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ABSTRACT: Connexin (Cx)43 is required for inhibition of osteocyte and osteoblast apoptosis by bisphos-
phonates in vitro. Herein, we evaluated its requirement for the in vivo actions of bisphosphonates using mice
in which Cx43 was deleted specifically from osteocytes and osteoblasts (Cx43�Ob−Ot/− mice). Effective removal
of Cx43 was confirmed by the presence of the deleted form of the gene and by reduced mRNA and protein
expression in osteoblastic cells and bones obtained from Cx43�Ob−Ot/− mice. The amino-bisphosphonate
alendronate (2.3 �mol/kg/d) was injected daily into 5-mo-old female mice (n � 6–11) for 31 days, starting 3
days before implantation of pellets releasing the glucocorticoid prednisolone (2.1 mg/kg/d). Cx43�Ob−Ot/− mice
and their littermates (Cx43fl/−, Cx43�Ob−Ot/+, and Cx43fl/+) gained bone with similar kinetics and exhibited
identical bone mass from 2 to 4.5 mo of age, indicating that Cx43 deletion from osteocytes and mature
osteoblasts does not impair bone acquisition. In addition, prednisolone induced a similar increase in osteocyte
and osteoblast apoptosis in Cx43�Ob−Ot/− or in control Cx43fl/− littermates. However, whereas alendronate
prevented prednisolone-induced apoptosis in control Cx43fl/− mice, it was ineffective in Cx43�Ob−Ot/− mice. In
contrast, alendronate inhibited glucocorticoid-induced bone loss in both type of animals, suggesting that
inhibition of resorption is the predominant effect of alendronate against the early phase of glucocorticoid-
induced bone loss. Taken together with earlier in vitro evidence, these findings show that Cx43 is required for
the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts.
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INTRODUCTION

BISPHOSPHONATES ARE POTENT inhibitors of bone resorp-
tion widely used in the management of osteoporosis

and other bone diseases.(1–9) Decreased osteoclast progeni-
tor development, decreased osteoclast recruitment, re-
duced osteoclastic resorption activity, and promotion of ap-
optosis of osteoclasts are thought to be the prevailing
mechanisms of the antiresorptive actions of these
agents.(10) However, in addition to their effects on osteo-
clasts, bisphosphonates promote survival of osteocytes and
osteoblasts in vitro and in vivo.(11–13) This latter effect
might explain, at least in part, the disproportional effective-
ness of these agents in preventing fractures, which cannot
be fully accounted for by the increase in bone mass alone.

Earlier in vitro work of ours established that the mecha-
nism of the anti-apoptotic effect of bisphosphonates on os-
teocytes and osteoblasts involves opening of connexin
(Cx)43 hemichannels, followed by activation of the kinases
Src and extracellular signal-regulated kinases (ERK).(11,14)

Expression of Cx43 is indispensible for the anti-apoptotic

effect of bisphosphonates on cultured osteocytes and osteo-
blasts.(14,15) Specifically, bisphosphonates fail to prevent ap-
optosis of cells from established lines lacking Cx43 or pri-
mary osteoblasts and embryonic fibroblasts derived from
Cx43-deficient mice. Moreover, transfection of Cx43, but
not other connexins, into Cx43 naïve cells confers de novo
responsiveness to bisphosphonates. However, whether
Cx43 is required for the actions of bisphosphonates in vivo
was heretofore unknown.

Mice lacking Cx43 die within hours after birth because of
cardiac malformations precluding the study of the adult
skeleton.(16) In addition, deletion of Cx43 in the early os-
teoblastic cell lineage exhibit defective expression of osteo-
blast-specific genes and low bone mass, showing that Cx43
function is required for the attainment of the full osteoblast
phenotype. To overcome these drawbacks, we generated
mice in which Cx43 was deleted from mature osteoblasts
and osteocytes using the human osteocalcin promoter
(Cx43�Ob−Ot/− mice). We report that, unlike mice in
which Cx43 was deleted from early osteoblastic cells,
Cx43�Ob−Ot/− mice exhibit bone mass indistinguishable
from their control littermates. In addition, the response of
Cx43�Ob−Ot/− mice to glucocorticoids was unaffected. Thus,
prednisolone administration induced similar increase in theThe authors state that they have no conflicts of interest.
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prevalence of osteocyte and osteoblast apoptosis and bone
loss on Cx43�Ob−Ot/− mice and their control littermates. On
the other hand, Cx43�Ob−Ot/− mice were unresponsive to
the anti-apoptotic effect of bisphosphonates on osteocytes
and osteoblasts. These findings provide conclusive evidence
that, as it is the case in vitro, the expression of Cx43 is
required for the prosurvival effect of bisphosphonates in
vivo.

MATERIALS AND METHODS

Mice

Mice in which Cx43 was deleted specifically in osteocytes
and osteoblasts were generated using the Cre/LoxP sys-
tem.(17,18) In the first breeding, mice expressing Cre recom-
binase under the control of the human osteocalcin pro-
moter (OCNCre mice)(19) (provided by T Clemens,
University of Alabama at Birmingham, Birmingham, AL,
USA) were crossed with Cx43+/− mice(16) (generated by
J Rossant, University of Toronto, and provided to us by
R Civitelli, Washington University School of Medicine,
St Louis, MO, USA) to facilitate the complete deletion of
Cx43 in osteocytes and osteoblasts. The resulting Cx43+/−

expressing OCNCre mice were bred with mice expressing
floxed Cx43 (fl)(20) (provided by K Willecke, Universitat
Bonn, Bonn, Germany), in which LoxP sites recognized
and excised by the Cre recombinase were introduced into
exon2, flanking the Cx43-coding region.(20) This cross ren-
dered (1) Cx43�Ob−Ot/− mice, which lack Cx43 in osteocytes
and osteoblasts and express one copy of Cx43 in all other
cells and tissues (the experimental group); (2) mice express-
ing one copy of Cx43 in all tissues (Cx43fl/−, the control
group), and (3) mice expressing one or two copies of Cx43
in osteocytes and osteocytes and two copies of Cx43 in all
other tissues (Cx43�Ob−Ot/+ and Cx43fl/+). Mice were geno-
typed by PCR of genomic DNA isolated using the Wizard
Genomic purification kit (Promega, Madison, WI, USA)
(Fig. 1A). Specific primer sets recognizing wildtype, floxed,
and deleted Cx43 and OCNCre were used, as previously
described.(19–21)

Female 5-mo-old mice (n � 6–11 per group) were im-
planted subcutaneously with pellets containing placebo or
pharmacologic doses of prednisolone, releasing 2.1 mg/kg/d
(Innovative Research of America). Mice were administered
daily subcutaneous injections of 2.3 �mol/kg/d (0.75 mg/kg/
d) of alendronate or the equivalent volume of saline, start-
ing 3 days before pellet implantation, as previously pub-
lished.(11) Mice were fed a regular diet (Harlan/Teklad
7001) and water ad libitum and maintained on a 12-h light/
dark cycle. All protocols involving mice were approved by
the Institutional Animal Care and Use Committee of
UAMS.

Cell cultures

Primary osteoblastic cells were isolated from calvarial
bone of 4.5-mo-old mice by sequential digestions with col-
lagenase and trypsin(22) and cultured in �-MEM containing
10% FBS until they reached confluence (day 0). At this
time, medium was changed to �-MEM containing 10% FBS

and 50 �g/ml ascorbic acid and culture was continued for
additional 21 days (day 21) to induce osteoblast differen-
tiation, as previously published.(23) MLO-Y4 osteocytic
cells and Ob-6 osteoblastic cells were cultured as previously
published.(11,24)

Silencing of Cx43 expression

The expression of Cx43 in MLO-Y4 osteocytic and Ob-6
osteoblastic cells was silenced using MISSION short hairpin
(sh)RNA Lentiviral Particles (Sigma), following the manu-
facturer’s instructions.(25) Briefly, cells were infected with
lentiviral particles carrying either scrambled or Cx43-
specific shRNA. Stable cell lines were established by selec-
tion with puromycin (Sigma). The efficiency of deletion was
determined by measuring Cx43 protein and mRNA expres-
sion by Western blotting and by real-time PCR, respec-
tively.

Quantification of gene expression by real-time PCR

RNA was isolated using Ultraspec reagent (Biotecx
Laboratories). The levels of mRNA for Cx43, osteocalcin,
and the housekeeping gene ChoB were quantified using the
ABI 7300 real-time PCR system (Applied Biosystems).(26)

Primers and probes were manufactured by the Assays-by-
Demand service—Cx43: probe, 5�-CCTTCCCTCCGGCC-
GTG-3�, forward primer, GGAAGCTGCTGGACA-
AGGT, reverse primer, CAGGAGCAGGATTCT-
GAAAATGAAG; osteocalcin: probe, 5�-AAGCCC-
AGCGGCC-3�, forward primer, GCTGCGCTCT-
GTCTCTCTGA, reverse primer, TGCTTGGACAT-
GAAGGCTTTG; and ChoB: probe, 5�-TCCAGAGCAG-
GATCC-3�, forward primer, CCCAGGATGGCGA-
CGAT, reverse primer, CCGAATGCTGTAATGGCG-
TAT. TaqMan gene expression assay Mm00439105_m1 was
used to measure Cx43 mRNA in MLO-Y4 and Ob-6 cells.
The PCR reaction was performed in triplicates using 20 �l
of Gene Expression Assay Mix TaqMan Universal Master
Mix containing 80 ng of each cDNA template.

Cx43 immunostaining

Tibias from 4.5-mo-old mice were fixed in neutral-
buffered formalin for 24 h and decalcified by incubating
with 5% EDTA (pH 7.0) for 7 days, with daily changes of
the EDTA solution. Hearts from the same mice were fixed
in neutral-buffered formalin for 24 h. Samples were embed-
ded in paraffin and sectioned at 5 �m thickness. Paraffin
was removed and samples were rehydrated and incubated
with 3% H2O2 for 15 min to inhibit endogenous peroxidase
and with 10% goat serum for 1 h to block nonspecific an-
tibody biding. Sections were incubated for 2 h with 1:200
dilutions in 2% goat serum of rabbit polyclonal anti-Cx43
antibody (Sigma Chemical) or nonimmune rabbit IgG
(Santa Cruz Biotechnologies), used as a negative control.
Subsequently, sections were incubated for 1 h with a 1:200
dilution in 2% goat serum of anti-rabbit horseradish per-
oxidase (HRP)-conjugated antibody (Santa Cruz Biotech-
nologies) and developed with a DAB substrate-chromogen
system (Dako) for up to 5 min. Sections were washed and
counterstained with methyl green to show cell nuclei.(27)
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Western blot analysis

Protein lysates from MLO-Y4 and Ob-6 cells were pre-
pared as previously reported.(11,24) Proteins were separated
on 10% SDS-polyacrylamide gels and electrotransferred to
polyvinylidene difluoride membranes. Immunoblottings
were performed using a rabbit anti-Cx43 antibody or mouse
anti-�-actin antibody (Sigma). After incubation with pri-
mary antibodies, blots were exposed to anti-rabbit or anti-
mouse antibody conjugated with horseradish peroxidase
(Santa Cruz Biotechnology) and developed using a chemi-
luminescence substrate (Pierce). The intensity of the bands
was quantified using the Versadoc Imaging system (Bio-
Rad).

BMD

To determine whether deletion of Cx43 from osteocytes
and osteoblasts affects bone accrual, BMD was determined

by DXA (Hologic) every 2 wk, starting at 2 mo of age, until
the animals reached the adult peak bone mass.(11,28)

To determine the effect of bisphosphonates on glucocorti-
coid-induced bone loss, BMD was determined by DXA
(PIXImus; G. E. Medical Systems, Lunar Division) at the
time of pellet implantation and at the time of the death.(29)

Percent change BMD was calculated using the equation
100 × [(final BMD − initial BMD)/initial BMD]. BMD
measurements included the entire thoracic and lumbar
spine (spinal BMD) or the entire femur (femoral BMD).

Apoptosis

L1–L4 vertebrae were fixed in Millonig’s phosphate-
buffered 10% formalin, pH 7.4, at 4°C and embedded un-
decalcified in methyl methacrylate as previously de-
scribed.(11) Apoptosis of osteocytes and osteoblasts was
detected by in situ nick-end labeling (ISEL) using the DNA

FIG. 1. Genotypic and phenotypic analysis
of mice lacking Cx43 in osteocytes and os-
teoblasts and their littermates. (A) Genomic
DNA was purified from mouse bone (tibia)
and heart and PCR for OCNCre, “floxed,”
and wildtype Cx43 allele and deleted Cx43
were performed. (B) Calvaria cells were iso-
lated from mice carrying the four different
genotypes and treated with ascorbic acid for
0 or 21 days. The levels of Cx43 mRNA were
determined by real-time PCR and corrected
by ChoB. The expected levels of expression
of Cx43 are indicated. *p < 0.001 vs. day 0,
n � 3–9 mice. (C) Representative micropho-
tographs of paraffin-embedded bone (tibia)
and heart sections immunostained for Cx43
(brown) and counterstained with methyl
green to show the cell nuclei (blue nuclei).
An example of an osteocyte in each bone
section is pointed out by black arrows and an
example of an osteoblast by white arrows.
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fragmentation Klenow enzyme (Oncogene Research Prod-
ucts) in vertebral sections counterstained with 2% methyl
green as previously described.(27,30) Quantification of bone
cell apoptosis was done on longitudinal sections of the first
through the fourth lumbar vertebra for each mouse. The
prevalence of apoptotic osteocytes and osteoblasts was cal-
culated by enumerating the total number and the ISEL-
positive cells exhibiting condensed chromatin, nuclear frag-
mentation, or cell shrinkage.

Semiconfluent cultures of osteocytic and osteoblastic
cells were treated with vehicle or 10−7 M alendronate for
1 h, followed by 6-h treatment with the glucocorticoid dexa-
methasone (10−6 M) for 6 h. Apoptosis was assessed by
trypan blue uptake, as previously published.(11,24)

Statistical analysis

Gene expression data were analyzed by Student t-test.
The rate of gain of weight and BMD were analyzed by
repeated-measure models. BMD and osteocyte and osteo-
blast apoptosis were analyzed by generalized linear models.
Means and differences between means were estimated by
least squares. Levene’s test was used to assess the assump-
tion of homogeneous variance, whereas the Shapiro-Wilk
test was used to assess normality of the residuals. When the
assumptions were not met, transformations were used. If
transformations still failed the assumptions, the Kruskal-
Wallis test was used for nonparametric analysis. Data for
apoptosis of cultured cells were analyzed by one-way
ANOVA, and the Student-Newman-Keuls method was
used to estimate the level of significance of differences be-
tween means.

RESULTS

Cx43 is efficiently and specifically removed from
osteocytes and osteoblasts in mice expressing Cre
recombinase under the control of the human
osteocalcin promoter

Cx43 was deleted specifically in osteocytes and osteo-
blasts using the Cre/LoxP system.(17,18) Following the
breeding strategy detailed in the Materials and Methods,
we generated Cx43�Ob−Ot/− mice that lack Cx43 in osteo-
cytes and osteoblasts and express one copy of Cx43 in all
other cells and tissues (the experimental group), mice ex-
pressing one copy of Cx43 in all tissues (Cx43fl/−, the control
group), and mice expressing one or two copies of Cx43 in
osteocytes and osteocytes and two copies of Cx43 in all
other tissues (Cx43�Ob−Ot/+ and Cx43fl/+). Analysis of ge-
nomic DNA obtained from calvaria and heart showed the
four expected genotypes (Fig. 1A). In addition, a PCR re-
action using primers recognizing a region adjacent to the
LoxP sites that flank the Cx43-coding region (43delfor and
43delrev) rendered a 670-bp band corresponding to the de-
leted Cx43 allele(20) in DNA from bone of animals express-
ing OCNCre. This shows the effective deletion of the gene.
On the other hand, as expected the deletion band was not
detected in heart (Fig. 1A) or spleen (data not shown) be-
cause of the fact that these tissues do not express osteocal-
cin and therefore, should not express the Cre recombinase.

The specific deletion of Cx43 from osteocytes and osteo-
blasts was also shown at the mRNA and protein levels using
two additional approaches. First, Cx43 expression in osteo-
blastic cells was quantified by measuring mRNA levels by
real-time PCR in calvaria cells derived from Cx43�Ob−Ot/−

mice and their littermates. Cells were cultured in the pres-
ence of ascorbic acid to induce differentiation toward os-
teoblasts, leading to activation of the osteocalcin promoter
and expression of Cre recombinase. Consistent with this,
osteocalcin mRNA expression increased between 400- and
1000-fold in all cell types after 21 days of culture (data not
shown). Cx43 expression was arbitrarily considered as 1 for
cells derived from Cx43fl/+ mice (which are equivalent to
wildtype mice). Cx43 expression did not change in cells
from Cx43fl/− or Cx43fl/+ mice between day 0 and day 21 of
culture (Fig. 1B). On the other hand, Cx43 expression de-
creased by 50% on 21 days of culture in cells derived from
Cx43�Ob−Ot/− and Cx43�Ob−Ot/+ mice, consistent with the
expression of Cre recombinase induced by differentiation.
Cx43 protein expression was also examined in bone sec-
tions by immunohistochemistry (Fig. 1C). Cx43 was absent
in osteocytes and osteoblasts from Cx43�Ob−Ot/− mice and
was reduced in osteocytes and osteoblasts from heterozy-
gous controls Cx43�Ob−Ot/+ and Cx43fl/− mice compared
with the Cx43 homozygous control Cx43fl/+ mice. As ex-
pected, the deletion of Cx43 was not observed in the hearts
from Cx43�Ob−Ot/−. Moreover, the levels of Cx43 were
similar in hearts from Cx43�Ob−Ot/+ and Cx43fl/+ mice, con-
sistent with the lack of expression of Cre recombinase in
this tissue. Taken together, these results indicate that Cx43
is efficiently and specifically deleted from osteoblastic cells
in mice expressing OCNCre.

Deletion of Cx43 from osteocytes and mature
osteoblasts does not affect bone accrual

Serial weight and BMD measurements were performed
every 14 days starting at 60 days of age until the animals
reached peak bone mass (4.3 mo). Female or male
Cx43�Ob−Ot/− mice and their littermates have indistinguish-
able body weight at least up to 4.3 mo of age (Fig. 2).
Moreover, female or male mice of the four genotypes
showed no differences in the kinetics or time at which adult
peak bone mass was attained or in bone mass at 4.3 mo of
age. These results indicate that deletion of Cx43 in osteo-
cytes and mature osteoblasts in Cx43�Ob−Ot/− mice does not
affect bone accrual.

Cx43 expression in osteocytes and osteoblasts is
required for prevention of glucocorticoid-induced
apoptosis of osteocytes and osteoblasts in vivo and
in vitro

Mice received daily injections of alendronate together
with placebo or prednisolone as indicated in the Materials
and Methods section. Cx43fl/− mice were used as the control
group because they express the same levels of Cx43 than
Cx43�Ob-Ot/− mice in all tissues, except in osteocytes and
osteoblasts. As shown before in wildtype mice,(27,28) pred-
nisolone induced a significant increase in the prevalence of
apoptosis of cancellous and cortical osteocytes and osteo-
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blasts in the lumbar vertebrae from mice from control and
experimental groups (Fig. 3). Moreover, prednisolone in-
duced total, spinal, and femoral bone loss in both type of
mice (Fig. 4), suggesting that deletion of Cx43 does not alter
the skeletal response to glucocorticoids.

Alendronate administration prevented apoptosis of os-
teocytes and osteoblasts induced by glucocorticoids in
Cx43fl/− control mice (Fig. 3). In contrast, alendronate was
ineffective in mice lacking Cx43 in osteocytes and osteo-
blasts. Thus, similar to our in vitro findings, Cx43 expres-
sion is indispensable for the protective effect of bisphos-
phonates in vivo on osteocytes and osteoblasts.

Interestingly, the prevalence of osteocyte apoptosis in the
cortical bone was increased under basal conditions in
Cx43�Ob−Ot/− mice compared with Cx43fl/− mice (10.02 ±
2.98% versus 2.34 ± 2.15%, respectively). This was not ob-
served in osteocytes located in the trabecular bone.

We next studied the requirement of Cx43 expression for
bisphosphonate-induced anti-apoptosis in cultured osteo-
cytic and osteoblastic cell lines by silencing the expression
of Cx43 using shRNA. Cx43 mRNA expression was de-
creased in MLO-Y4 and Ob-6 cells treated with Cx43
shRNA to ∼20% of cells treated with scrambled shRNA
(control), as quantified by real-time RT-PCR (Fig. 5).

FIG. 2. Cx43�Ob−Ot/− mice that lack Cx43 in
osteocytes/osteoblasts do not differ in the
rate of gain of weight or global, spinal, or
hindlimb BMD from their littermates. Weight
and global, spinal, and hindlimb BMD were
determined every 2 wk starting at 2 mo of
age until the mice reached peak bone mass
(4.3 mo old). Six to 12 mice were analyzed for
each genotype. p > 0.05, by repeated mea-
sures models for all measurements for either
female or male mice indicate the lack of dif-
ferences among the groups.
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Likewise, Cx43 protein expression was greatly reduced in
cells treated with Cx43 shRNA compared with control cells.
Moreover, whereas alendronate prevented the increase in
apoptosis induced by dexamethasone in control cells, it did
not in cells in which Cx43 was silenced. These results are
consistent with our previous observations showing that
alendronate does not prevent apoptosis in established cell
lines lacking Cx43 (rat osteosarcoma UMR106 and human
epithelial adenocarcinoma HeLa cells) as well as in embry-
onic fibroblasts and authentic osteoblasts derived from
Cx43-deficient mice.(14)

Deletion of Cx43 from osteocytes and osteoblasts
does not alter the response to alendronate on BMD

Alendronate increased BMD in both control and
Cx43�Ob−Ot/− mice (Fig. 4). Moreover, the bisphosphonate
was equally effective in preventing prednisolone-induced
bone loss at all sites in either type of mice. Therefore, in
contrast to the requirement of Cx43 for prevention of glu-
cocorticoid-induce osteocyte and osteoblast apoptosis by
alendronate, Cx43 expression is not required for the pro-
tective effect of alendronate against glucocorticoid-induced
bone loss.

DISCUSSION

Increasing evidence indicates that prevention of apopto-
sis of osteocytes and osteoblasts contributes to the anti-
osteoporotic efficacy of both anabolic and anti-catabolic
stimuli.(31,32) Thus, inhibition of osteoblast apoptosis con-
tributes to the anabolic effect of intermittent PTH admin-
istration.(24,33) In addition, activation of the Wnt signaling
pathway—which leads to bone anabolism—as well as me-
chanical stimulation are associated with increased osteocyte
and osteoblast survival.(34–37) Moreover, protection against
sex steroid deficiency–induced bone loss by estrogen or tes-
tosterone replacement is accompanied by preservation of
osteocyte and osteoblast viability.(38,39) Conversely, gluco-
corticoid excess is associated with increased prevalence of
osteocyte and osteoblast apoptosis in mice and hu-
mans,(28,40) and blockade of this effect in transgenic mice
that express the glucocorticoid-inactivating enzyme 11�-
HSD2 in osteocytes and osteoblasts was sufficient to main-
tain bone strength even when bone mass was still lost.(27)

All this evidence notwithstanding, blockade of glucocor-
ticoid action in osteoclasts in TRACP-11�-HSD2 trans-
genic mice prevented bone loss, but the steroids still in-

FIG. 3. Alendronate prevents glucocorti-
coid-induced cancellous and cortical osteo-
cyte and osteoblast apoptosis in Cx43fl/− but
not in Cx43�Ob−Ot/− mice lacking Cx43 in os-
teocytes and osteoblasts. Mice were treated
with daily alendronate injections, starting 3
days before pellet implantation. Twenty-
eight days after pellet implantation, mice
were killed, and apoptosis was determined.
pred, prednisolone; n.s., not significant. ap <
0.05 by generalized linear models, n � 4–9
mice.
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creased osteoblast and osteocyte apoptosis.(41) Likewise, in
these studies, alendronate inhibited bone loss induced by
glucocorticoids in Cx43�Ob−Ot/− mice, even though it did
not prevent the induction of osteocyte and osteoblast apo-
ptosis. Taken together, these findings indicate that inhibi-
tion of osteoclastic resorption is the predominant effect of
alendronate against the early phase of bone loss induced by
glucocorticoids. Moreover, these findings suggest that the
contribution of preserving osteoblast and osteocyte viability
to the overall antifracture efficacy of bisphosphonates
might be masked by the potent antiresorptive actions of
alendronate. Recent studies by us identified a series of bis-
phosphonate analogs that do not affect osteoclasts but still
activate the Cx43-mediated signaling pathway leading to
osteoblast and osteocyte survival.(15,42) Future studies using
these osteocyte/osteoblast-specific analogs will allow dis-
secting the contribution of prevention of osteocyte and os-
teoblast apoptosis to the antifracture efficacy of bisphos-
phonates in glucocorticoid-induced bone disease.

Extensive in vitro and in vivo evidence indicates that
Cx43 is required for full osteoblast differentiation. Thus,
osteoblastic cells derived from Cx43 null mice or from mice
in which Cx43 has been deleted from early osteoblastic cells

using the Cre recombinase driven by the Col1a1–2.3-kb
promoter (Col2.3Cre;Cx43−/fl mice) show low expression of
osteocalcin, osteopontin, alkaline phosphatase, and colla-
gen I, as well as deficient mineralization compared with
cells derived from wildtype littermates.(43,44) Reduced dif-
ferentiation of cultured osteoblasts lacking Cx43 may be
caused by the requirement of Cx43 function as a channel
because disassembly of connexin channels using pharmaco-
logical inhibitors or overexpression of Cx45, which de-
creases channel permeability in Cx43-expressing cells, also
leads to reduced expression of osteocalcin and alkaline
phosphatase in osteoblastic cells.(45–47) Consistent with the
requirement of Cx43 for full osteoblast differentiation in
vitro, Cx43-null mice exhibit delayed ossification at birth.
Moreover, deletion of Cx43 in early osteoblastic cells in
Col2.3Cre;Cx43−/fl mice(44) or expression of a Cx43 mutant
unable to form gap junctions leads to decreased bone vol-
ume.(48) Furthermore, deletion of Cx43 from osteochon-
dro-progenitor cells using the Dermo1 promoter results in a
more severe phenotype, with decreased trabecular bone
mass and cortical thickness.(49) In contrast, we found that
Cx43�Ob−Ot/− mice lacking Cx43 in mature osteoblasts and
osteocytes do not exhibit reduced BMD at least between 2

FIG. 4. Alendronate prevents glucocorti-
coid-induced bone loss in both Cx43fl/− and
Cx43�Ob-Ot/− mice. Mice were treated as in-
dicated in Fig. 3. Initial BMD was deter-
mined when the pellets were implanted and
the final BMD at the time of death. The per-
cent change in BMD was calculated. pred,
prednisolone. ap < 0.05 by generalized linear
models, n � 6–11 mice.
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and 4.5 mo of age. Although a preliminary study showed
lower BMD as detected by �CT in 3-wk-old Cx43�Ob−Ot/−

mice,(50) it was not reported whether the difference was
maintained in older mice. Therefore, it seems that in con-
trast to deletion of Cx43 in osteoblast precursors, deletion
of this protein in mature osteoblasts and osteocytes does
not interfere with the development of the skeleton. Never-
theless, our findings do not exclude the possibility that lack
of Cx43 in osteoblasts and osteocytes could have an impact
on the skeleton after peak bone mass accrual. Thus, endog-
enous stimuli (systemic, local, or mechanical) might pre-
serve osteocyte and osteoblast viability, through opening
Cx43 hemichannels (similar to bisphosphonates) or through
modulation of Cx43-mediated cell-to-cell communication.
Indeed, although no changes were found in the cancellous
bone compartment of vertebral bone of young (4.5 mo old)
Cx43�Ob−Ot/− mice, osteocyte apoptosis was increased in
cortical bone. Future studies would be required to establish
whether apoptotic osteocytes and osteoblasts accumulate
with age and whether this leads to a skeletal phenotype only
evident in older Cx43�Ob−Ot/− mice.

In summary, the evidence reported herein, together with
our previous in vitro data, provide conclusive evidence for
the requirement of Cx43 in the protective effects of bis-
phosphonates against osteocyte and osteoblast apoptosis in
vivo.
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