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Abstract
Metamorphosis of Drosophila involves proliferation, differentiation and death of larval tissues in
order to form the adult fly. The major steroid hormone implicated in the larval-pupal transition and
adult tissue modelling is ecdysone. Previous reviews have draw together studies connecting
ecdysone signaling to the processes of apoptosis and differentiation. Here we discuss those reports
connecting the ecdysone pulse to developmentally regulated cell cycle progression.

Review
The ecdysone steroid hormone controls insect 
development
The Drosophila melanogaster imaginal discs provide an
ideal model for understanding how developmental sign-
aling pathways control the cell proliferation required for
animal growth and development. Imaginal discs develop
into the adult head structures (eyes and antenna),
appendages (wings and legs) and genitalia. The imaginal
disc precursor cells arise early in embryonic development,
where they are established and localised as groups of cells
in specific regions of the embryo. Each imaginal disc
develops from invaginations of the embryonic epithelium
and by the early larval stage, consist of a ball of around
10–50 undifferentiated stem cells, which undergo mas-
sive growth and proliferation to comprise up to 100,000
cells by the end of the third larval instar. The imaginal
discs start differentiation at the end of third instar and
complete the process by the end of pupariation, when all
adult structures such as the wings, legs and eyes have
developed [1]. The third instar larval stage is therefore a
critical stage of Drosophila development, containing the
major growth and proliferation of all tissues required to

form the adult fly [2]. Correct development of adult struc-
tures requires coordination of proliferation with the onset
of cell differentiation in the imaginal discs.

EcR/USP structure and function
The major developmental hormone in Drosophila, the ster-
oid hormone 20-hydroxyecdysone, commonly known as
ecdysone, is secreted from the prothoracic gland (PG) and
plays a major role in regulating imaginal disc develop-
ment. Ecdysone release is controlled by a complex combi-
nation of upstream factors, including peptide hormones
and neuropeptide signals [3]. For example, Prothoracico-
tropic hormone (PTTH) from the central nervous system
(CNS) is required to regulate the synthesis and release of
ecdysone from the PG [4]. Ecdysone pulses are required
for all aspects of morphogenesis, starting with the forma-
tion of the body plan during late embryogenesis required
to develop to first instar larvae and for the cuticle moult-
ing at the end of the first and second instars. A large titre
of ecdysone is released at the end of the third instar, in the
wandering larvae in preparation for pupation, which
marks the beginning of adult tissue metamorphosis [5-8].
The range of larval structures that respond to the ecdysone
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pulse at this transformation stage all elicit diverse cellular
responses to achieve conversion from the larval tissue to
the adult structures [9].

During metamorphosis, a cascade of gene transcription is
triggered by ecdysone, which activates the ecdysone recep-
tor (EcR), a member of the nuclear receptor family, and its
receptor binding partner Ultraspiricle (USP) [5-8]. The
EcR gene spans 77 kb in length, and through the use of
two promoters and as a result of alternate splicing,
encodes three major protein isoforms EcR-A, EcR-B1, EcR-
B2. The EcR-A, EcR-B1, EcR-B2 isoforms have conserved
DNA binding domains and ligand binding domains but
differ in their N-terminal regions, with variable N termi-
nal domains of 197, 226 and 17 amino acid residues,
respectively [8,10]. Although EcR can bind ecdysone
alone, optimal binding to the ecdysone response elements
(EcRE) and activation of transcriptional targets requires
the addition of USP [11,12].

USP exhibits a strong structural and functional similarity
to the orthologous vertebrate retinoid × receptor (RXR)
[13,14]. Like RXR, which forms heterodimers with non-
steroid receptors for thyroid hormone, retinoic acid and
vitamin D, and thereby activates them for DNA-binding
[15], USP interacts with each of the EcR isoforms to form
DNA-binding heterodimers [9,13]. Drosophila EcRs are
therefore analogous to the vertebrate family of RXR het-
erodimeric receptors rather than the vertebrate family of
steroid hormone receptors, which bind DNA as
homodimers [16]. In the presence of the ecdysone ligand,
the appropriate EcR nuclear receptor isoform dimerizes
with Ultraspiricle (USP), and the complex is stabilised by
the ecdysone ligand to allow efficient binding to the
ecdysone response element (EcRE) [17,18] and transcrip-
tional activation of ecdysone-responsive genes (such as
BR-C, E74, E75) [19-23]. Early genes encode transcription
factors that activate late genes and this hierarchy of gene
activation is required for subsequent development [5]. To
increase the output of the ecdysone pulse, EcR provides an
autoregulatory loop by increasing the level of it's own
transcription in order to further increase receptor levels in
response to the ecdysone ligand [8].

The Ecdysone pulse drives cell death and differentiation
An essential process driven by the ecdysone pulse is the
removal of larval tissues no longer required in the adult
[24]. The process of steroid hormone driven apoptosis is
an important part of tissue remodelling, whereby selective
death removes unwanted cells towards generating the
mature structure [25]. For example, the histolysis of the
larval salivary gland and midgut at the end of metamor-
phosis is stage-specific, ecdysone triggered, programmed
cell death, which results in the removal of the component
of these larval structures no longer required in the adult
fly. Consistent with this, previous studies have shown that

cell death activators are upregulated in the third instar lar-
val tissues, including the salivary glands and midgut in
response to ecdysone (reviewed [24,26,27]).

The ecdysone is pulse is also essential for differentiation
and patterning of the larval imaginal tissues required for
development of adult structures [17,19,28,29]. As cell
division and patterning are tightly linked in Drosophila
imaginal tissues the process of metamorphosis controlled
by ecdysone will therefore involve coordination of the
developmental signals that regulate proliferation and dif-
ferentiation. Although much work has focused on the
downstream targets linking the ecdysone pathway to pro-
grammed cell death and cell differentiation [24,26,27],
the relationship between ecdysone and cell cycle is less
clear. Here we integrate evidence providing a link between
the ecdysone pulse and cell cycle progression in Dro-
sophila.

Linking the Ecdysone pulse to cell cycle
Conservation of cell proliferation machinery in Drosophila
In Drosophila, cell growth and cell cycle progression are
regulated by a number of key genes, which have been
shown to control the cell cycle in an analogous manner in
all multicellular organisms. These include the Drosophila
orthologue of the mammalian c-myc transcription factor
and oncogene, dMyc, which drives growth and progres-
sion through G1 to S-phase [30], the essential G1 to S-
phase Cyclin complex, Cyclin E (CycE) and it's Cyclin-
dependent-kinase (Cdk) partner Cdk2, which triggers S-
phase by promoting DNA replication [31-33], and the
Drosophila orthologue of the Cdc25 phosphatase, String
(Stg), which is required for G2/M progression and pro-
motes mitotic entry by activating the Cdk1/Cyclin B com-
plex [34]. CycE and Stg are the rate limiting factors for S-
phase and mitosis, respectively, and both are activated by
the Drosophila orthologue of human E2F1 protein, dE2F1
[32]. dE2F1 responds to the relevant Cdk-Cyclin complex
(CycE/Cdk2 for S-phase and CycB/Cdk1 for mitosis) to
coordinate cell cycle progression from G1 to S-phase and
G2 into mitosis [35].

During metamorphosis, growth of larval tissues occurs in
an ecdysone-dependent manner to produce adult struc-
tures. For example, during pupal development the larval
midgut is removed by apoptosis and is replaced through
proliferation of imaginal tissues to form the adult midgut
[26,36]. Microarray analysis has revealed that the ecdys-
one signal is associated with the activation of key cell cycle
genes, including Cyclin B, Cdc2 and Cyclin D, during the
initiation of midgut metamorphosis [37]. Analysis of EcR
null mutants revealed that EcR function was necessary for
the cell cycle and growth genes to be activated in the larval
midgut, suggesting that the ecdysone pathway is required
for cell division control.
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Cell extrinsic effects of ecdysone on larval growth
The ecdysone pulse has been shown to act non-autono-
mously to affect larval growth. These cell extrinsic effects
of the ecdysone pathway are reviewed elsewhere [38-41]
and therefore only mentioned briefly here. This control of
Drosophila larval growth and final body size occurs non-
autonomously, at least in part through interactions
between the ecdysone and insulin pathways. The insulin
signaling pathway acts in the prothoracic gland (PG) to
regulate the release of ecdysone, therefore influencing the
rate and duration of larval growth [38,39,42-45]. For
instance, increased PG growth occurs when PI3-kinase
(PI3K, a downstream regulator of the insulin pathway) is
upregulated in the PG [42,44]. The PG overgrowth causes
accelerated metamorphosis, which results in reduced
adult size due to the rapid progression through the larval
growth stage. Precocious ecdysone release, as measured by
premature increase in levels of the early response ecdys-
one genes, correlates with this disruption to larval growth.
Conversely, reducing growth of the PG, using a dominant
negative form of PI3K, resulted in a longer larval growth
period and larger adults due to slower ecdysone release
and delayed onset of pupariation. More recently it has
been shown that Target of Rapamycin (TOR) may link the
ecdysone regulated development to the PI3K mediated
growth pathways [46] (reviewed [41]).

Correct timing of the critical peak in ecdysone is therefore
essential for controlling larval growth and adult body size,
but how does the ecdysone pulse achieve these changes in
cell growth and cell cycle progression within the larval tis-
sues? In particular, how does ecdysone connect with the
major developmental signaling pathways that regulate
cell cycle patterning in Drosophila?

The ecdysone pathway mediates Morphogenetic furrow 
progression in the larval eye imaginal disc
The Drosophila eye is composed of a highly organised array
of photoreceptor clusters or ommatidia, which develop
from an epithelial monolayer known as the eye imaginal
disc (Figure 1). Differentiation of the ommatidia occurs in
a wave that moves from the posterior toward the anterior
[47]. The margin between the asynchronously dividing
anterior cells and the differentiated posterior cells is
marked by the morphogenetic furrow (MF) [48]. Mitotic
division cycles become synchronized in the MF where
cells are delayed in G1 and a subset of photoreceptor cells
are specified. The remaining retinal cells synchronously
re-enter the cell cycle in the "Second Mitotic Wave"
(SMW), which is composed of a tight band of DNA syn-
thesis and mitosis (Figure 1). These final cell divisions
provide the cells required for differentiation of the omma-
tidial structures that form the adult eye [48,49].

Coordination of proliferation and patterning in the eye
imaginal disc depends on key signaling pathways, such as

Wingless (Wg), Hedgehog (Hh), Decapentaplegic (Dpp)
and Notch [50], which are conserved in vertebrates where
they are critical mediators of development and disease
[51]. Microarray analysis has linked the ecdysone pulse
during metamorphosis to transcriptional changes in
mitogenic signaling molecules (described in detail
below), which are essential for coordinating cell cycle and
patterning of imaginal tissues. The observation that ecdys-
one signaling was essential for the activation of factors
involved in developmental signaling pathways such as
Wg, Notch and Dpp, suggests there might be many con-
nections between the ecdysone pulse, signaling pathways
and cell cycle regulation during metamorphosis in Dro-
sophila [37].

The Hedgehog (Hh) and Dpp pathways control cell division in the 
larval eye
Drosophila eye development is dependent on hedgehog
(hh) expression posterior to the MF [52,53] and decapenta-
plegic (dpp) expression within the MF [54]. Drosophila Dpp
is a member of the mammalian transforming growth fac-
tor-beta (TGF-beta) family of secreted proteins. TGF-beta

Eye imaginal disc differentiation occurs in a wave that moves from posterior (P) to anterior (A)Figure 1
Eye imaginal disc differentiation occurs in a wave 
that moves from posterior (P) to anterior (A). The 
margin between the asynchronously dividing anterior cells 
and the differentiated posterior cells is marked by the mor-
phogenetic furrow (MF), where cells are delayed in G1. 
Mitotic division cycles become synchronized in the "Second 
Mitotic Wave" (SMW), which is composed of a tight band of 
DNA synthesis (marked by BrdU in red) and mitosis (marked 
by PH3 in green). The differentiated ommatidial clusters pos-
terior of the furrow can be seen with the DNA stain in blue.
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can behave as a tumour-suppressor or oncogene depend-
ing on the tissue microenvironment, thus pathway inhibi-
tion or activation can result in cancer progression [55-61].
Aberrant Hh signaling has also been associated with
numerous human cancers, with much literature linking
activation of the pathway with increased tumour progres-
sion [62-66].

In the eye disc, the Hh and Dpp signaling pathways regu-
late key cell cycle genes to mediate cell cycle arrest or pro-
gression. Cell cycle arrest occurs in G1 phase within and
anterior to the MF in response to Dpp [67,68]. Dpp and
Hedgehog (Hh) act redundantly to ensure G1 arrest, thus
cells unable to respond to Dpp will arrest later in response
to Hh [69]. Dpp and Hh are both required to ensure Cyc-
lin E and dE2F1 are inhibited and the cells comprising the
MF undergo a coordinated G1 arrest [70]. In addition to
the cell cycle inhibitory role of Hh in the anterior of the
MF, Hh acts to promote cell division in the SMW by
upregulating Cyclin D to promote cell growth and Cyclin
E to drive S-phase entry [71]. These contrasting roles of
Hh in different cells indicate that levels of Hh may be
important to dictate cell cycle outcome or that other fac-
tors are involved. Indeed Notch signaling has been shown
to be critical to drive S-phase entry in the SMW [72,73].

Ecdysone and developmental cell cycle control in the eye
Studies in the eye primordium of the moth, Manduca
sexta, suggest that progression of the MF, including prolif-
eration and differentiation of ommatidial clusters,
requires ecdysone. Eye primordia proliferation responds
to a critical concentration of ecdysone and below this
threshold cells arrest in the G2 phase of the cell cycle [74].
Premature exposure to high levels of ecdysone will also
result in MF arrest and precocious maturation of ommat-
ida [75]. These cell cycle responses to ecdysone are con-
sistent with the moderate ecdysone pulse during the larval
stage stimulating eye proliferation, whilst the high levels
of ecdysone released after pupariation would be required
for cell cycle exit and eye maturation.

The ecdysone pathway has also been implicated in regula-
tion of MF progression in the Drosophila larval eye imagi-
nal disc [76]. The ecdysoneless mutation (ecd-ts) is a
hypomorphic temperature-sensitive allele, which reduces
ecdysone secretion from the ring gland [77]. Homozygous
ecd-ts flies show eye defects when shifted to the restrictive
temperature during the third instar larval stage [76]. Con-
sistent with the MF moving much more slowly than nor-
mal in the ecd-ts mutant, delayed eye differentiation was
shown using the Elav marker. This phenotype is similar to
phenotypes resulting from hh loss of function [53]. Con-
sistent with hh being a downstream target of the ecdysone
signal, decreased levels of Hh protein were detected poste-
rior to the MF in ecd-ts larval eye discs [76]. Delayed MF

progression would be consistent with a requirement for
Hh in activation of the S-phase genes Cyclin D and Cyclin
E and therefore cell cycle re-entry in the SMW [71]. The
failure of MF movement in ecd-ts mutants was attributed
to impaired cell cycle progression as S-phase numbers
were dramatically decreased in the SMW [76]. Consistent
with reduction of cell division within the SMW, levels of
the mitotic cyclin, Cyclin B, were also reduced posterior to
the MF [76].

USP also regulates cell cycle and differentiation in devel-
oping larval imaginal discs. Loss-of-function usp clones
spanning the morphogenetic furrow in larval eye imaginal
discs show an anterior shift in expression of the MF-spe-
cific marker Dpp, consistent with premature progression
of the MF and a role for USP in repressing morphogenetic
furrow movement [78]. Loss of functional USP affects
many genes involved in cell fate specification in the eye,
including the differentiation markers Spalt and Atonal
[78]. Although expression of these differentiation markers
occurs prematurely, specification of cells contributing to
the ommatidia occurs normally. The cell cycle analysis of
usp mutant clones suggested that although the MF was
advanced, cell cycle progression was disrupted in the
SMW. First staining for Cyclin A, as a marker for cells in
either S or G2 phase, revealed fewer Cyclin A-positive cells
in usp- clones posterior to the morphogenetic furrow [79].
Similarly, although the Cyclin B band was not shifted in
usp- clones posterior to the MF, the numbers of cells
expressing Cyclin B were reduced [80]. The reduction in
cell cycle markers posterior of the MF suggests that USP is
required for cell cycle progression in the SMW. In support
of cell cycle induction in the SMW depending on the pres-
ence of USP protein, usp overexpression using the GMR-
promoter, which is only expressed posterior of the furrow,
can rescue the loss of Cyclin B in the usp mutant clone. As
progression through the SMW and differentiation are
tightly coupled, the reduced cell cycles in usp-/- clones
may be associated with the premature differentiation
observed [78].

Thus reduction in either ecdysone or USP results in
reduced cell cycles, yet usp mutations increase the rate of
MF movement [78-80] and loss of ecdysone stops the MF
[76,81]. One explanation for these observations is that in
the absence of ligand, the EcR/USP heterodimer normally
acts as a repressor at certain EcREs. For these target genes
ecdysone would be required to relieve the transcriptional
repression caused by unliganded binding of the EcR/USP
complex. This idea emerged from the finding that the
Broad-complex (BR-C), which encodes a family of zinc-fin-
ger transcription factors upregulated in response to high
ecdysone titres [82], becomes ectopically expressed in
wing imaginal disc cells loss-of-function for either usp
[83] or EcR [84]. Although concrete evidence is lacking,
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the idea is that the early (pre-ecdysone pulse) repressive
effect of the EcR/USP heterodimer at the BR-C promoter
will be lost in either EcR or usp mutants.

The apparently contradictory effects of USP and ecdysone
in the eye might therefore be a consequence of the differ-
ential effects of the pathway on BR-C transcription. The Z1
isoform of the BR-C (BrC-Z1) is normally expressed pos-
terior to the MF but not anterior to the MF [85,86] and
reduced induction of BrC-Z1 occurs in ecd-ts eye discs
[76]. Loss of USP function has the opposite effect, leading
to high level BrC-Z1 protein expression both anterior and
posterior to the MF, which might occur as a consequence
of de-repression of BR-C transcription [81]. This high level
of BrC-Z1 protein in usp mutant clones may explain the
MF advancement phenotypes, as ectopic BrC-Z1 protein
has been shown to induce premature differentiation of
photoreceptor cells [78-80].

Yet even though BrC-Z1 expression is downregulated in
ecd-ts mutants [76], BrC-Z1 loss of functioneye imaginal
discs are phenotypically different [79], suggesting that
other downstream transcriptional targets of the ecdysone
pathway mediate the reported effects on eye development.
Like ecd-ts, impaired BrC-Z1 function results in decreased
levels of Hh, defective MF progression and photoreceptor
recruitment. However, unlike the findings for ecd-ts,
reduced levels of Cyclin B were not detected in BrC-Z1 loss
of function clones [79]. Rather loss of BrC-Z1 function
results in defects in ommatidial assembly, suggesting a
role for BR-C in post-MF differentiation rather than cell
cycle regulation in the SMW [81]. This suggests that some
ecdysone regulation in the eye is mediated by BrC-Z1, but
that an alternate target(s) of the ecdysone pathway regu-
lates the cell cycle activity required for cell cycles in the
second mitotic wave.

BR-C regulates endocycles in the ovary
Although a direct cell cycle role has not been demon-
strated in the eye, the ecdysone-responsive BR-C has been
implicated in regulating DNA synthesis in the adult ovary
during oogenesis. Ectopic BR-C expression leads to
ectopic G1 to S-phase endoreplication cycles during oog-
enesis, consistent with the ecdysone pathway promoting
DNA replication [87]. These studies suggest ecdysone is
required for endocycles, which are cycles of DNA replica-
tion (S-phase progression) without cell division required
to amplify specific regions of the genome (the chorion
genes) required for formation of the egg shell [reviewed in
[88]. BR-C loss of function causes premature arrest of cho-
rion gene amplification, whereas overexpression of BR-C
isoforms lead to the formation of additional foci of BrdU
incorporation in follicle cells [89]. BR-C most likely pro-
motes endoreplication in the Drosophila ovary via the key

cell growth and S-phase regulators, dMyc [90] and Cyclin
E [31,91,92].

The ecdysone pathway regulates cell cycle progression in 
the larval wing disc
Developmental patterning of wing disc cell cycles
The larval wing disc is also comprised of an epithelial
sheet, which can be divided into distinct domains based
on cell fate in the adult wing; the notum, hinge and
pouch. The wing pouch, which ultimately forms the adult
wing blade, has been a focus for studying signals impact-
ing upon the cell cycle. The morphogenesis of the wing
blade involves patterned cell cycles that are tightly regu-
lated and the signaling pathways affecting these cell cycles
are well characterised [30,93-96]. A key signaling mole-
cule in the morphogenesis of the wing is the Wingless
(Wg) protein, a member of the Wnt family of secreted
morphogens. Wg is secreted in a band across the dorsal-
ventral (D/V) boundary in the wing pouch Figure 2[97]
and is essential for cell cycle arrest in a region of the wing
disc called the "Zone of Non-Proliferating Cells", or ZNC,
at the end of larval development. The Wg pathway acts to
downregulate the key cell cycle genes; including dmyc,
cycE, dE2F1 and stg, to link the Wg patterning signal to
proliferation [30,94,95,98]. The cell cycle arrest in the
ZNC mediated by Wg is required for these cells to differ-
entiate and develop into the adult wing blade (Figure 2)
[30,94].

Cross-talk between the Wg pathway and other signaling
pathways is required to coordinate proliferation and pat-
terning of the wing imaginal disc. Dpp is expressed in a
band of cells in the anterior compartment along the ante-
rior-posterior boundary [99] and is required for cell cycle
progression and tissue growth [100]. Proliferation is
dependent on careful regulation of the relative levels of
the DPP and Wg signaling pathways [reviewed in [101].
The Hedgehog (Hh) [102] and Notch (N) [103] pathways
are key upstream regulators of Wg in the wing disc. Notch
activity also plays a role in cell cycle arrest during wing
development [94,104]. Notch is activated in cells along
the dorso-ventral (D/V) boundary (ZNC) of the wing disc,
where it is required for Wg expression [103]. The activa-
tion of Wg target genes achaete (ac) and scute (sc) specifi-
cally within the anterior compartment of the cells flanking
the D/V boundary results in downregulation of the
mitotic inducer, Cdc25c/Stg, to arrest these cells in G2
[94]. The expression of Notch specifically within the D/V
boundary prevents the G2 arrest, allowing Wg to mediate
G1 arrest within the anterior cells comprising the D/V
boundary and all cells comprising the posterior compart-
ment ZNC (Figure 2) [30,94]. The interplay of these sign-
aling pathways therefore achieves the pattern of cell cycles
within the wing pouch required for wing disc differentia-
tion.
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Ecdysone regulates the transcription factor Crol which acts to repress 
wg transcription to control wing disc cell cycles
Our recent work revealed a link between the ecdysone
pulse, the Wg pathway and developmental cell cycle regu-
lation in the wing [105]. Previous studies have shown that
Crol, which is a zinc finger transcription factor, is acti-
vated in late larval imaginal discs by the steroid hormone
ecdysone [19]. Pupal lethal, hypomorphic crol mutants
(crol4418) have defects in ecdysone-induced gene expres-
sion [19]. We demonstrated that Crol is required for cell
cycle progression in the wing imaginal disc [105]. First,
crol mutant clones in the wing pouch fail to proliferate,
whilst overexpression of crol results in ectopic prolifera-
tion in the larval wing disc ZNC, suggesting Crol is both
necessary and sufficient for third instar larval wing cell
cycles. Crol is also required to downregulate the Wg path-
way, which normally acts in the ZNC to drive cell cycle
exit and differentiation (Figure 2). Therefore, by inhibit-
ing the Wg pathway, crol positively drives cell cycle and
potentially provides a link between the ecdysone pathway
and the developmental signals that regulate cell cycle (Fig-
ure 3).

The EcR pathway is required for cell cycle progression in the wing
To determine whether ecdysone signaling via the EcR nor-
mally plays a role in cell cycle regulation we used two
independent dominant negative lines to inactivate signal-
ing through the EcR/USP/ecdysone complex; first the
EcRA dominant negative (dN) receptor (EcRAdN), which
still binds ecdysone, USP and the EcRE, but is completely
defective in the activation of target-gene transcription due
to a mutation in the ligand binding domain (LBD) [106];

and second the EcR-B2 dominant negative receptor,
which dimerizes with USP and binds the EcRE, but cannot
bind ecdysone, thus preventing optimal activation of
ecdysone responsive genes [106,107].

We have previously shown that blocking the EcR signal via
overexpression of EcRAdN in third instar wing imaginal
disc flip-out clones [108] results in cell cycle inhibition
[105]. These results suggested that the EcR pathway was
required for the normal pattern of wing imaginal disc cell
cycles. Here we show the result of blocking the pathway
with EcRBdN in wing imaginal disc clones (Figure 4A'–
D'). EcRBdN overexpression results in wing disc clones
with an overall decrease in BrdU positive cells. Quantifi-
cation of BrdU revealed a significant decrease in S-phase
progression in the UAS-EcRBdN clones compared with
control clones (p = 0.0038, Figure 4E'–F'). Consistent
with signaling through the EcR also being required to pos-
itively regulate progression through mitosis, clonal tissue
also exhibited reduced numbers of PH3 positive cells (Fig-
ure 4A"–D") compared with control (p = 0.0047, Figure 4
E"–F"). Cell cycle analysis was carried out as described
previously [105].

Therefore, blocking ecdysone pathway signaling using
UAS-EcR dominant negative transgenes significantly
reduces the number of cells progressing through the cell
cycle. As both the UAS-EcRAdN and UAS-EcRBdN block
the activation of ecdysone responsive genes, these find-
ings suggest that targets of the ecdysone pathway are
required for cell cycle progression in the Drosophila wing
imaginal disc.

Wg protein, dmyc expression and cell cycle patterning in the Drosophila wing pouchFigure 2
Wg protein, dmyc expression and cell cycle patterning in the Drosophila wing pouch. (A) Wg protein (red) is 
strongly expressed along the dorsal-ventral boundary of the wing pouch. (B) α-gal antibody staining (pink) of dmyc-lacZ 
(w67c23P{lacW}l(1)G0354G0354; [109]) discs shows a pattern consistent with dmyc transcription throughout the cycling cells of 
the pouch and downregulation of dmyc within the G1 arrested cells of the ZNC. (C) The zone of non-proliferating cells (ZNC) 
can be seen by the reduced BrdU staining (red) for S-phase along the dorsal-ventral boundary. Wing imaginal discs are aligned 
dorsal (D) to the top of the image, ventral (V) the bottom.
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EcR signaling is required for dmyc transcription
dMyc is a key mediator of growth and S-phase progression
in the wing imaginal disc [30]. To test for changes to dmyc
transcription UAS-EcRAdN flip-out clones were generated
in the dmyc-lacZ enhancer trap background [109] (Figure
5). The control in Figure 5 (A–D) shows the expected pat-
tern of dmyc transcription throughout the cycling cells of
the wing pouch, with reduced staining within the cell
cycle arrested cells of the ZNC [30]. Reduced β-gal staining
in the GFP-positive UAS-EcRAdN clones (Figure 5 E–H),
suggests that dmyc transcription is downregulated as a
consequence of blocking EcR signaling.

These results are consistent with ecdysone signaling
through EcR/USP normally being required for dmyc tran-
scription. As increased dMyc leads to up-regulation of its
cell cycle targets cycE, cycD, and cdk4, resulting in inactiva-
tion of Rbf and increased activity of the S-phase transcrip-
tion factor E2f1 [98], this suggests EcR signaling might
normally regulate S-phase progression by modulating
dmyc levels (Figure 3).

EcR pathway is required for wg expresssion
We recently demonstrated that EcR signaling is required
for repression of wg transcription. Consistent with the EcR
pathway normally being required to repress wg transcrip-
tion, expansion of the wg expression domain occurs in
UAS-EcRAdN [105] and UAS-EcRBdN (Figure 6) flip-out
clones generated in a wg-lacZ enhancer trap background
[110]. These results suggest suppression of wg transcrip-
tion in the wing pouch is dependent on the EcR pathway.
Given that increased Wg protein causes reduction of cell
cycle regulators such as dmyc and stg, leading to decreased
cells in S-phase and mitosis in the pouch [30,94], this
finding is consistent with the reduced cell cycles observed
in EcR loss-of-function clones. Given that Crol is ecdysone
responsive [19] and capable of repressing wg transcription
[105], the proposed mechanism is that the ecdysone sig-
nal normally upregulates Crol to repress wg transcription
and drive cell cycle progression in the pouch (Figure 3).

Conclusion
The studies presented here show that the ecdysone path-
way can modulate cell cycle progression in Drosophila by
regulating mitogenic pathways. At the level of the whole
animal, ecdysone controls larval growth and final body
size through interactions with the insulin pathway [38-
41]. During larval gut metamorphosis ecdysone activates
cell cycle regulatory pathways such as Wg/Wnt, Notch and
Dpp (TGFbeta) [37]. Within the larval eye imaginal disc
ecdysone signaling is essential for cell cycle progression.
The Hedgehog (Hh) pathway might be a downstream tar-
get of ecdysone posterior to the morphogenetic furrow
(MF) [76], with the reduced Hh posterior to the MF in ecd-

Working model connecting Crol to steroid hormone signal-ing and cell cycle progression in the wing pouchFigure 3
Working model connecting Crol to steroid hormone 
signaling and cell cycle progression in the wing pouch. 
Crol is up-regulated in response to ecdysone signaling and 
increased Crol results in decreased wg mRNA expression. 
Reduced Wg signaling leads to increased dmyc expression to 
drive S-phase and mitosis via increased Stg.
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EcR signaling is required for cell cycle progression in the wing discFigure 4
EcR signaling is required for cell cycle progression in the wing disc. (A'-D') Overexpression of UAS-EcRBdN in flip out 
clones [108] (A') BrdU (red) (B') GFP (green) positively marks clones (C') Overlay of GFP and BrdU (D') Merge of GFP and 
BrdU with DNA (DAPI) staining (blue) to show the nuclei of apical cells in the wing pouch. (E') Quantification of S-phase in 
clones overexpressing UAS-EcRBdN (E2'), and in an equivalent clone area of control tissue (E1'). A significant reduction (p = 
0.0038) in S-phase was observed for UAS-EcRBdN compared to the control. (F1') Mean number of BrdU (S-phase) cells ± SEM 
for the control and (F2') for UAS-EcRBdN. (A"-D") Overexpression of UAS-EcRBdN (A") PH3 staining (purple) (B") GFP (green) 
positively marks clones (C") Overlay of GFP and PH3 (D") Merge of GFP and PH3 with DNA (DAPI) staining (blue). (E") Quan-
tification of mitosis in clones overexpressing UAS-EcRBdN (E2"), and in an equivalent clone area of control tissue (E1"). A signif-
icant reduction (p = 0.0047) in the number of mitotic cells was observed for UAS-EcRBdN compared with the control. (F1") 
Mean number of PH3 cells ± SEM for the control and (F2") UAS-EcRBdN. Scale bars indicate 50 μm. N = sample size.
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ts larval eye discs potentially leading to impaired S-phase
gene activity and reduced cell cycle progression in the sec-
ond mitotic wave (SMW) [71]. In addition to the cell cycle
promoting role of Hh ahead of the MF, Hh acts in combi-
nation with Dpp to achieve a coordinated G1 arrest
[69,70]. The shift in the Dpp band of expression in usp-
clones, suggests the possibility that Dpp might be an
ecdysone pathway target. Further work is required to
understand how ecdysone might coordinate these devel-
opmental signals with the G1 arrest required for MF for-
mation.

These studies strongly suggest a role for the ecdysone
pathway and the USP receptor in furrow progression.
However, previous analysis of EcR mutant clones led to
the conclusion that EcR was not required for furrow pro-
gression [81]. This was surprising given the EcR isoforms
are the major mediators of the ecdysone signal, combined
with the Maduca Sexta [74,75] and Drosophila studies [76]
that have demonstrated a clear requirement for ecdysone
in MF progression. This lead the authors to propose a
novel hormone transduction pathway involving an
uncharacterized receptor to explain USP functioning inde-
pendent of EcR in the eye. This could potentially occur via

heterodimerisation of USP with one of the 16 orphan
nuclear receptors identified in Drosophila [111]. In addi-
tion to it's partnership with EcR, USP has been found to
heterodimerize with the orphan nuclear receptor, DHR38,
to regulate cuticle formation [112,113]. The USP/DHR38
complex responds to a different class of ecdysteroids in
larval fat body and epidermis in an EcR independent man-
ner, which does not involve direct binding of the ecdys-
one ligand to either DHR38 or USP [114]. However, as
DHR38 expression does not appear to be induced by
ecdysteroids in the larval eye [114], it is unlikely that
DHR38 partners USP during eye development. We believe
it premature to rule out a function for EcR in MF progres-
sion as the absence of a furrow progression phenotype
reported [81] may be a consequence of perdurance of EcR
protein after clone induction. As studies using dominant
negative EcR transgenes have shown that EcR is required
for normal signaling and cell cycle progression in the wing
(Figure 4, 5, 6[105]), before making conclusions about
whether EcR is required for eye proliferation similar meth-
ods should be used to inhibit EcR activity.

In the wing imaginal disc, EcR activity and the ecdysone-
responsive transcription factor Crol are required for cell

EcR signaling is required for dmyc expression in wing imaginal discsFigure 5
EcR signaling is required for dmyc expression in wing imaginal discs. (A-D) Discs with control clones to show dmyc-
lacZ (w67c23P{lacW}l(1)G0354G0354; [109]) enhancer trap activity throughout the cycling cells of the wing pouch, with reduced β-
gal antibody staining within the G1 arrested cells of the ZNC (A) β-gal staining (red) (B) GFP (green) positively marks clones 
(C) Overlay of GFP and β-gal, (D) Merge of GFP, β-gal with DNA (blue) to show the nuclei of apical cells in the wing pouch. (E-
H) UAS-EcRAdN clones in the dmyc-lacZ background. (E) β-gal staining (red) (F) GFP (green) marked UAS-EcRAdN clones (G) 
Overlay of GFP and β-gal. (H) Merged image of GFP, β-gal and DNA (blue).
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cycle progression (Figure 4, 5)[105]. Crol affects the Wg
pathway by downregulating wg transcription and driving
cells through the Wg-mediated cell cycle arrest [105]. In
support of ecdysone acting upstream of Crol to regulate
the Wg pathway, blocking EcR activity in the wing results
in increased wg transcription (Figure 6). As Wg is one of
the key developmental signals required for inhibition of
cell cycle progression in the wing pouch
[30,94,95,98,115], this would be consistent with EcR reg-
ulating cell cycle by acting to increase levels of crol tran-
scription, which will in turn decrease levels of Wg
signaling (Figure 3). Thus we would predict that ecdys-
one/EcR/USP would normally act to upregulate Crol and
drive cell cycle progression in the wing pouch.

As mentioned above a number of signaling pathways are
required to coordinate cell division in the wing imaginal
disc. The Hh pathway is critical for regulating wg transcrip-
tion during wing development [102]. Ectopic Ci protein
was not however detected in crol mutant clones, suggest-
ing that Crol does not affect wg transcription indirectly via
the Hh pathway [105]. Notch is required for Wg expres-
sion [103] and plays a critical role in cell cycle arrest dur-
ing wing development [94,104]. The Notch target,
En(spl)m7 was not however decreased in crol over-

expressing cells, suggesting Notch signaling is not down-
regulated by Crol [105]. The effects of Crol on cell cycle in
the wing via down-regulation of wg transcription are
therefore unlikely to be due to indirect effects on either
the Notch or Hh pathways. Future studies are therefore
aimed to determine whether Crol is a key downstream
mediator of EcR signaling and whether it achieves repres-
sion of Wg by directly binding the wg promoter to down-
regulate wg transcription.
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Blocking EcR signaling upregulates wg transcriptionFigure 6
Blocking EcR signaling upregulates wg transcription. (A-D) wg-lacZ (P{en1}wgen11; [110]) activity in the wing pouch with 
control clonal tissue. (A) β-gal (red) (B) GFP (green) marked clonal tissue, (C) Overlay of GFP and β-gal, (D) Merged image of 
GFP, β-gal and DNA (blue). (E-H) wg-lacZ activity in pouch containing UAS-EcRBdN clones. (E) β-gal (red) (F) GFP (green) (G) 
Overlay of GFP and β-gal, (H) Merge of GFP, β-gal and DNA (blue). Scale bars indicate 50 μm.
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