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Abstract
Extracellular matrix (ECM) provides a dynamic three-dimensional structure which translates
mechanical stimuli to cells. This local mechanical stimulation may direct biological function
including tissue development. Theories describing the role of mechanical regulators hypothesize the
cellular response to variations in the external mechanical forces on the ECM. The exact ECM
mechanical stimulation required to generate a specific pattern of localized cellular displacement is
still unknown. The cell to tissue inverse problem offers an alternative approach to clarify this
relationship. Developed for structural dynamics, the inverse dynamics problem translates
measurements of local state variables (at the cell level) into an unknown or desired forcing function
(at the tissue or ECM level). This paper describes the use of eigenvalues (resonant frequencies),
eigenvectors (mode shapes), and dynamic programming to reduce the mathematical order of a
simplified cell–tissue system and estimate the ECM mechanical stimulation required for a specified
cellular mechanical environment. Finite element and inverse numerical analyses were performed on
a simple two-dimensional model to ascertain the effects of weighting parameters and a reduction of
analytical modes leading toward a solution. Simulation results indicate that the reduced number of
mechanical modes (from 30 to 14 to 7) can adequately reproduce an unknown force time history on
an ECM boundary. A representative comparison between cell to tissue (inverse) and tissue to cell
(boundary value) modeling illustrates the multiscale applicability of the inverse model.
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1. Introduction
Living cells are constantly subjected to mechanical stimulations. These stresses and strains can
arise from both external environmental and internal physiological conditions (Lim et al.,
2006). Mechanobiology explores the essential connections between forces acting within
tissues, cells, and individual molecules, and the fundamental biological processes that regulate
growth, development, cell differentiation, and apoptosis. Unfortunately, there is no consensus
as to the mechanism in which the mechanical signals generated at the tissue-level are optimally
effective in modulating cell function.

Single-cell biomechanics studies offer a focused approach to identify the factors which
influence cellular biological responses without the added complexity of cell–ECM interactions.
Several methods directly manipulate the mechanical environment of individual cells (Shieh
and Athanasiou, 2003; Bao and Suresh, 2003). Micropipette aspiration has been applied to
numerous cell types (Hochmuth, 2000; Haider and Guilak, 2002; Trickey et al., 2000). Atomic
force microscopy with its cantilevered beam and nanometer-scale tip can probe local regions
of a cell (Ricci et al., 1997; Bader et al., 2002; Gianoli et al., 2001) or facilitate microscale
indentation of an entire cell (Koay et al., 2003; Leipzig and Athanasiou, 2005). The μPIVOT
was recently developed to apply multiaxial stresses to single cells suspended with optical
tweezers (Nève et al., 2008; Kohles et al., 2008). With these techniques the cell-level stress–
strain environment may be characterized for mechanotransduction hypothesis testing.
However, developing regenerative therapies from these results requires translating cell-level
manipulations to tissue-level forces (Kohles et al., 2007b).

This paper describes an inverse mathematical method to translate cell-level mechanical stresses
to tissue-level mechanical forces in order to determine the tissue-level external forces required
to generate the cellular perturbations within single-cell biomechanics studies. The resulting
tissue-level stress–strain environment can be compared with known multiaxial joint loads to
identify ‘physically realistic’ single-cell loading regimes. More importantly, the method can
predict the tissue-level mechanical stimulation required to induce experimentally identified
single-cell regenerative or degenerative processes. The mathematical method applies modal
analysis with dynamic programming to estimate the external forces on an ECM region from
internal cellular node input.

2. Methods
2.1. The inverse problem

The inverse method has been explored extensively in the realm of heat transfer (Busby and
Trujillo, 1985). Structural dynamics or vibrations applications have employed inverse
modeling or examined identification problems (Simonian, 1981a, b). The inverse problem may
be more difficult to solve than the direct boundary value problem, as many inverse relationships
are not directly defined or are ill-posed. In most inverse problems, the local perturbation is
known or prescribed and either the equations describing the process are unknown (a modeling
or identification problem) (Kim et al., 1993, 1994; Kim and Voloshin, 1995) or the external
environment is unknown (the inverse problem).

The biomechanical system of interest can be expressed as a matrix differential equation of
motion with initial conditions c (at t = 0)

(1)
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where K is an (n×n) internal system matrix, T is (n×ng) external application matrix, x is an
(n×1) vector representing the state variables and g is an (ng×1) vector representing the applied
forcing variables. The most common biomechanical problem models the direct solution. For
that approach, the system matrix K is known, the external forcing arrangement Tg is known,
and the unknown state variables x(t) are found by integrating Eq. (1) based on known initial
conditions. The inverse problem, however, is one in which the system matrix K is known
together with information on some or all of the state variables (such as ECM and cell
properties), however, the forcing function term g is unknown. Thus, given the system matrix
K and measurements of the state variables as input, the forcing term g must be found to provide
a model which best relates the external load applications with the internal measurements.

The differential Eq. (1) is integrated as an equivalent time discrete model assuming an
exponential matrix. This yields the finite difference equation

(2)

where M and P are the dynamic transformation matrices, for K and T, respectively. Applying
a step size h and the identity matrix I, the transformation matrices are defined as

(3)

Thus, the initial analytical premise converts to a discrete approach with N total stages or time
steps. A simple expression that relates the modeled variables xj to the corresponding modeled
displacements zj for comparison with the measured displacements dj is

(4)

where Q is an (nz×n) matrix. This converts the model variables into a (nz×1) vector zj. The
vector dj and zj can be compared with a least square error expression

(5)

where vectors separated by a comma denote an inner product. Here, A(nz×nz) and B(ng×ng)
are weighting matrices to help smooth the forcing functions, such that A is an identity matrix
and B is a diagonal matrix. The addition of the term (gj, Bgj) is a regularization component for
numerical smoothing and accuracy control, known as the Tikhonov’s method (Tikhonov and
Arsenin, 1977). The optimal value of B is estimated by either generalized cross validation
(Trujillo and Busby, 1997) or the Tikhonov L-curve method, proposed by Hansen (1992). The
L-curve provides information about the regularized solution by plotting the iterative solution
of Eq. (5) versus the residual vectors (the deviation between observed and predicted values)
typically on logarithmic axes. In this simplified application, a scalar of the regularization
parameter b was chosen by association with the characteristic reflection point on the plot.

The approach identifies the applied forcing function gj which drives the modeled properties
xj to match the input displacement data dj as closely as possible. Thus, the problem reduces to
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minimizing the function EN starting at any stage or time step with an initial value c, simulating
the system to the Nth iteration (j = N) over a sequence of forcing vectors gj, i.e.,

.

2.2. Cell–ECM application and modal analysis
The application of the described model represents a second-order differential equation of
motion characterizing the dynamic response to mechanical loading

(6)

where M is the diagonal mass matrix, K is the stiffness matrix, L is the load location matrix,
f represents the applied forcing variables, u is the responding elastic displacement vector, and
ü is the rigid body acceleration vector. This model is converted to a first-order system equation
by defining

(7)

In matrix form, Eq. (6) becomes

(8)

An eigenvalue analysis is then performed to determine the roots of the characteristic equation.
Each distinct modal vector component ϕi and natural frequency ωi are set to satisfy the
following relationships:

(9)

(10)

(11)

where the orthogonal conditions (Kϕi, ϕj) = 0 and (Mϕi, ϕj) = 0, are satisfied for i ≠ j. The
modal frequency component was expressed in matrix form by making each diagonal mass term
equal to 1.0, where
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(12)

and

(13)

The original system is then transformed into a modal analysis arrangement with the relationship

(14)

where z is a (n×1) position vector and zi can be represented as a weighting factor within a linear
combination of modal components such that u = z1ϕ1+z2ϕ2+z3ϕ3+…+znϕn. Substituting Eq.
(14) into Eq. (6) gives

(15)

Multiplying Eq. (15) by ϕT and applying Eq. (13) resulted in the decoupled matrix equations

(16)

Thus the modal components reduce the order of the system where specific modes are selected
to approximate u from Eq. (6). The selection of a small number of mechanical modes m to
approximate the state variables referred to in Section 2.1 are represented as

(17)

where the S (n×m) matrix contains the selected mechanical modes by each node and p is a
(m×1) vector representing the number of m modes. Combining Eqs. (14) and (17) yields a
modified Eq. (16)

(18)

Similar to Eq. (7), this system is converted into a set of first-order equations where:
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(19)

These equations are then converted into a discrete difference form as noted in Eq. (2) for
application to the simplified cell–ECM model via the dynamic programming approach.

2.3. Numerical simulation and validation
Three analyses were conducted to ascertain how the reduced analytic model would perform.
A two-dimensional finite element model was first used to generate multiple displacement time
histories associated with a specified force history. Of these time histories, one was selected
and used as input data to the dynamic programming approach just described. A cartilage tissue
sample region comprised of ‘ECM’ elements and ‘cell’ nodes was modeled as isotropic and
homogenous with the following properties: Young’s modulus, E = 1.0 MPa; Poisson’s ratio,
ν = 0.125; and density, ρ = 10−7 kg/mm3 (Guilak and Mow, 2000).

Commercially available finite element analysis (FEA) software (v11, ANSYS, Inc.,
Canonsburg, PA) was used to perform a two-dimensional plane-strain analysis of the ECM
region thus generating the mass M and stiffness matrix K in Eq. (8) (Fig. 1). The FEA model
contained 20 elements each with four nodes (2D PLNAE42 element, ANSYS Library) and a
total of 30 degrees of freedom (DOF) (two DOF per unconstrained element). Only the
displacements indicated at nodes 27 and 30 were used for the inverse solution when
determining the unknown external load.

The FEA modal analysis produced the roots of the characteristic equation (eigenvalues) and
the mechanical mode shape (eigenvectors) as the required input (Table 1) for the mathematical
solver that characterized the state space model (MATLAB, Mathworks, Inc., Natick, MA).
ANSYS eigenvalue and eigenvector results were converted to MATLAB input form using
open-source code (Hatch, 2001). The inverse analysis addressed the prediction of a single
aperiodic load applied at node 13 using two hypothetical cell displacement measurements taken
at nodes 27 and 30 (Fig. 1). The FEA and inverse models were compared for a ramped forcing
function scenario having a peak force of 0.5N and a pulse width of 0.75 s. This mechanical
regime represents a maximum normal compressive stress of 150 Pa associated with a controlled
hydrodynamic microenvironment designed for single-cell biomechanics (Kohles et al., 2009).
An integration time step of 0.004 s was used for a total of 27 steps in both analyses.

To demonstrate the dynamic features of the eigenvalue and eigenvector method: Case 1 applied
the reduced system equations resulting in the first seven mechanical vibration modes produced
at node 27; Case 2 examined the first fourteen vibration modes; while Case 3 included all 30
modes.

As an applied example, the forces and resulting strains during single-cell compression
experiments (Koay et al., 2008) provided input values for the inverse model, determining the
hypothetical tissue level forces (cell to tissue). Comparatively, resultant shoulder joint peak
loads averaged from all subjects in a recent rehabilitation study (Kohles et al., 2007a) provided
the mechanical input for a boundary value calculation of the mechanics hypothetically
experienced at the cell level (tissue to cell).

3. Results
The corresponding eigenvalues and eigenvectors were determined via the FEA model as input
for the reduced system of equations (inverse approach). The displacement histories of node 30
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were constrained to be similar by design in all Cases (Fig. 2). The predicted dynamic applied
forces resulting from the three inverse analyses Cases were compared with the FEA modeled
applied force (Fig. 3). The Case 1 inverse solution overestimated the final modeled ramp force
by 20% at t = 1 s (0.60N vs. 0.50 N). In Case 2, the number of incorporated modes increased
two-fold, thus causing the inverse solution to be more oscillatory. However, the final value of
the inversely solved ramped force under-estimated the FEA produced value by 14% at t = 1 s
(0.43N vs. 0.50 N). Overall, the improvement in predicting the magnitude of the applied force
was increased by 6% when doubling the number of modes in the solution process. When
incorporating the full modal response (Case 3), the inverse solution initiated with non-zero
values then proceeded to form a solution more similar to the FEA final value. Upon post-
processing, the Tikhonov L-curve for Case 1 indicated a distinct ‘corner’ which was associated
with the optimized value of the regularization parameter b (here B was set to a scalar due to
the presence of a single force vector). Thus, the smoothing parameter for this approach was
associated with the flexion point on the logarithmic plot of the iterative solutions versus the
residuals and was chosen as b = 3.16×10−10 (Fig. 4). An example calculation using the
simplified node arrangement and assumed linear elastic behavior, provides a direct comparison
between the presented inverse model and traditional boundary value models (Table 2).

4. Discussion
The analytic approach produces reasonably accurate results even for a reduced number of
vibrational response modes over few measurement locations or nodes. This analytical approach
may be applicable to tissue engineering, where strategies to improve and/or accelerate tissue
regeneration involve multivariate formulations within extracellular microenvironments that
influence specific growth-inductive signals (Pizzo et al., 2005). The approach here uses a
vibrational modal analysis (not the actual vibrational response) as a means to create multiscale
relationships. The inverse model, through the described reduction mechanism, can be used to
examine how ECM provides a three-dimensional support network for a geometric cellular
distribution with minimal necessary degrees of freedom. Previous cell-level models have
included thousands of degrees of freedom (Guilak and Mow, 2000). In the inverse approach,
multiple possible external mechanical solutions may contribute to similar internal cell
biomechanics. Resulting external mechanical conditions can be judged ‘unique’ by comparison
with known in vivo human joint and tissue loads as shown here from normal, i.e., healthy,
function (Kohles et al., 2007a).
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Fig. 1.
The cell–ECM numerical model with key node numbers noted. The model illustrates the
macroscopic ‘tissue’ level in which chondrocytes are assumed to be embedded at node
locations. An external force, F, was applied at node 13. Two displacement output measurement
locations were identified at nodes 27 and 30. The mass and stiffness system matrices (Eq. (8))
produced from this finite element analyses were used as input for the inverse solution.
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Fig. 2.
Model displacement produced by the finite element analysis as output and applied to the inverse
solution as input. The curve was generated at node 27.
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Fig. 3.
Predicted applied forces at node 13, framed as a mechanical input based on a known
displacement at node 27 representing 7 (Case 1), 14 (Case 2) and 30 (Case 3) vibrational
response mode shapes.
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Fig. 4.
The Tikhonov L-curve for Case 1. A distinct ‘corner’ in the plot was associated with the
regularization parameter b, optimized through analytical iteration.
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Table 1
The seven vibrational modes and their corresponding eigenvalues and natural frequencies (ωi) used in Eq. (11).

Vibration mode (m) Eigenvalue (Hz) Natural frequency, ωi (rad/s)

1 0.0 0.0

2 190.4 1196.0

3 398.5 2503.8

4 468.7 2944.9

5 599.2 3764.8

6 715.6 4496.4

7 818.3 5141.5

Case 1 values are listed here. Note that Mode 1 represents the rigid body response (which was constrained).
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Table 2
A comparative example demonstrating the results of both the inverse and boundary value models.

Cell-level Model approach Tissue-level Elastic modulus (E)

Experiment: 100 nN (50%
strain)

Inverse Model: 2.0 N 1 MPa

20.0 N 10 MPa

Model: 84 nN (46%
strain)

Boundary Value Experiment: 92.8 N 100 MPa

Cell level (Koay et al., 2008) and tissue level (Kohles et al., 2007a) experiments provided mechanical input parameters for representative calculations.
Modulus values were adjusted to account for the differing rates of loading in the two scenarios (Unsworth, 1981).
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