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Nitric oxide (NO) has emerged as a central signaling molecule in plants and animals. However, the long search for a plant NO

synthase (NOS) enzyme has only encountered false leads. The first works describing a pathogen-induced NOS-like plant

protein were soon retracted. New hope came from the identification of NOS1, an Arabidopsis thaliana protein with an

atypical NOS activity that was found to be targeted to mitochondria in roots. Although concerns about the NO-producing

activity of this protein were raised (causing the renaming of the protein to NO-associated 1), compelling data on its

biological role were missing until recently. Strong evidence is now available that this protein functions as a GTPase that is

actually targeted to plastids, where it might be required for ribosome function. These and other results support the

argument that the defective NO production in loss-of-function mutants is an indirect effect of interfering with normal plastid

functions and that plastids play an important role in regulating NO levels in plant cells.

Amajor revolution in biology took place by the early 1990s after

the discovery that nitric oxide (NO), a free radical, was not a toxic

by-product of oxidative metabolism but had a fundamental role

as a signaling molecule regulating normal physiological pro-

cesses in animal cells (Culotta and Koshland, 1992). A role of this

volatile molecule in plant defense responses was subsequently

reported, and it is now well established that NO is also a key

player in the regulation of different plant developmental pro-

cesses, including germination, root growth, vascular differenti-

ation, stomatal closure, and flowering (Lamattina et al., 2003;

Wendehenne et al., 2004; Crawford and Guo, 2005). Animal cells

synthesize NO primarily by the activity of NO synthase (NOS)

enzymes. There are several NOS isoforms, but all of them

catalyze the same basic reaction: a NADPH-dependent oxida-

tion of L-Arg to NO and L-citrulline. By contrast, the synthesis of

NO in plant cells remains a matter of debate. The first reported

mechanism to make NO in plants was the reduction of nitrite

to NO catalyzed (with low efficiency) by nitrate reductase (NR),

a cytosolic enzyme that normally reduces nitrate to nitrite

(Yamasaki et al., 1999). But the contribution of NR to NO

synthesis is still controversial.

The analysis of the Arabidopsis thaliana nia1 nia2 double

mutant, which shows substantially reduced NR activity levels,

has shown that such activity is required for NO synthesis during

flowering (Seligman et al., 2008), auxin-induced lateral root

development (Kolbert et al., 2008), and abscisic acid (ABA)-

induced stomatal closure (Desikan et al., 2002; Bright et al.,

2006) but not during infection (Zhang et al., 2003), salicylic acid

treatment (Zottini et al., 2007), or mechanical stress (Garces

et al., 2001). Furthermore, foliar extracts of the mutant show the

same capacity to produce NO as wild-type plants when nitrite is

exogenously supplied (Modolo et al., 2005). These results indi-

cate that additional mechanisms to reduce nitrite into NO exist in

plant cells and that the decreased capability for NO synthesis of

mutant plants with defective NR activity might result from their

reduced nitrite levels (Modolo et al., 2005). Other enzymatic

sources for nitrite-dependent NO synthesis exist in the plasma

membrane (Stohr et al., 2001) and mitochondria (Planchet et al.,

2005), whereas nonenzymatic production of NO from nitrite has

been shown to occur in acidic and reducing environments, such

as the apoplasm (Bethke et al., 2004) and plastids (Cooney et al.,

1994). The highly reduced levels of L-Arg in the nia1 nia2 mutant

(Modolo et al., 2006)might also compromise its ability to produce

NO. This amino acid is a substrate for the production of poly-

amines, compounds that have been proposed to participate inNO

synthesis (Tun et al., 2006). Additionally, plants have been found

to synthesize NO by an Arg-dependent NOS activity similar to

that present in animal cells, as detailed in the next section.

First Leads in the Hunt for Plant NOS Enzymes

Two main sources of evidence for the presence of animal-like

NOS-dependent synthesis of NO in plant cells were initially
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reported in the late 1990s. Initial evidence was based on the

production of NO and L-citrulline from L-Arg by plant extracts

and/or its inhibition by specific inhibitors, typically inactive sub-

strate analogs (Cueto et al., 1996; Ninnemann and Maier, 1996;

Delledonne et al., 1998; Durner et al., 1998). In a different

approach, the use of antibodies against mammalian NOS en-

zymes detected immunoreactive proteins in different plant cell

compartments (Barroso et al., 1999; Ribeiro et al., 1999). How-

ever, subsequent identification of the cross-reacting polypep-

tides using matrix-assisted laser desorption/ionization-time of

flight mass spectrometry demonstrated that the mammalian

antibodies recognized plant proteins unrelated to NOS (Butt

et al., 2003), making this strategy inappropriate to infer the

presence of plant NOS. Moreover, analyses of the fully se-

quenced genomes ofArabidopsis and rice (Oryza sativa) have not

retrieved any gene or protein with homology to the complete

animal NOS enzymes known to date, suggesting that the

detected NOS activity in plants should come from an enzyme

different from the mammalian proteins.

A first clue came from the purification of a pathogen-inducible

NOS-like activity from virus-infected tobacco (Nicotiana taba-

cum) leaves (Chandok et al., 2003, 2004), but concerns about the

reliability of the published data led to their retraction (Klessig

et al., 2004a, 2004b). New hope came from the identification of

an Arabidopsis protein reported to produce NO in response to

hormonal signals (Guo et al., 2003). The protein, initially named

At-NOS1, was identified based on its homology to a protein from

the snailHelix pomatia that coelutedwith NOSactivity and cross-

reacted with antibodies against mammalian NOS enzymes

(Huang et al., 1997). Neither the snail protein nor NOS1 were

similar to typical animal NOS enzymes, but they increased Arg-

dependent NO synthesis when expressed in Escherichia coli,

suggesting that they might belong to a novel class of NOS

enzymes. Overexpression of NOS1 in Arabidopsis resulted in

higher levels of NOS activity in leaf extracts, whereas a knockout

mutant (nos1) displayed lower NOS activity in leaf extracts and

reduced NO accumulation in roots (Guo et al., 2003). Different

groups have independently confirmed the presence of de-

creased NOS activity and NO levels in the Arabidopsis nos1

mutant (He et al., 2004; Zeidler et al., 2004; Zhao et al., 2007a)

and in Nicotiana benthamiana plants with a silenced NOS1

homolog (Asai et al., 2008). Furthermore, enhanced NO produc-

tionwas recently observed in NOS1-overexpressing diatom cells

(Vardi et al., 2008), whereas changes in bothNOSactivity andNO

production correlated with the levels of mammalian NOS1 in

human cells (Parihar et al., 2008).

Consistent with the proposed role of NOS1 in NO synthesis,

mutant nos1 plants showed decreased NO accumulation in

response to ABA, salicylic acid, salt, and elicitor treatments (Guo

et al., 2003; Zeidler et al., 2004; Bright et al., 2006; Zhao et al.,

2007a; Zottini et al., 2007). Similarly, a decreased NO burst was

observed after elicitation of NOS1-silenced N. benthamiana

plants (Asai et al., 2008). Treatment with a specific NOS inhibitor

reduced NO levels in elicited control plants but not in silenced

lines, confirming an involvement of NOS1 in the observed NO

burst (Asai et al., 2008). Other reports, however, found that NO

accumulation in response to different hormones or oxidative

stress was similar in nos1 and wild-type plants (Arnaud et al.,

2006; Kolbert et al., 2008; Tun et al., 2008). Impaired NO

generation in mutant plants in response to some treatments

but not in response to others has been observed even under

similar experimental conditions. For example, treatment of wild-

type or nos1 epidermal fragments with ABA resulted in a much

lower increase in NO production in the mutant, whereas treat-

ment of the same tissue with H2O2 led to a similarly enhanced

accumulation of NO in wild-type and mutant guard cells (Bright

et al., 2006). It is therefore possible that NOS1 is involved in

producing NO in response to some stimuli but not to others.

Moreover, a role for NOS1 unrelated to NO synthesis was

suggested by the observation that not all the phenotypes ob-

served in themutant can be rescued byNOsupplementation. For

example, the accumulation of plastid-targeted enzymes of the

methylerythritol pathway causing fosmidomycin resistance in a

recently isolated nos1 allele named resistant to inhibition by

fosmidomycin1 (rif1) was unaffected by treatment with an NO

donor (Flores-Pérez et al., 2008). These results and the failure to

reproduce the published results on the detection of NOS activity

of the recombinant NOS1protein (Crawford et al., 2006; Zemojtel

et al., 2006a; Moreau et al., 2008) and the absence of such

activity in bacterial homologs (Sudhamsu et al., 2008) led to the

conclusion that NOS1 is not a NOS. However, compelling data

on the specific biological role of this protein (renamed NITRIC

OXIDE ASSOCIATED PROTEIN1 [NOA1]) have only recently

been available.

NOA1/RIF1 Is a Plastidial GTPase Not Directly Related to

NO Synthesis

NOA1/RIF1 shows homology to members of the YlqF/YawG

family of P-loop GTP binding proteins with a circularly permuted

GTPase domain that play roles in ribosomal biogenesis and

protein translation (Leipe et al., 2002). The closest NOA1/RIF1

homolog is the Bacillus subtilis YqeH protein, shown to be

required for the correct formation of the bacterial 70S ribosome

and the assembly or stability of the small (30S) ribosomal subunit

(Uicker et al., 2007). YqeH is a functional GTPase that shows no

NOS activity (Sudhamsu et al., 2008). Interestingly, YqeH is able

to complement the Arabidopsis noa1/rif1 mutant (Flores-Pérez

et al., 2008; Sudhamsu et al., 2008), indicating a similar function

for bacterial and plant homologs. The Arabidopsis protein was

recently demonstrated specifically to bind and hydrolyze GTP, a

function that is necessary for complementation of the knockout

mutant (Moreau et al., 2008). However, truncated versions of the

protein with a functional GTP binding domain but lacking the

C-terminal domain failed to complement the mutant, indicating

that both domains are required for NOA1/RIF1 function. These
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results also suggest that the GTPase activity of this protein may

be unrelated to NO production in plants. Structural studies of the

YqeH protein led to the conclusion that the C-terminal domain

harbors a recognition module for peptides and nucleic acids with

conserved residues important for RNA binding coupled to GTP

hydrolysis (Sudhamsu et al., 2008). Because this module is also

found in the Arabidopsis protein, it was proposed that the

GTPase activity of YqeH and NOA1/RIF1 might be functionally

linked to RNA and/or protein binding (Moreau et al., 2008;

Sudhamsu et al., 2008).

Consistent with a role for NOA1/RIF1 in ribosome assembly or

stability similar to that described for YqeH, other homologs

present in eukaryotic organisms, such as animals and yeast,

have been shown to be associated with ribosomal proteins in

mitochondria (Zemojtel et al., 2006a, 2006b; Parihar et al., 2008).

Arabidopsis NOA1/RIF1 was initially reported to be a mitochon-

drial NOS based on twomain pieces of evidence: the targeting of

a green fluorescent protein–tagged version of the protein to

mitochondria in roots and the presence of NOS activity in

mitochondria isolated from wild-type leaves but not in those

isolated from the nos1 mutant (Guo and Crawford, 2005). How-

ever, strong evidence is now available indicating that this protein

functions predominantly in plastids. A plastidial localization was

recently reported for the diatom NOA1 homolog (Vardi et al.,

2008). The untagged Arabidopsis protein was imported into

isolated wild-type chloroplasts, whereas a GFP fusion that fully

rescued the rif1 phenotype was found to be localized in chloro-

plasts (Flores-Pérez et al., 2008). Substitution of the putative

N-terminal organelle-targeting sequence of the NOA1/RIF1 pro-

tein by a previously characterized plastid-targeting sequence

resulted in a chimeric protein that was able to restore fosmido-

mycin sensitivity and normal greening and growth when ex-

pressed in rif1 plants (Figure 1). Furthermore, a recombinant

version of the bacterial YqeH protein was active in complement-

ing the mutant nos1/rif1 phenotype when fused to the N-terminal

targeting peptide of the NOA1/RIF1 protein (Sudhamsu et al.,

2008) or when specifically targeted to plastids (Flores-Pérez

et al., 2008) but not when targeted to mitochondria (Figure 1). In

agreement with the YqeH-like activity of the NOA1/RIF1 protein

being required only in plastids, the ultrastructure of etioplasts

and chloroplasts but not mitochondria was affected in rif1

seedlings (Flores-Pérez et al., 2008). These results, together

with the observed decrease in the levels of proteins encoded by

the plastid genome (plastome) in rif1 chloroplasts (Flores-Pérez

et al., 2008), suggest that NOA1/RIF1 might bind plastidial

ribosomes and be required for their normal function and there-

fore for proper protein synthesis in plastids. This conclusion is

further supported by the striking phenotypic similarities between

rif1 and rif10, a mutant defective in the processing of all types of

plastidial RNAs, including rRNA (Sauret-Güeto et al., 2006).

Together, current evidence indicates that the connection be-

tween NOA1/RIF1 and NO is indirect.
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Figure 1. Plastid-Targeted Bacterial YqeH and Arabidopsis NOA1/RIF1 Complement the Arabidopsis rif1 Mutant.

The plastid-targeting sequence of the Arabidopsis HDS/GCPE protein (Querol et al., 2002) was fused to the N terminus of a truncated NOA1/RIF1

protein lacking the first 35 amino acid residues to generate the chimeric PR protein. Similarly, either the same plastid-targeting sequence or the

mitochondria-targeting sequence of the Arabidopsis FPS1L protein (Manzano et al., 2006) was fused to the N terminus of the bacterial YqeH protein to

generate the fusion proteins PY and MY, respectively. The corresponding constructs were cloned under the control of the constitutive 35S promoter

and stably expressed in transgenic rif1 plants.

(A) Phenotype of representative wild-type and rif1 seedlings expressing the indicated proteins germinated and grown for 5 d on media either

supplemented (+) or not (�) with 50 mM fosmidomycin.

(B) Representative plants of the indicated genotypes grown on soil for 1 month under long-day conditions. All panels in each section are to the same

scale.
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A Role for Plastids in the Control of NO Levels

It remains unclear how altered levels of the NOA1/RIF1 protein in

loss-of-function or overexpressing lines of eukaryotic algae,

plants, and animals result in concomitant changes in NOS activity

and NO accumulation (Guo et al., 2003; He et al., 2004; Zeidler

et al., 2004; Zhao et al., 2007a; Parihar et al., 2008; Vardi et al.,

2008). As recently suggested (Moreau et al., 2008), the decreased

NO production in the noa1/rif1 mutant might result from pleiotro-

pic effects of defective plastids. Impaired production of plastome-

encoded proteins in the mutant is likely the cause of the defects

observed in plastid development (Flores-Pérez et al., 2008), which

in turn might result in the increased production of reactive oxygen

species (ROS) detected in mutant plants (Guo and Crawford,

2005; Zhao et al., 2007a, 2007b). Interaction of elevated levels of

ROS with NO synthesized in plastids would reduce the amount of

NO that could react in the available NO detection assays (Moreau

et al., 2008), explaining the reduced levels detected in noa1/rif1

plants. Enhanced ROS production in mitochondria of animal cells

with a silenced NOA1/RIF1 homolog might also explain the

observed decline in NO levels (Parihar et al., 2008). However,

the observations that the pale phenotype of noa1/rif1 plants can

be rescued by application of NO donors (Guo et al., 2003; He et al.

2004; Flores-Pérez et al., 2008) and thatNOstimulates chlorophyll

biosynthesis and chloroplast differentiation (Graziano et al., 2002;

Zhang et al., 2006) suggest that the low NO levels found in the

mutant might contribute to the observed pigmentation defects

rather than just being a consequence.

Interestingly, interference with other plastid mechanisms un-

related to NOA1/RIF1 function can also result in altered NO

levels. For example, a genetic screen for NO hypersensitive

Arabidopsis mutants led to the isolation of several lines with

mutations in CUE1, a gene encoding a plastidial phosphoenol-

pyruvate/phosphate translocator of the plastid inner envelope

membrane (He et al., 2004). Mutant cue1 plants exhibit a delayed

development of mesophyll chloroplasts but elevated levels of

NO, presumably as a consequence of the accumulation of L-Arg

(Streatfield et al., 1999; He et al., 2004). In agreement, isolated

soybean (Glycinemax) chloroplasts have been shown to produce

NO from L-Arg and also from nitrite (Jasid et al., 2006). Nonen-

zymatic production of NO from nitrite involving the plastidial

pigments carotenoids has also been reported (Cooney et al.,

1994). Interestingly, NO synthesis in response to iron, elicitors,

high temperatures, salinity, or osmotic stress is first detected in

chloroplasts using NO-sensitive diaminofluorescein probes

(Foissner et al., 2000; Gould et al., 2003; Arnaud et al., 2006).

Although many pieces of the puzzle are still missing, and the

search for the elusive plant NOS is not yet over, these results

corroborate the hypothesis that plastids are key players for the

control of NO levels in plant cells.
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