
Participation of Leaky Ribosome Scanning in Protein Dual
Targeting by Alternative Translation Initiation in
Higher Plants W OA

Yashitola Wamboldt,a SaleemMohammed,a Christian Elowsky,b Chris Wittgren,a Wilson B.M. de Paula,a

and Sally A. Mackenziea,1

a Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588-0660
b Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588-0660

Postendosymbiotic evolution has given rise to proteins that are multiply targeted within the cell. Various mechanisms have

been identified to permit the expression of proteins encoding distinct N termini from a single gene. One mechanism involves

alternative translation initiation (aTI). We previously showed evidence of aTI activity within the Arabidopsis thaliana

organellar DNA polymerase gene POLg2. Translation initiates at four distinct sites within this gene, two non-AUG, to

produce distinct plastid and mitochondrially targeted forms of the protein. To understand the regulation of aTI in higher

plants, we used Polg2 as a model to investigate both cis- and trans-acting features of the process. Here, we show that aTI in

Polg2 and other plant genes involves ribosome scanning dependent on sequence context at the multiple initiation sites to

condition specific binding of at least one trans-acting factor essential for site recognition. Multiple active translation

initiation sites appear to operate in several plant genes, often to expand protein targeting. In plants, where the mito-

chondrion and plastid must share a considerable portion of their proteomes and coordinate their functions, leaky ribosome

scanning behavior provides adaptive advantage in the evolution of protein dual targeting and translational regulation.

INTRODUCTION

Complexity of the eukaryotic proteome is greatly enhanced by

multiple gene products encoded by a single gene. One means of

deriving this complexity is alternative translation initiation (aTI)

activity. Several examples of aTI have been reported in mam-

malian genes (Touriol et al., 2003), operating via ribosome

scanning, internal ribosome entry, and ribosome shunting.

Whereas ribosome scanning allows the ribosome to pause at

multiple sites of translation initiation as it scans the 59 untrans-
lated region (UTR) sequence, internal ribosome entry and ribo-

some shunting are processes allowing the ribosome to physically

bypassmuch of the 59UTR sequence to position at a precise site

of translation initiation. These processes can effect translational

regulation in response to cellular Met levels (Hann et al., 1992),

cell stress (Vagner et al., 1996; Powell et al., 2008), and devel-

opmental cues (Zhou and Cidlowski, 2005).

The coevolution of mitochondria and plastids has produced

several levels of organellar crosstalk (Woodson and Chory,

2008). Several examples exist of plant genes encoding proteins

targeted to both mitochondria and plastids (Mackenzie, 2005).

However, onemight hypothesize that the process of protein dual

targeting is subject to some degree of cellular regulation to

control relative protein stoichiometries in different tissues. One

means to effect dual targeting control is aTI, in some cases using

non-AUG initiation codons, to provide alternative N termini to the

product of a single gene (Kobayashi et al., 2001; Christensen

et al., 2005; Sunderland et al., 2006). Examples of aTI in plants

are largely limited to individual gene studies, with little informa-

tion available regarding the mechanisms controlling the process

or prevalence of the phenomenon as a gene regulatory mech-

anism. Here, we report on the process of aTI in plants, using a

dual-targeted organellar DNA polymerase as a model. We show

evidence of leaky ribosome scanning with both cis- and trans-

acting components of the process, together with evidence

suggesting that this multi-initiation activity influences transla-

tional regulation in these genes. Our study also suggests that aTI

operates in a number of plant genes.

RESULTS

In Vivo Evidence of aTI Activity Is Reproduced in Vitro

Arabidopsis thaliana Polg1 (At3g20540) and Polg2 (At1g50840)

are highly similar, duplicate genes encoding organellar DNA

polymerases (Christensen et al., 2005). In an earlier study, we

demonstrated the influence of aTI on the dual targeting proper-

ties of the organellar DNA polymerase Polg2 protein in vivo using

green fluorescent protein (GFP) reporter gene constructs. To

examine the aTI process in more detail, we investigated Polg2

translation initiation in vitro. Figure 1 demonstrates evidence of in
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vitro aTI activity using wheat germ extracts. We identified four

initiation sites: two at ATG sites (ATG1 and ATG2) separated by

one codon, one at a CTG located at221 nucleotides from ATG1,

and one at an ATA at269 nucleotides upstream of ATG1 (Figure

1A). These initiation sites were confirmed functionally by intro-

ducing mutations at each site (Figures 1B to 1E).

Eukaryotic protein translation initiation is known to occur

primarily at AUG codons encompassed within the conserved

Kozak consensus sequence (gcc)gccRccAUGG, where R is a

purine three bases upstream of AUG, and the AUG is followed by

another G (Kozak, 1987). Each of the four identified initiation sites

contained a purine at position +4, and all but ATG1 contained a

purine at position 23. This latter observation is consistent with

observations of efficient, non-AUG initiation when AUG is in a

weaker Kozak consensus context (Kozak, 2002). Also surprising

was the upstream AUA initiation site for its distance from the

initiator AUG and observation that, in vitro, each initiation site

appeared approximately equal in efficiency.

In vitro transcription-translation (IVTT) experiments with the

UTR sequence and with site-directed mutations showed that

both AUG1 and AUG2 initiate translation (Figures 1B and 1C).

Substitution of the CUGwith CUC (UTR-L7L) eliminated initiation

at theCUGsite (Figure 1C). Similarly,mutation of theAUA toAGG

eliminated initiation at the upstream AUA site (Figure 1E). These

experiments demonstrate that, in vitro, four distinct sites are

active in translation initiation of the Polg2 gene.

aTI in Plants Is Cap Dependent and Involves

Ribosome Scanning

Non-ATG initiation is observed in several mammalian genes in

association with both leaky ribosome scanning and internal ribo-

some entry mechanisms (Kozak, 2002). While cap-independent

internal ribosome entry has been described for various viral and

mammalian genes, there is little evidence to implicate the pro-

cess in plant genes. A model for aTI activity in Polg2 via leaky

ribosome scanning was supported by our initial observation that

substitution of the initiator CTG with ATG enhanced initiation at

the site and eliminated initiation at the downstream ATG1 and

ATG2 sites (Figure 1C, UTR L7M). This observation is consistent

with ribosome scanning, since strengthening the consensus

ribosome binding sequence at the upstream site diverted ribo-

somes from the downstream site. To further test for cap depen-

dence of aTI in our system, we evaluated translation initiation for

sensitivity to transcript decapping by tobacco acid pyrophos-

phatase treatment, enhancement of translation initiation effi-

ciency with addition of a cap analog, and failure of translational

reinitiation in a dicistronic message.

In vitro transcription (IVT) assays using available commercial IVT

preparations, followedby incubation inwheatgermextract,produce

an unknown degree of transcript capping within a transcript popu-

lation.Consequently, to assesscapdependenceof aTI,weassayed

theeffecton translation initiationofbothdecapping,by tobaccoacid

Figure 1. In Vitro aTI Activity Depends on Sequence Context.

(A) The At Polg2 UTR region that was included in the experiments is shown, together with several mutations. Each of the designed constructions

extends an additional 414 bp downstream. Downward arrows indicate �3 or +4 sites in Kozak context, mutation sites are underlined, and dashes

designate same as in UTR. All IVTT experiments were performed in wheat germ extracts.

(B) PAGE results showing IVTT products when the first or second ATG is mutated to TTG. UTR and ATG lanes serve as controls.

(C) IVTT results from experiments testing both CTG and ATG sites for translation initiation activity. Mutations are defined in (A). Substitution of ATG for

CTG prevents the downstream ATG initiation, consistent with Kozak predictions (Kozak, 1987).

(D) IVTT results testing the importance of AAG purine triplet preceding CTG for efficiency of initiation. The AAG was subjected to nucleotide

substitutions and deletion (DEL).

(E) Tests of initiation and in-frame translation from the upstream (�62 nucleotides) ATA. ATA was confirmed as an initiator codon by AGG substitution.

Deletion of the AAG preceding CTG was accompanied by substitution of a stop codon (TAA), demonstrating that the ATA initiated in-frame translation

accounts for the larger product. Panel arrows at left designate products from ATA, CTG, and ATG1/ATG2 translation initiation in vitro. (D) and (E) are

from the same gel.
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pyrophosphatase, and capping with the cap analogm7G(59)ppp(59)
G. Figure 2A shows sensitivity to transcript decapping of translation

initiation at all four identified sites, suggesting that the aTI activity in

Polg2 is cap dependent. Consistent with this interpretation, trans-

lation initiation in wheat germ extract was markedly enhanced with

addition of the cap analog. An RNA gel is presented to demonstrate

that in vitro transcripts are stable under these treatment conditions.

Figure 2B shows loss of translation initiation at all four sites with the

introduction of a luciferase open reading frame upstream to the

Polg2 initiation sites. This observation suggests that internal ribo-

some entry does not occur within the 59 UTR sequence of Polg2

when preceded by upstream translated sequence.

Figure 2. ATI in Polg2 Appears to Involve Ribosome Scanning.

(A)mRNA preparations from the wild-type sequence (UTR) and two mutated sequences (M1LM3L altered at ATG1 and ATG2, and L7L altered at CTG)

were treated with different amounts of tobacco acid pyrophosphatase prior to translation with wheat germ extracts to test for effects of transcript

decapping on translation initiation efficiency at each site. Likewise, the UTR sequence was in vitro transcribed with and without the cap analog m7G(59)

ppp(59)G to test for enhancement of initiation efficiency at each site following capping. The bottom panel shows the in vitro transcript preparations

following incubation with tobacco acid pyrophosphatase and transcripts prepared in the presence of the cap analog. Note that a lower concentration of

RNA, shown in the bottom panel, was used for the cap analog translation experiments.

(B) IVTT experiments comparing aTI activity of the UTR and ATG constructions (see Figure 1) versus aTI activity within the UTR sequence that contains

the luciferase gene 64 bp upstream to the CTG site (LUC + UTR). Translation of the luciferase gene construction without the UTR is also shown (LUC).

The dual panels showing these products were derived from the same experiment, with the image spliced to compress space between the high

molecular weight luciferase products and low molecular weight UTR and ATG products.

(C) A 9-nucleotide deletion (DEL, within dashed line) and multipoint mutations (MUT, bold letters) of the polypyrimidine stretch upstream to CTG showed

no effect on CTG translation initiation. Lanes labeled DEL and MUT were run on the same gels as the corresponding UTR and ATG control lanes but

spliced to remove intervening lanes from the image. Arrows indicate corresponding products from initiation at ATA, CTG, and ATG1/ATG2.
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Cap-independent ribosome entry can be associated with

pyrimidine-rich sequence motifs proximal to the site of transla-

tion initiation (Mitchell et al., 2005). A polypyrimidine tract located

upstream to the initiator CUGwas subjected to both deletion and

point mutation analysis to assess its importance for ribosome

selection of the CUG for initiation. Neither the introduction of six

purine substitutions nor the deletion of 11 nucleotides from the

interval produced any detectable change in CUG initiation in vitro

(Figure 2C). These observations, taken together, are uniformly

consistent with ribosome behavior under conditions of leaky

ribosome scanning and do not support a model of internal

ribosome entry for alternative site translation initiation.

aTI Relies on Sequence Context of the Non-AUG aTI Site

Evidence of leaky ribosome scanning implies that cis-acting

sequences direct the ribosome to the non-AUG sites.Mutation of

the A at the23 position alone did not fully abolish initiation at the

CUG site in Polg2 (Figure 1D). Rather, a purine triplet preceding

the alternative initiator CUG codon appeared to be essential for

initiation. Purine triplets precede the CUG start site in both Polg1

and Polg2 genes in four different plant species investigated to

date: Arabidopsis, tobacco (Nicotiana tabacum), sorghum (Sor-

ghum bicolor), and rice (Oryza sativa) (Figure 3). The extent of 59
UTR similarity upstream to Polg1/Polg2 shared by the four

species is striking; each gene possesses an initiator AUG pre-

ceded six to nine codons upstream by CU(G/A), which is flanked

59 by a purine triplet and 39 by a purine. This observation allowed

us to postulate and test the minimal sequence context for aTI

activity. Introduction of a CTG, flanked 59 by three purines and 39
by GGT, to the 59 UTR sequence of the cyclophilin 40 gene

(At2g15790), a gene that demonstrates no evidence of aTI

activity, was sufficient to create a novel aTI site (Figure 4A).

Insertion of the AAGCTG sequence lacking the 39 GGT was not

sufficient for activity, however, confirming the importance of both

59 and 39 flanking sequence to aTI activity.

Sequences flanking the aTI site influence not only ribosome

scanning but also protein binding. Figure 4B shows results of

RNA electromobility shift assays (EMSAs) to assess protein

binding to the aTI site in wheat germ extracts. Binding to theCUG

site in Polg2 was markedly reduced by deletion of the upstream

AAG purine triplet or with the deletion of sequences downstream

Figure 3. Cross-Species Conservation of 59 UTR Sequences in Polg1 and Polg2.

Multiple sequence alignments of the region upstream to ATG in Polg1 and Polg2 from Arabidopsis,O. sativa,N. tabacum, and S. bicolorwere performed

using the Mcoffee option of the T-Coffee program (http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi; Notredame et al., 2000). Blue boxes

indicate annotated ATG initiator codons, green boxes indicate CTG initiator sites, and black boxes indicate upstream ATA or ACG putative initiator sites.

Within the color spectrum displayed, red regions are in perfect agreement across all methods used within the analysis program, while blue regions have

poor agreement, with yellow and green intermediate in alignment score.
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to CUG. These experiments suggested that sequences flanking

CUG were more important to binding than the CUG itself, since

substitution of CUC produced little effect on binding in our

experiments. This CUC substitution abolishes aTI activity at this

site (Figure 1), suggesting that processes of initiation factor

binding, dependent on sequence context, are distinguished from

ribosome binding and translation initiation, controlled by start

codon selection (Pestova et al., 2001).

Proteins associatedwith theobservedshift inRNAmobilitywere

extracted from the gel and identified by mass spectrometry.

Cross-comparison of protein profiles derived from assays with

the unmodified UTR versus site-mutated transcript sequences

identified the translation initiation factor eIF4A to differentially bind

theunmodifiedUTRsequence. InArabidopsis, at least threegenes

(At3G13920, At1G54270, and At1G72730) encode eIF4A, an RNA

helicase of the Asp-Glu-Ala-Asp (DEAD) box protein family. Sub-

sequent testing showed eIF4A-1 (At3G13920) to be involved in

binding at the CUG site. We cloned, overexpressed, and affinity

purified this gene product, and subsequent EMSA analysis

showed similar differential binding of the overexpression product

to the unmodified and mutated UTR sequences (Figure 4C). This

observation suggests that eIF4A-1 represents one component of

the aTI process. Experiments are now needed to learn whether

eIF4A-1 is essential to the process of CUG site selection.

aTI Activity Is Evident in Several Arabidopsis Genes

Information gained from analysis of Polg2 allowed us to design a

search algorithm to identify additional genes within the Arabi-

dopsis genome that appear to implement aTI. Seventy-six of

these candidates, predicted to useCTG as initiator with a23 and

+4 purine, are listed in Table 1. Three of the candidates listed

were selected for further testing. Figure 5A shows results of IVTT

experiments implementing parallel gene constructions with and

without the entire predicted 59 UTR. In each case tested, aTI

activity was evident in vitro.

Figure 4. Cis-Acting Sequences Are Crucial to aTI.

(A) IVTT analysis of a novel aTI site derived by insertion of CTG with varying lengths of surrounding sequence (capitalized in bold) to the 59 UTR of the

cyclophilin-40 gene (At2g15790). Each construction also includes 444 nucleotides of cyclophilin-40 sequence 39 to the ATG. The construction

designated ATG contains no 59 UTR sequence. The differences in size of the aTI-derived products correspond to the differences in insertion sequence

length 39 to CTG, confirming initiation at the introduced aTI site.

(B) EMSA of RNA-protein binding at the Polg2 CTG aTI site. Bound RNA probe is shown as bands, while free RNA probe migrates to the bottom of the

gel (data not shown). RNA probe sequences corresponding to the individual EMSA assays are shown, with protein binding assays conducted with

wheat germ extracts. While some low level binding is detected for the antisense RNA, this may be due to similar sequence features present in the

antisense comprised of three purines (GAA) followed by CTT and another purine (A). The bottom panel shows results of binding competition

experiments with varying proportions of a32P-labeled/unlabeled RNA probe 2.

(C) Identical EMSA experiment to that shown in (B) with radiolabeled RNA probes 1 to 5, but substituting purified eIF4A-1 overexpression product in

place of wheat germ extracts in the RNA binding assay.
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In examining the sequence similarity that exists in various

plant species between Polg1 and Polg2 orthologs, we found

that these gene pairs shared striking 59UTR sequence similarity

not limited to the region encompassing the CTG and ATG

initiator sites, but extending a considerable distance upstream

(Figure 3; Christensen et al., 2005). In Arabidopsis, the two

genes diverge in sequence just upstream to the ATA initiator

site. IVTT assays indicated aTI activity for the CTG initiator in

Polg1 (Figure 5B). However, in vivo protein localization exper-

iments indicate that the POLg1 protein is dually targeted to

mitochondria and plastids when initiated at either the ATG or

the CTG site (Christensen et al., 2005). Consequently, we were

not able to account for the surprising extent of sequence

conservation observed upstream to ATG in the two genes,

across four different plant species, based on control of protein

targeting alone. This observation raises the possibility that aTI

activity might participate in translational regulation. Examples

exist in which an N-terminal extension influences behavior or

binding affinity of a protein (Fajardo et al., 1993), and small,

upstream open reading frames can negatively regulate trans-

lation from a downstream initiator codon (Puyaubert et al.,

2008).

Table 1. Predicted CTG Initiator aTI Sites within the Arabidopsis Genome

AGI No. Description AGI No. Description

AT1G21000 Zinc binding family protein AT4G10010 Protein kinase family protein

AT1G03260 Similar to unknown protein AT4G02680 EOL1, ETO1-like 1

AT1G53230 TCP3, TCP transcription factor 3 AT4G16280 FCA, RNA binding

AT1G02800 ATCEL2, Arabidopsis cellulase 2 AT4G23220 Protein kinase family protein

AT1G50840 POLg2, Polymerase g 2 AT4G21120 Cationic amino acid transporter

AT1G02180 Ferredoxin-related AT4G11920 WD-40 repeat family protein

AT1G27840 ATCSA-1; nucleotide binding AT4G00730 ANL2, Anthocyaninless 2

AT1G55760 BTB/POZ domain-containing protein AT4G12350 MYB42, Myb domain protein 42

AT1G63820 Similar to unknown protein AT4G32300 Lectin protein kinase family protein

AT1G78310 VQ motif-containing protein AT4G15850 ATRH1, RNA helicase 1

AT1G15840 Unknown protein AT4G26965 NADH:ubiquinone oxidoreductase

AT1G34780 ATAPRL4 (APR-LIKE 4) AT4G37190 Similar to Os03g0240900

AT1G43160 RAP2.6, Related to AP2 6 AT4G17680 Protein binding

AT1G11860 Aminomethyltransferase, putative AT5G36250 Protein phosphatase 2C

AT1G71020 Armadillo/b-catenin repeat protein AT5G61960 AML1, Arabidopsis MEI2-like protein 1

AT2G02090 CHR19/ETL1, Chromatin protein 19 AT5G47190 Ribosomal protein L19 family protein

AT2G20680 Glycosyl hydrolase family 5 protein AT5G28080 WNK9, WNK kinase 9

AT2G17990 Similar to kinectin-related AT5G03440 Similar to unknown protein

AT2G17975 Zinc finger (Ran binding) protein AT5G62610 Basic helix-loop-helix family protein

AT2G17760 Aspartyl protease family protein AT5G43960 Nuclear transport factor 2 protein

AT2G01170 Amino acid permease family protein AT5G13360 Auxin-responsive GH3 family protein

AT2G34150 WAVE1 AT5G14500 Aldose 1-epimerase family protein

AT2G35585 Similar to unknown protein AT5G65470 Similar to unknown protein

AT2G03980 GDSL-motif lipase/hydrolase protein AT5G18250 Similar to unknown protein

AT2G18876 Similar to unknown protein AT5G60650 Unknown protein

AT2G27160 Unknown protein AT5G44120 CRA1 (CRUCIFERINA1)

AT3G22790 Kinase interacting family protein AT5G35330 MBD02, Methyl-CpG-binding domain 2

AT3G63000 NPL41 (NPL4-LIKE PROTEIN1) AT5G35630 GS2, Gln Synthetase 2

AT3G20540 POLg1, Polymerase g 1 AT5G10490 MSL2, MSCS-like 2

AT3G05580 Ser/Thr protein phosphatase putative AT5G14060 Lys-sensitive aspartate kinase

AT3G17890 Unknown protein AT5G42520 Basic Pentacysteine 6

AT3G62660 GATL7, Galacturonosyltransferase-like 7

AT3G21180 ACA9, Autoinhibited Ca2+-ATPase 9

AT3G06770 Glycoside hydrolase family 28 protein

AT3G10985 SAG20, Wound induced protein 12

AT3G58690 Protein kinase family protein

AT3G25080 Similar to unknown protein

AT3G26370 Similar to unknown protein

AT3G51340 Pepsin A

AT3G15030 TCP4, TCP Transcription Factor 4

AT3G50830 Cold-regulated 413 plasma membrane 2

AT3G59350 Ser/Thr protein kinase

AT3G20070 TTN9 (TITAN9)

AT3G54010 PAS1, PASTICCINO1

AT3G05380 DNA binding
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aTI May Be Influenced Developmentally

Two strategies for assessing participation of aTI in translational

control are to assess changes in expression during development

and to examine influence on translation of aTI mutants. We

developed several Arabidopsis stable transformants containing

gene constructions encoding the 59 UTR sequence of Polg2,

both in wild-type and mutant configurations, fused with a GFP

reporter gene to test the influence of 59 UTR modifications on

translational control. Constructions encompassed the region

from 85 nucleotides upstream to ATG1 to 240 nucleotides

downstream of ATG1.

Spatial/temporal patterns of protein targeting behavior, as-

sessed visually, showed variation in relative mitochondrial and

plastid forms of the protein during plant development (Figure 6A).

Evidence of developmental control was particularly striking at the

stem-root junction, where plastid GFP fluorescence was espe-

cially evident in the stem, but mitochondrial fluorescence was

observed in the root.

While dual targeting of the POLg2 product was confirmed

previously, stable transformants of the Polg2 59 UTR-GFP fusion

produced relatively low levels of the mitochondrial form, based

on visual assessments (Figure 6, UTR). Point mutations of ATG1

and ATG2 (UTR M1LM3L) produced dramatic increases in

mitochondrially targeted product, suggesting that coordinate

translation initiation at ATG1, ATG2, and CTG might serve to

control translation activity from each individual start site. This

enhancement of mitochondrially targeted product was evident in

both the cotyledon and sepal tissues. An increase in plastid-

targeted product was also evident upon disruption of the CTG

(UTR-L7L), although this effect is less visually pronounced due to

autofluorescence of the mature plastids.

GFP quantitation experiments were conducted using above-

ground plant tissues from 12-d-old plants and comparing non-

transformed Columbia (Col-0) to transformants with the

unmodified UTR, L7L, and M1LM3L constructions. Results

showed greatly enhanced (doubled) fluorescence at 488/507

nm in the transgenic lines relative to autofluorescence levels

recorded in nontransformedCol-0 (Figure 6B). However, virtually

no differences in GFP fluorescence levels were detected be-

tween lines containing the UTR, L7L, and M1LM3L construc-

tions. We interpret this result to indicate that total translation

levels remain unaltered in the modified constructions, so that

protein levels normally divided to plastids and mitochondria in

the UTR are now shuttled exclusively to mitochondria in the

M1LM3L construction or to plastids in the L7L construction.

Thus, the amount of protein to either organelle essentially dou-

bles in the modified constructions, accounting for the greatly

enhanced visual fluorescence observed by laser confocal mi-

croscopy. We interpret this observation as an indication that

ribosome competition plays an important role in regulating

translation levels of the alternate products of the gene under

these conditions. How this process is modulated at develop-

mental transitions, such as the stem-root junction shown in

Figure 6, is not yet clear.

Destabilized translational control that occurred with disruption

of CTG or ATG1/ATG2 sites was also evident physiologically in

the derived transformants. Plants transformed with the altered

constructions UTR-M1LM3L-GFP or UTR-L7L-GFP (10 plants

tested from three independent transformants each) consistently

displayed a delayed flowering phenotype relative to Col-0 wild-

type or unmodified Polg2 59UTR-GFP fusions (Figure 6C). At 12-h

daylengths, flowering was delayed ;14 d, and at 24-h day-

lengths, flowering was delayed 5 d. Other than the flowering

delay, the transgenic lines containing the modified constructions

appeared physiologically normal, and flower morphology did not

appear to be altered. This apparent physiological effect on plants

transformed with the mutated constructions appears to be a

consequence of the higher levels of GFP protein targeting to the

mitochondria or plastids in these lines. No unusual effects were

observed in transformants containing the unmodified Polg2 59
UTR-GFP constructions.

DISCUSSION

Recent evidence has shown that 59 UTR sequences implement

important functions in the translational regulation of eukaryotic

genes. Results of this study suggest that aTI occurs relatively

frequently in higher plants. We found no evidence in our study of

internal ribosome entry in this process; leaky ribosome scanning

appears to account for all of the aTI activity that we detect in

Arabidopsis Polg2. The degree of cross-species sequence sim-

ilarity discovered in Polg1 and Polg2 59 UTR sequences and the

number of additional genes sharing 59 UTR features in common

with Polg2 suggest that leaky ribosome scanning participates in

the translational control of additional plant genes. Genes shown

in Table 1 are those found to contain a putative aTI site with CUG

as initiator; we presume that a number of additional aTI sites use

alternative initiation codons (Table 2). Likewise, genes shown are

aTI sites with a purine at the 23 position; ;49% of these

contained a purine triplet. Of the three genes selected for in vitro

testing, At3g05580 contained only the 23 purine, while

AT2G20680 and AT4G15850 contained the purine triplet. Since

Figure 5. Evidence of aTI Activity in Multiple Arabidopsis Genes.

(A) Three Arabidopsis loci were tested in vitro for evidence of ATI activity

based on features identified within the annotated 59 UTR sequence.

Constructions were designed to include (UTR) or omit (ATG) the 59 UTR

sequence (250 bp in each case). An additional 444 bp beyond the ATG

was included in each construction. IVTT reactions with wheat germ

extracts were fractionated by PAGE using similar conditions to those in

Figures 1 to 3.

(B) At Polg1 and Polg2 gene constructions with and without the 59 UTR

sequence were subjected to IVTT to test for evidence of aTI activity at the

conserved CTG initiator site.
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all three displayed aTI activity, variation exists for aTI site

sequence context requirements.

The CTG residing six to nine amino acids upstream to the

annotated ATG is active in aTI to influence POLg2 protein

targeting. However, function of the upstream ATA site has not

yet been fully defined. One interesting observation suggests that

the ATA site might participate in plastid targeting of the protein.

Sequences immediately downstream to ATA, if translated, would

be predicted to produce a plastid targeting protein. More im-

portantly, however, we have shown in this study that the

Figure 6. aTI and Control of Translation Are Influenced by Plant Development and Point Mutations.

(A) Arabidopsis stable transformants of vector without insert (Col-0) and three Polg2-GFP constructions (construction designations indicated in Figure

1A) were evaluated for protein targeting in three tissue types by confocal laser scanning microscopy. Left panels show the green channel, right panels

show the red channel, and the middle panels show merged images. Plastids autofluoresce red in photosynthetic tissue. Yellow arrows designate

plastids, white arrows designate mitochondria, and red arrows designate the approximate shoot-root junction.

(B) Quantitation of GFP fluorescence in plant extracts, averaging three independent experiments, with individual plants used for each experiment and

error bars indicating range in variation. Results were similar when three plants were pooled per sample. Pol2 designates the unmodified UTR

construction.

(C) Arabidopsis 10-week-old stable transformants showing delayed flowering of mutants relative to wild-type (Col-0) or Polg2 59 UTR-GFP (UTR)

construction.
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substitution of CTG with ATG prevents initiation at the down-

stream ATG sites, predicting only a mitochondrial product to

form. In Christensen et al. (2005), this construction, designated

UTR-L7M,was shown in planta to produce dual targeting ofGFP.

One interpretation of this result is that the plastid targeting

observed is derived from the upstream ATA. However, an alter-

native interpretation is that the CTG-to-ATG change in UTR-L7M

resulted in such increased mitochondrial targeting that we may

be observing a spill-over to chloroplast targeted protein as well.

We have not yet fully resolved this question.

Striking conservation of 59 UTR sequences in plant Polg1 and

Polg2 genes could signal coordinate translational regulation

between the two genes. However, the ATA initiator appears

active and in frame to Arabidopsis Polg2 but is not in frame to At

Polg1, requiring possible initiation at an ACG 18 nucleotides

further upstream, if this region is translated in Polg1. A similar

upstream ACG, flanked 59 by the AAG purine triplet and 39 by a

+4G, is conserved within the 59 UTR of Polg1 and Polg2 genes of

rice, sorghum, and tobacco, suggesting at least two aTI sites in

these genes as well.

One obvious means of effecting translational control of gene

expression by aTI activity is the inherent translational regulation

by ribosome competition at the AUG, CUG, and upstream AUA

sites. The increase in mitochondrially targeted protein following

disruption of the AUG sites, observed by confocal laser scanning

microscopy and bymeasurement of GFP fluorescence, supports

the assumption that ribosome competition controls alternative

protein levels.

We observed evidence for sequence-dependent protein bind-

ing of at least one trans-acting factor, eIF4A-1, at the CUG aTI

site in Polg2. Translation initiation factors comprise a large

number of differentially regulated genes in the Arabidopsis

genome (The Arabidopsis Information Resource [TAIR]). Such

factors could provide the specificity required to effect the tissue-

specific aTI-associated translational regulation observed at

points such as the stem-root junction.

Coevolution of mitochondria and plastids postendosymbiosis

is thought to include massive nuclear transfer of genetic infor-

mation, followed by selection to reduce redundancy in genes

encoding organellar products (Lang et al., 1999; McFadden,

1999). Protein dual targeting mechanisms provide the nucleus

with the ability to encode products essential to both mitochon-

dria and plastids within a single gene. One caveat to this

efficiency, however, is the implied necessity for a mechanism

to modulate relative abundance of mitochondrial to plastid

products in a particular tissue.

It is not clear what proportion of dual targeting proteins uses

aTI. However, aTI-mediated multitargeting might represent an

intermediate in the evolution of dual-targeting, N-terminal pre-

sequences. Two types of dual-targeting presequences, termed

twin and ambiguous, are described in plants (Peeter and Small,

2001). Twin presequences comprise two distinct targeting pep-

tide domains, one targeting plastid and one mitochondria, fused

in tandem at the N terminus of the gene. Each is transcribed or

translated distinctly.

The ambiguous presequence provides dual targeting from a

single transcriptional and translational product but can some-

times be functionally dissected to mitochondrial and plastid

targeting components (Bhushan et al., 2003). If one envisions

protein dual targeting as an adaptation emerging from leaky

ribosome scanning to facilitate the incorporation of novel

N-terminal extensions to existing genes, then a structure such

as that observed in Polg2 might be fairly rudimentary. Inactiva-

tion of the downstream start codon, or mutation of the CTG

initiator to ATG, would convert Polg2 to an ambiguous prese-

quence, assuming additional mutations within the N-terminal

domain to permit successful targeting to both organelles (pres-

ently, mutation of CTG to ATG in Polg2 results in exclusive

targeting to the mitochondrion).

Because of the high degree of protein similarity between Polg1

and Polg2, it has not been feasible to use an antibody-based

protein detectionmethod to confirmmitochondrial versus plastid

localization of the alternatively translated forms of these proteins

in vivo. However, Ono et al. (2007) have shown presence and

Table 2. Computer-Predicted aTI Sites within the Arabidopsis

Genome

AXX—G RRR—R RXX—R

CTG 76 120 240

ATC 188 394 841

ACG 46 170 355

GTG 82 146 412

ATA 92 239 560

Numbers of genes identified to contain an aTI site within the 59 UTR.

Sites were characterized by start codon (rows) and sequence contexts

(columns), with R designating purine.

Table 3. Computer-Predicted aTI Sites within the Arabidopsis

Genome

ATG-M,C N-M N-C C-M S-M M-C

AXXCTGG 17.11 14.47 0.00 2.63 3.95 0.00

RRRCTGR 16.67 12.92 2.08 2.92 6.25 1.25

RXXCTGR 18.25 16.06 0.73 4.38 6.57 0.73

AXXATCG 19.15 9.04 4.79 0.53 1.06 1.06

RRRATCR 16.46 14.68 3.54 2.03 2.28 0.51

RXXATCR 17.61 12.06 4.14 2.36 2.72 1.18

AXXACGG 15.22 2.17 0.00 0.00 0.00 4.35

RRRACGR 22.94 6.47 3.53 0.59 0.59 1.18

RXXACGR 16.90 5.63 4.51 0.85 1.69 1.41

AXXGTGG 9.76 7.32 3.66 1.22 2.44 1.22

RRRGTGR 12.33 11.64 1.37 0.68 1.37 0.68

RXXGTGR 14.25 10.14 4.59 0.97 2.17 0.97

AXXATAG 16.13 5.38 3.23 1.08 6.45 1.08

RRRATAR 16.74 8.79 2.09 2.51 5.44 0.42

RXXATAR 16.31 10.11 2.66 2.30 4.61 0.89

Protein targeting changes predicted for aTI sites, based on aTI se-

quence and presented as percentages. ATG-M,C indicates the pro-

portion of aTI-containing genes that are predicted to encode a

mitochondrial (M) or chloroplast (C) targeting protein from the initiator

ATG. N designates proportion of genes with no targeting predicted

(cytosolic) that acquire mitochondrial (N-M) or chloroplast (N-C) target-

ing by initiation at the aTI site. S designates genes with predicted signal

sequence (ER targeting).
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activity of a 116-kD DNA polymerase that appears to represent

these proteins in the mitochondria and plastids of tobacco cells.

To assess the likely variation existing within the Arabidopsis

genome for aTI sites, we surveyed the entire nuclear genome for 59
UTR sequence features. Results from this computer-based anal-

ysis, summarized in Table 3, show relative frequencies of five non-

ATG initiator codons as putative aTI sites and relative frequencies

of purine triplets versus single purine at the 23 position. Protein

targeting predictions of the 2408putative aTI products suggest the

most likely outcome of aTI to be mitochondrial targeting of an

otherwise nonmitochondrial protein. Admittedly, mitochondrial

targeting presequences are better defined than plastid in their

amino acid composition, so protein targeting prediction programs

may bias toward the calling of mitochondrial presequences. How-

ever, in an earlier study,we also pointed out that amino acidsmost

essential to mitochondrial targeting presequences (Allison and

Schatz, 1986), Ser, Arg, and Leu, are also those encoded by six

codons and, therefore,most prevalent in random sequence.While

it will be necessary to test many of the predicted gene candidates

for aTI activity in vivo, observations to date suggest that 59 UTR
sequence features and a flexible ribosome scanning mechanism

provide key links to understanding the evolution of protein dual

targeting and its regulation in plants.

METHODS

Plasmids and Strains

All constructions used for IVTT were cloned in the pET-21(+) vector

(Novagen). Forplant expression,binaryvectorpCAMBIA1302wasmodified

by mutating the NcoI cloning site (CCATGG) to CCAGGG to eliminate the

ATG start site. Site-directed mutagenesis experiments were performed

using cloned Pfu polymerase (Stratagene) for mutagenesis in pET-21(+) or

the Quickchange II XL site-directed mutagenesis kit (Stratagene) for muta-

genesis in pCAMBIA1302. The luciferase gene (LUC) was PCR amplified

from pGL2-Basic (Promega) and cloned upstream of the Polg2 59 UTR (85

bp upstream to ATG and 64 bp upstream to CTG) to create the dicistronic

construction in pET-21(+). For overexpression and purification of eIF4A-1

protein, At3g13290 cDNA was cloned into pGEX-5X-1 and the protein

purified using the glutathione S-transferase purification kit according to

manufacturer’s specifications (GE Healthcare). Primer sequences for the

various constructions are included in Supplemental Table 1 online.

IVTT and Transcript Modification

IVTT assays used the TNT-coupled wheat germ extract systems (Prom-

ega) with 35S-labeledMet. Translation products were separated in 16.6%

Tris-Tricine gel (Schagger and von Jagow, 1987), dried, and exposed to

x-ray film for 16 to 24 h. For transcript decapping experiments involving

treatment with tobacco acid pyrophosphatase (Epicentre), mRNA was

prepared with MAXIscript (Ambion). For transcript capping experiments,

the mMESSAGE mMACHINE kit (Ambion) with the cap analog [m7G(59)

ppp(59)G] in the reaction mix was used.

EMSA for RNA–Protein Interaction

Each RNA probe was designed in association with a T7 promoter and a

spacer of a few random nucleotides upstream to the specific probe

sequence. The sequences were then PCR amplified to use as template.
32P-dUTP-labeled RNA probes were prepared with the MAXIscript kit

(Ambion), and RNA binding reactions were performed in a 25-mL volume

containing 1mL of labeled RNA, 4mL of wheat germ extract (Promega), 40

units of RNasin, and 2.5 mL of 103 buffer (Massiello et al., 2006).

Reactions were incubated on ice for 20min, followed by addition of 40 mg

heparin and 10 min incubation on ice. Samples were fractionated in 4%

nondenaturing polyacrylamide in 0.53 TBE at constant voltage. The

binding competition assay involved coincubation of cold RNA with

labeled in wheat germ extracts. For specific RNA–protein interaction

with eIF4A-1, 10 mg of purified protein was substituted for wheat germ

extract in incubation reactions conducted as described above.

Mass Spectrometry

Tandemmass spectrometry was performed at the University of Nebraska

Mass Spectrometry Core Facility using a Waters Q-TOF Ultima mass

spectrometer (Waters; formally Micromass). Results were analyzed using

the Mascot software package (Matrix Science).

Stable Plant Transformation

Arabidopsis thaliana stable transformations were developed with the

floral dip procedure (Clough and Bent, 1998). GFP expression in plant

tissues was assayed by confocal laser scanning microscopy.

Computational Analysis

The 59 UTR, coding sequence, and protein sequences of Arabidopsis

were downloaded from the TAIR website (Swarbreck et al., 2008; http://

www.Arabidopsis.org). Script was written to scan the 59 UTR of every

gene and search for a CTG with23 adenine, +4 guanine, and in frame to

the annotated ATG start codon. The CTG- and ATG-translated products

were used for organellar targeting prediction with Predotar (Small et al.,

2004) and TargetP (Emanuelsson et al., 2007). Multiple sequence align-

ment of DNA Polg1 and Polg2 in Arabidopsis, Nicotiana tabacum,

Sorghum bicolor, and Oryza sativa was constructed using the Mcoffee

option of T-Coffee (Notredame et al., 2000) program at http://www.igs.

cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi.

GFP Quantitation

Twelve-day-old whole plants except roots were ground in liquid nitrogen

and 13 Assay/Lysis buffer (GFP quantitation kit; Fluorometric, Cell

Biolabs) supplemented with Complete Protease Inhibitor (Roche). Stan-

dard curve and sample preparation was performed according to the

manufacturer’s instructions, and fluorescence was read with a plate

reader (Synergy 4 Multi-Mode Microplate Reader with Hybrid Technol-

ogy; Biotek) at 488/507 nm. The graph presents the average of three

independent experiments.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative database under accession numbers At1g50840 (POLg2, TAIR

accession locus 2036361), At3g20540 (POLg1, TAIR accession locus

2085730), At2g15790 (CYP40, TAIR accession locus 2044596),

At3g05580 (TAIR accession locus 2078087), At4g15850 (ATRH1, TAIR

accession locus 2130839), At2g20680 (TAIR accession locus 2051399),

At3g13930 (EIF4A1, TAIR accession locus 2088237); in the Gramene

database under accession numbers Sb07g004810 (sorghum POLg1),

Sb06g030120 (sorghum POLg2), Os08g07850 (rice POLg1), and

Os08g07840 (rice POLg2); and in the National Center for Biotechnology

Information database under accession numbers AB174898 (tobacco

POLg1) and AB174899 (tobacco POLg2).
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Supplemental Data

The following material is available in the online version of this article.

Supplemental Table 1. Primer Information Used for This Study.
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