con_Score; last column of Table 2)
of 7.6 was obtained for top-ranking PFSs as opposed to an
understandably higher score, 8.5, for catalytic residues and 5.4 for
an average residue (A). If we separate the top-ranking PFSs into
two sets, the ‘true positives’ that overlap with the catalytic sites
(CAT) and the FPs that do not match any reported catalytic residues
but are predicted by PCA_NEST to be potentially significant, and
reexamine the Con_Score for FPs only, surprisingly, we found an
average Con_Score of 7.5! This result lends strong support to the
biological significance of PCA_NEST-predicted top-ranking PFSs.

3.3 PCA_NEST: a web tool for analyzing ensembles of
structures

PCA_NEST uses as input structural ensembles (proteins/peptides,
RNA/DNA or their complexes), either experimentally characterized
or computationally generated (see for example Fig. S5 in the
Supplementary Material). The examined ensemble is first subject
to an iterative best-fitting (see Fig. 2 and Table S1 in Supplementary
Material) and then to PCA that renders a series of output data.

The raw output data include two sets of results: CG and full
atomic. CG nodes are centered at the C¥ positions of the amino
acids in proteins and at the phosphorus, sugar carbon C4* and base
carbon C2 positions of the nucleotides in DNA/RNA structures
(Yang et al., 2006). Each set of results contains the following
information (Fig. S4): (i) general specifications of the examined
set (e.g. the number of nodes or atoms, number of frames/models,
average RMSD between models), (ii) predicted directions and
relative sizes of the principal changes in conformation, given by
the PC eigenvectors v k) for 1<k<M (see Section 2), (ii) the
PC eigenvalues &, in ascending order, starting from zero, which
rescale the overall size of conformational change in each mode,
(iv) newly reoriented models obtained after iterative best-fitting,
(v) The average structural coordinates as well the particular model
(among the members of the original ensemble) which is structurally
closest to the computed mean structure, (vi) model coordinates in the
space spanned by the PCs, Zl/ 2yt (Section 2) and (vii) effective
frequencies of PC modes (Equation S1).

Visualization modules that use animations, 2D-plots or 3D
diagrams to comprehensibly present these data are available for
assisting viewers as shown in Figure 3. Analyzers that utilize
the aforementioned raw data for advanced analyses include four
modules: (i) PFSs finder that lists the PFSs based on the two top-
ranking PC modes and sorted after the minima-screening algorithms
described in the Supplementary Material, (ii) cross-correlation maps
(see Fig. 3b and Supplementary Material), (iii) decoy Generator and
DynDom Analyzer (Fig. 3e) and (iv) computed order parameters
that permit a fast evaluation of amide bond order parameters (s
based on the best-fitted structural ensemble or selected conformers
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Table 2. Identification of PFSs based on the PCA of NMR ensembles

NMR Name M N E.C.No. CATH" Top-ranking PFSsb Catalytic residues¢ <M, ..~ <Con_Score>*®
x1009  CAT/PFSIFP/AIl
1A08 Dihydrofolate reductase 21 163 1513  3.40430.10 AQ7,V40,F3,T34,A6,D26,Y46,H28 L19,D26(6) 44 7.5/8.0/7.8/5.1
1Y8B Malate synthase G 10 723 2339 1.10.1860.10 L117,V535,8537,D270,F336,L298,E108,  D270(4),E272(4),R338(5), 37 9.0/8.5/8.4/5.5
3.20.20.360; G296 D831
1AX3f Glucose permease 2a domain 16 162 2.7.1.69 2.70.70.10 P130,F84,119,A44,554,V150, F34 T56,H68,H83(2),G85(2) 1.1 9.0/6.7/6.5/5.2
1BVM Phospholipase A2 20 123 3114 1.2090.10 R100,H48,F5,C45M8,C29,1104,195 G30(6),H48(2),D99(1) 1.8 9.0/8.7/8.3/5.4
1T3K Cdc25-like tyrosine phosphatase 20 132 3.1.3.48 N/A \/69,126,028,C82,G108,R78,L58 M3 HT71(1),C72,R78(6) 1.7 6.7/7.0/7.3/5.0
1610 Angiogenin 10 125 31.27- 31013010 F116, F46, T12,V105,P113,181,F120, 157 H14(3)K41H115(1)F116(1) 04 8.017.7/8.0/5.4
1RCK Ribonuclease F1 42 106 31.27.3 3.10.450.30 V78,E58,189,A20,Y42,V16,F48 H40(5),E58(2),H91(3) 27 9.016.:2/3.7/5.5
1E8L Hen lysozyme 50 129 32117 1.10530.10 N57, V92, K96, VO9,N106, Y53, K33 E35(7),D52(6) 29 9.0/6.1/6.6/5.7
1AH2 Serine protease 18 269 34.21.62 34050200 P219,G223L122,A140, V30,5215 A226, D32(5),H62(8),N153,52156) 58 9.0/8.1/7.8/5.2
G63
1BVE HIV-1 protease 28 198 3.4.23.16; 240.70.10 B:/84,A:L24,A:185B:L24,A:G49,B:G49, D252), T26(2) 6.3 9.0/8.7/8.5/5.8
3.1.264 A:T31,B:T31

1AYK! Collagenase 30 169 3.4.247 3.40390.10 E119,G121, F38, 134, W41,L126,A84,V30 E119(1) 0.7 9.017.3/8.4/5.4
1NMV Mitotic regulator hPin1 10 111 5218 2.2070.10; [159,L61,G120,S58,A107,,/156,Y92 F134 H592),C113 H157(1) 30 7.3/7.719.0/5.0
Average 3.10.50.40 29 8.5/7.6/7.5/5.4

4The ensembles listed here are of distinct structure folds and topologies, based on their CATH number.

bpredicted by PCA_NEST (top scoring eight minima centers identified in the M, ; profile of the enzyme).

“Experimentally determined, accessible from the literature or from manually compiled databases (e.g., CSA; Porter et al., 2004). Residues in boldface are in top-ranking minima
predicted by the minima-screening algorithm (rank is indicated in parentheses); those written in italic lie at the minima of the M ; curve.

dPpercent mobility of catalytic residues <M1, car> averaged over all catalytic residues for each protein.

€ Average sequence conservation score evaluated using Consurf (‘9” for most conserved residues; ‘1” for the least; Landau et al., 2005) for catalytic residues (CAT), for PCA-predicted
potential functional sites (PFS), for the false positives predictions (FP) and for all residues (All). The score varies from 1 (most diverse) to 9 (most conserved).

fTruncated proteins. The respective first 13, 5 and 6 N-terminal residues of 1AX3, 1GIO and 1AYK were excluded.

that suitably represent the conformational space sampled near native
state (see Fig. S6 in the Supplementary Material).

4 DISCUSSION AND CONCLUSIONS

4.1 Native ensembles provide information on intrinsic
dynamics

Overall our results suggest that the experimentally determined
ensembles of conformers do exhibit features characteristic of
the particular proteins’ dynamics under native state conditions.
Notably, the RMSD between NMR models and the difference A{®}
between NMR and X-ray structures yield an average correlation
of 0.70 (Table S1 in Supplementary Material). This observation is
consistent with the recent finding that a handful of experimentally
known conformers, or simply collections of structural homologs,
satisfactorily reproduce NMR order parameters (Best et al., 2006).
We further argue that the inferred motions are structure-induced
properties ‘intrinsic’ to the examined proteins (Bahar ez al., 2007;
Gutteridge and Thornton, 2005; Lange et al., 2008), i.e. a dynamic
signature of a given molecular topology, which can be described
by physics-based analytical models (e.g. ANM). The dynamic
significance of the native ensembles of structures was also suggested
by our earlier study where the deviations from mean positions
of residues within NMR ensembles were shown to be consistent
with the equilibrium fluctuations predicted by the ANM (Yang
et al., 2007). It should be noted that the NMR ensembles in

the PDB are modeled by combining experimentally determined
restraints (typically, inter-proton distances extracted from NOESY
data and peptide torsional angles from measurements of three-bond
J-couplings) with an empirical force field containing contributions
from local and non-local interactions, including non-linear effects;
and the deviations among the NMR models reflect the uncertainties
in the atomic coordinates optimally assessed by this elaborate
procedure. ANM modes, on the other hand, represent unique
solutions, analytically derived based on a single representative
structure; the predicted equilibrium dynamics is fully controlled
by the 3N x 3N Hessian matrix where uniform force constants are
adopted for elastic springs that are assumed to connect spatially
close residues. In view of these methods/approximations, the
observed correlation of 0.61 between ANM and NMR-PCA modes
(Table 1) essentially point to the dominant effect of the common
component, inter-residue (ANM) or inter-atomic (NMR) contact
topology inherently defining the robust modes of motions, in both
cases.

4.2 X-ray structure is a conformational state along the
dominant PCs derived from NMR models

Despite the structural (Andrec et al., 2007) and dynamic (Yang et
al., 2007) differences in biomolecules independently determined by
X-ray and NMR, these differences are shown here to be nonetheless
explained by the M PC modes, with a correlation of 0.66 averaged
over all examined protein pairs. A significant fraction of this
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correlation is usually contributed by a single mode (see Table 1,
opmax and oamax values). Despite of the difficulty in predicting the
conformational changes between NMR and X-ray structures, which
originates from the nature of the structures as being characterized
in distinct environments (temperature, buffer/ligand used and crystal
forms, etc.), we have shown that the observed structural differences
essentially reflect the changes in conformation along the most
robust modes reproduced independently and consistently by PCA
and ANM. Also, the positional covariance derived by PCA_NEST
can serve as a guidance in iterative structure refinement (Tama
etal.,2004) or ligand-induced conformation changes based on linear
response theory (Ikeguchi et al., 2005).

4.3 The role of conformational dynamics in residue
conservation

It has been known for more than half a century that amino acid side
chains are critical to the functions of enzymes. Hence, it comes as
a surprise that the PCA results based on CG-nodes (C* atoms only)
succeed in closely predicting the position of the enzyme active site.
The high stability of the active site in the collective motions (low PC
modes) suggests that enzymes are evolutionarily inclined to locate
their functional residues at sites that enable a precise positioning
necessary for the chemical reaction. These same sites coincide with,
or closely neighbor, hinge sites corresponding to collective motions,
which further suggest a possible coupling between local catalytic
events to global (e.g. domain) motions.

Another interesting result was to observe the high level of
conservation of the top-ranking PFSs (other than the known catalytic
sites; see columns 7 and 10 (last) of Table 2) inferred from the
PCA of native ensembles of structures. Overall, the PCA of native
ensembles of proteins provides hypotheses about important sites
to be further tested and established by experiments and/or more
detailed computations.

4.4 When PCA_NEST does not work?

In general, if the ensemble of models does not provide an adequate
sampling of the conformational space accessible to the examined
protein, the results from PCA _NEST may be equally biased.
Improper sampling is usually, but not necessarily, due to a small
number of models. The Supplementary Material Section V presents
and discusses the results from PCA using different ensembles
of NMR models, applied to the prediction of order parameters
from NMR relaxation experiments performed for ubiquitin. The
ensembles containing smaller numbers of models lead to impaired
predictions. However, a small number (as few as 12) of models
may be sufficient to restore accuracy, provided that these models
adequately sample the subspace spanned the first few PC modes.

4.5 Closing remarks

PCA_NEST provides a gateway for the PCA of collections
of structures, determined experimentally or theoretically, for a
given biomolecule, with supporting intuitive interfaces to best
present various types of results. Our analyses herein exemplify
how the web-based tool can be utilized to gain biologically
and physically meaningful results. Notably, PCA_NEST offers
standardized procedures to process ensembles such as iterative best-
fitting, coarse-graining, PFS identification and other calculations

that allow for comparing results on a common ground and drawing
unbiased conclusions based on statistically meaningful data.

The robust modes shared by PCA and ANM indicate the
directions of conformational changes which incur a minimal
energy cost as the molecule travels in the neighborhood of its
global energy minimum. The fact that such energetically favored
reconfigurations correlate with the conformational mechanisms
involved in biological function suggests that structures are designed
to move so due to functional reasons. Particular structures
survive in evolution by performing biologically correct movements,
ie. they set in motion certain domains/loops and arrest the
movements in other parts (e.g. global hinges). Evidence is presented
here that catalytic residues usually occupy positions that are
highly constrained, almost ‘static’, in these robust modes that
are conserved/selected. This is in support of the concept of
structural predisposition of enzymes to enable the functional
coupling between conformational mechanics and catalytic activity
(Yang and Bahar, 2005). Finally, the residues identified to be
immobile in these essential PC modes (both the global hinges
and other sites) are noted to be evolutionarily conserved, closing
the loop {structure — dynamics — function — structure}, i.e.
structure induces dynamics, which enable function, which, in turn,
selects/conserves the structure.
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