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Abstract
Background: Handling genotype data typed at hundreds of thousands of loci is very time-
consuming and it is no exception for population structure inference. Therefore, we propose to
apply PCA to the genotype data of a population, select the significant principal components using
the Tracy-Widom distribution, and assign the individuals to one or more subpopulations using
generic clustering algorithms.

Results: We investigated K-means, soft K-means and spectral clustering and made comparison to
STRUCTURE, a model-based algorithm specifically designed for population structure inference.
Moreover, we investigated methods for predicting the number of subpopulations in a population.
The results on four simulated datasets and two real datasets indicate that our approach performs
comparably well to STRUCTURE. For the simulated datasets, STRUCTURE and soft K-means with
BIC produced identical predictions on the number of subpopulations. We also showed that, for
real dataset, BIC is a better index than likelihood in predicting the number of subpopulations.

Conclusion: Our approach has the advantage of being fast and scalable, while STRUCTURE is very
time-consuming because of the nature of MCMC in parameter estimation. Therefore, we suggest
choosing the proper algorithm based on the application of population structure inference.

Background
Population structure inference is the problem of assigning
each individual in a population to a cluster, given the
number of clusters. When admixture is allowed, each indi-
vidual can be assigned to more than one cluster along
with a membership coefficient for each cluster. Popula-
tion structure inference has many applications in genetic
studies. Some obvious applications include grouping
individuals, identifying immigrants or admixed individu-

als, and inferring demographic history. Moreover, it also
serves as a preprocessing step in stratified association
studies to avoid spurious associations [1].

The association between a marker and a locus involved in
disease causation has been the object of numerous stud-
ies. In a case-control study, it is possible that the samples
or patients are drawn from two or more different popula-
tions but the population structure is not observed or
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recorded. Suppose that an allele of a marker appears sig-
nificantly more frequently in the case than in the control
group, we might come to the conclusion that this allele is
associated with the disease. However, we have to rule out
the possibility that most of the samples in the case group
are from a specific population and this allele happens to
be the prevalent one at the marker. Therefore, inferring
population structure before association studies allow us
to avoid this problem, lowering the false positive rate.

Software STRUCTURE is widely used in population struc-
ture inference. It is specifically designed for genotype data
and approaches the problem by careful modelling of
allele frequencies, origins of alleles of individuals and ori-
gins of individual genomes. As described in Section Meth-
ods, for a genotype dataset of m diploid individuals and n
biallelic markers, STRUCTURE estimates 2Kn + Km + 2mn
parameters using Markov Chain Monte Carlo (MCMC),
where K is the number of clusters. Inferring population
structure using STRUCTURE is, therefore, very time-con-
suming since it has to handle large datasets consisting of
thousands of individuals genotyped at hundreds of thou-
sands of loci. Therefore, we propose an alternative
approach to dealing with this problem.

From the perspective of machine learning, when dealing
with high-dimensional data, it is natural to preprocess the
data with dimension reduction and feature selection tech-
niques. Principal component analysis (PCA) is a tech-
nique of dimension reduction. The importance of a
principal component (PC) is proportional to the corre-
sponding eigenvalue, which is the variance of data pro-
jected onto this component. Deciding the number of PCs
to be kept for subsequent analyses is not a trivial problem.
Fortunately, Johnstone [2] showed that with suitable nor-
malization, for large m and n, the distribution of the larg-
est eigenvalue λ1 is approximately a Tracy-Widom (TW)
distribution [3]. Patterson et al. [4] applied PCA to real
and simulated population genotype data with more than
one underlying subpopulation. It is shown that, when the
genotype data is projected onto a significant PC, the
means of the subpopulations are also significantly differ-
ent according to an ANOVA test. These empirical results
indicate the potential of PCA and the TW distribution in
discovery of population structure. Therefore, we propose
to perform dimension reduction on genotype data using
PCA and apply generic clustering algorithms to infer pop-
ulation structure.

In this paper, we base our study on PCA and investigate
three generic clustering algorithms – K-means, soft K-
means and spectral clustering algorithms. The results are
then compared with those generated by STRUCTURE. We
introduce the data, clustering algorithms and evaluation
metric in Section Methods. Comparisons and analyses of

results are given in Section Results and discussion.
Finally, we give the concluding remarks in Section Con-
clusions.

Methods
Data
In this study, we use both real and simulated data to eval-
uate the performance of clustering algorithms. The real
data is obtained from the Human Genome Diversity
Project-Centre d'Etude du Polymorphisme Humain
(HGDP-CEPH) Human Genome Diversity Panel [5],
which contains genotypes of 1,064 individuals sampled
from 51 populations. The version 2.0 of the HGDP-CEPH
database contains genotypes for 4,991 markers and 4,154
biallelic ones are used in our study. Two subsets of indi-
viduals are constructed from the 1,064 ones. One subset
encompasses all the 258 individuals in Europe and Mid-
dle East, which are geographically close, and we refer to it
as the close dataset. The other subset consists of all the
739 individuals in Africa, Central South Asia, East Asia
and Europe, which are geographically far apart from each
other, and we refer to it as the distant dataset.

The simulated data is generated using software GENOME,
a coalescent-based simulator written by Liang et al. [6].
The parameters are set to mimic the real data from HGDP-
CEPH. The number of chromosomes or independent
regions is set to 22 since there are 22 autosomal chromo-
somes in human. Each chromosome has 100 10,000-base
fragments, simulating linkage disequilibrium within frag-
ments. The recombination rate between two consecutive
fragments is set to 0.01 to simulate the length of human
genome. The number of markers per chromosome is set to
a fixed number of 250, so the number of markers for each
individual is 5,500. We use four simulated datasets in this
study. Three of them contain individuals sampled from
independent populations. The fourth dataset is generated
according to a simple demography shown in Figure 1. The
details are summarized in Table 1.

Principal component analysis

Principal component analysis (PCA) is a technique of
dimension reduction. Given m samples and n markers or
variables, the m samples can be represented as a m × n
matrix X. We further assume that the sample mean of each

marker is 0, i.e., . Using another basis of n
vectors or axes, represented as column vectors of P, we can
project the samples onto the new axes and obtain another
m × n matrix Y = XP. PCA finds a P such that the sample
covariance matrix of the n new variables is a diagonal
matrix. That is,

X iji

m

=∑ =
1

0
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where D is a diagonal matrix, ΣX and ΣY are the sample
covariance matrices of the original and new n variables,
respectively. P can be obtained by the eigen decomposi-
tion of ΣX. Therefore, PCA is very simple and easy to
implement.

In this study, we use the software SMARTPCA by Patterson
et al. [4]. SMARTPCA is specifically designed for genotype
data and it offers options addressing issues such as linkage
disequilibrium (LD) in analyzing genotype data. Patter-
son et al. [4] showed that the presence of LD in data dis-
torts the distribution of eigenvalues, which makes
selecting PCs according to the TW statistics meaningless.

Therefore, we follow the suggestion and turn on the
option to replace the values of each marker with the resid-
uals from a multivariate regression without intercept on
the 2 preceding markers. After PCA, we keep those PCs
with p-values smaller than 5% for subsequent cluster anal-
yses. Since STRUCTURE accepts only genotype data, the
input to STRUCTURE is not processed with PCA.

Clustering algorithms
In this study, we investigate three generic clustering algo-
rithms – K-means, soft K-means and spectral clustering
algorithms. In order to compare these generic clustering
algorithms to algorithms designed specifically for popula-
tion structure inference, we also run STRUCTURE on the
datasets. We briefly introduce the three generic clustering
algorithms and STRUCTURE in the folowing subsections.

K-means
The K-means algorithm is an iterative descent algorithm
that minimizes the within-cluster sum of squares (WSS)
given the number of clusters K.

where xj is the feature vector representing sample j, μi is the
center of cluster i, and Ci is the set of samples in cluster i.
We use the implementation of a variant by Hartigan and
Wong [7] embedded in the R Language.

Soft K-means

The soft K-means algorithm assumes that samples follow
a mixture of K multivariate Gaussian distributions

, where ; μk and Σk are the

mean and covariance matrix for the kth Gaussian distribu-
tion. Therefore, given the number of clusters K, the algo-

rithm estimates the parameters θ = (δ1,...,δK, μ1, Σ1,...,μK,

ΣK) using the Expectation-Maximization Algorithm, while

the unobserved latent variables are the labels of samples.
In this study, we use MCLUST Version 3 [8] for R Lan-
guage, which offers a wide selection of covariance matrix
models.

Spectral clustering
The spectral clustering algorithm is based on the weighted
graph partitioning problem. Considering a graph of m
nodes, each node represents a sample and the weight on
the edge between two nodes is the similarity between the
two samples. We define the total similarity between two
clusters A, B as

∑∑ ∑∑Y XY Y XP XP P X XP P P D= = = = =1 1 1
m m m

T T T T T( ) ,

WK j i

j Ci

K

i

= −
∈=
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2

1

, (1)

δ μk k kk

K
N( , ),∑∑=∑ 1

δ kk
=∑ 1

Table 1: Details of the first three simulated datasets

Set #idvs #pops #idvs from each pop

1 300 3 100 100 100
2 400 4 100 100 100 100
3 500 4 50 100 150 200
4 620 4 160 200 160 100

The demography used in simulating the fourth datasetFigure 1
The demography used in simulating the fourth data-
set. Generation 0 represents the current generation, while 
generation g represents g generations back in time.
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where S is a m × m similarity matrix. Given the number of
clusters K, we want to find a partition C* such that the fol-
lowing objective function is minimized.

Equation 2 can be expressed as follows.

where E = (e1,...,eK) is a m × K indicator matrix and D is a

m × m diagonal degree matrix. The ith element of ek is 1 if

sample i is in cluster k. Otherwise, it is 0. .
Since finding the optimal E is NP-hard, spectral clustering
solves the minimization problem by allowing the entries
of E to have real values. This amounts to finding the K

eigenvectors of  with the smallest
nonzero eigenvalues. We implemented the algorithm,
described in Figure 2, proposed by Ng et al. [9] in R. In the
last line of the algorithm, one can use any algorithm to
perform the clustering. Therefore, we investigate K-means
and soft K-means, producing two variants of the spectral

clustering algorithm. In this study, we use a radial basis
function to calculate the similarity between two samples.

Sij = exp(-γ||xi - xj||2), (4)

where γ is a constant.

STRUCTURE
Given the number of clusters K and genotype data X,
STRUCTURE [10] models the population structure with
three vectors of parameters – Q, Z and P. The genotype
data and parameter vectors contain the following ele-
ments.

In diploid organisms, there are two copies of alleles at
each locus on an autosomal chromosome, and hence a ∈
{1, 2}. The probability model for (X, Z, P, Q) is described
by the following equations:
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The spectral clustering algorithmFigure 2
The spectral clustering algorithm.
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where D(·) is the Dirichlet distribution, Jl is the number

of alleles at locus l, and λ1 = ... =  = 1.0, giving a uni-

form distribution on the allele frequencies;

q(i) ~ D(α,...,α),

where D(·) is again the Dirichlet distribution and α ∈ [0,
10] is uniformly distributed. The estimates of Z, P, and Q
are obtained by sampling Z, P, Q from the posterior dis-
tribution P(Z, P, Q|X) using a MCMC algorithm. In this
study, the burn-in length is set to 5,000 and another 5,000
samples are collected after burn-in for parameter estima-
tion.

Inferring the number of clusters
The number of clusters is always an important issue in
cluster analysis. As a model-based algorithm, STRUC-
TURE estimates the number of clusters K using the poste-
rior distribution of K

P(K|X) ∝ P(X|K)P(K),

where X denotes the genotype data. In this study, we
investigate two methods for selecting the number of clus-
ters. One is a distance-based generic method using the gap
statistic proposed by Tibshirani et al. [11]. The other is by
using the Bayesian Information Criterion (BIC) [12] as
the model selection criterion with the soft K-means clus-
tering algorithm. We briefly introduce the two methods in
the following paragraphs. The gap statistic is a heuristic
method based on the WSS given in Equation 1. Given the
number of clusters, we expect smaller WSS in a dataset
that has clusters than in one that do not. Therefore, the
gap statistic is defined as follows.

where E( ) is the expectation of the WSS for the refer-
ence dataset, which has no clusters. Tibshirani et al. [11]
suggested using a uniformly distributed reference dataset.

E( ) is estimated by randomly generating B uni-
formly distributed datasets.

We then estimate the number of clusters by finding the
smallest K such that

where  and sK+1 is the standard error of

. The gap statistic can be used with any clustering
algorithm. In this study, we use it along with K-means to
predict the number of clusters. It is generally the case that
we can better fit a dataset to the model with more param-
eters, resulting in higher likelihood or lower sum of
squared error. Therefore, the BIC score addresses this issue
by penalizing the number of parameters. It is defined as

BIC = 2L(θ*) - log(m)|θ*|,

where L is the log likelihood function, θ* is the parameter
set maximizing the likelihood and m is the number of
observations or samples. The BIC score is used in
MCLUST Version 3 [8] as the model selection criterion.

Evaluation metric
In population structure inference, given the number of
clusters, each individual in the dataset is assigned an esti-
mated membership coefficient for each cluster. The coef-
ficient indicates the likelihood that an individual
descends from a specific population origin. By assigning
each individual to the most likely cluster, we have
obtained a partition of the individuals in a dataset. A par-
tition is a set of mutually exclusive and collectively
exhaustive clusters. Given two partitions, we use the algo-
rithm proposed by Konovalov et al. [13] to measure the
distance between them. The distance between two parti-
tions is defined as the minimum number of individuals
that need to be removed from each partition in order to
make the two partitions identical. For clarity, we scale the
distance measure to [0, 1].

For the simulated datasets, we calculate the distance
between the gold-standard partition and the partition
generated by each clustering algorithm. The smaller the
distance between the two partitions, the better the per-
formance. For the real datasets, we compare the partition
produced by STRUCTURE to the partitions produced by
all other clustering algorithms investigated in this study.
This is because STRUCTURE is a widely used algorithm in
inferring population structure.

Results and discussion
Table 2 shows the number of significant PCs selected for
each dataset using the TW statisitc at p-value = 0.05. We
can see that PCA reduces the number of variables from
around 5,000 to at most 70. However, we suspect that
there are still noisy and non-informative PCs hidden in
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those selected significant ones. Therefore, we are also
interested in using only the top-3 PCs with the largest
eigenvalues. We then perform cluster analyses on the
reduced datasets using those generic algorithms described
in Sectoin Methods. The results are shown in the follow-
ing subsections.

Simulated Data

Evaluating the performance of the clustering algorithms
on simulated datasets is straightforward since the gold
standard partition for each dataset is available. The per-
formance, in terms of distance between the gold standard
partition and the predicted one, is summarized in Table 4.
The measure of distance is described in Section Methods.

The parameter γ in Equation 4 is not tuned for all the sim-

ulated datasets. It is set to either 1 or , except for the

third dataset. The reason for setting γ = 2-4 is because when
the algorithm tries to obtain the eigenvalues and eigenvec-

tors of  (as described in Figure 2) the R

function eigen seems to be caught in an infinite loop for γ
= 2-g, g ∈ {0, 1, 2, 3}. For the first two datasets, all the clus-
tering algorithms show perfect results. This is probably
because these two datasets contain independent and
equal-sized subpopulations. For the third dataset, apart
from the two variants of spectral clustering algorithm, soft
K-means and STRUCTURE perform equally well while K-
means produces comparable results. Moreover, soft K-
means performs the best on the fourth dataset while
STRUCTURE gives the worst performance. To better ana-
lyze the results, we visually compare the clustering algo-

rithms using bar plots shown in Figure 3. The bar plots are
generated using software DISTRUCT [14]. According to
the demography in Figure 1, population 3 does not con-
tain admixed individuals but STRUCTURE fails to assign
the individuals in population 3 to only one cluster as the
other algorithms do. However, when setting K = 3,
STRUCTURE performs very well and reflects the demogra-
phy used to simulate the data. The bar plots are shown in
Figure 4. We can see that individuals in population 1, 3
and 4 are clustered into distinct groups, while individuals
in population 2 equally likely belong to the two clusters
occupied by population 1 and 3. Soft K-means produces
similar results, while the other algorithms group individ-
uals in population 2 with individuals in either population
1 or population 3. Table 3 shows the number of clusters
inferred by the gap statistic, the BIC score and STRUC-
TURE. We can see that the BIC score with PCs suggested
by the TW distribution and STRUCTURE make identical
predictions on the simulated datasets. When the BIC score
is used with the top-3 PCs, it makes the correct prediction
on the second simulated dataset but fails on the third one.
Therefore, these two approaches perform comparably on
the simulated datasets. The gap statistic fails to make the
correct prediction on all but the first simulated dataset
unless only 2 or 3 PCs are used.

1
2

D D S D
− −

−
1
2

1
2( )

Table 5: Comparison of the results on the distant dataset with 
STRUCTURE

K #PCs K1 SK2 SpK3 SpSK4

2 70 0.252 0 0.1375 0.1036

2 3 0.03 0.003 0.0047 0.0197

3 70 0.3 0.101 0.4228 0.3499

3 3 0.042 0.045 0.0417 0.1237

4 70 0.401 0.617 0.4148 0.43310

4 3 0.304 0.277 0.3117 0.3377

1K-means. 2Soft K-means. 3Spectral + K-means. 4Spectral + Soft K-
means. 5γ = 2-5. 6γ = 2-1.5. 7γ = 1. 8γ = 2-6.5. 9γ = 2-6. 10γ = 26

Table 3: Predicted number of clusters for each dataset

Set close dist s1 s2 s3 s4

True K NA NA 3 4 4 4
Gap 1 7 3 1 1 1

11 11 -- 41 43 42

BIC 3 3 3 5 4 4
31 61 -- 41 61 41

STRU4 6 6 3 5 4 4

1 3 PCs. 2 2nd K. 3 3PCS, 2nd K. 4 STRUCTURE.

Table 2: Number of principal components selected using TW 
statistic at p-value = 0.05. The simulated datasets are denoted as 
s1 through s4.

Set close dist s1 s2 s3 s4

#PCs 15 70 2 4 18 3

Table 4: Results on the simulated datasets in terms of distance

Set K1 SK2 SpK3 SpSK4 STRU5

1 0 0 06 06 0
2 0 0 07 07 0
3 0.01 0 0.5988 0.5968 0
4 0.058 0.034 0.0487 0.0897 0.342

1K-means. 2Soft K-means. 3Spectral + K-means. 4Spectral + Soft K-

means. 5STRUCTURE. 6 γ = . 7 γ = 1. 8 γ = 2-4.
1
2
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Real Data
In this section, we compare the results generated by the
generic clutering algorithms to those produced by STRUC-
TURE since no gold standard partitions are available for
the real datasets. The results for the distant and close data-
set are shown in Table 5 and Table 6, respectively. For the
distant dataset, using all the 70 significant PCs, the parti-
tion given by soft K-means at K = 2 is identical to that pro-
duced by STRUCTURE. When only the top-3 PCs are used,

all the clustering algorithms produce partitions similar to
that predicted by STRUCTURE. This implies that all the
distance-based generic algorithms investigated in this
study are sensitive to noisy and non-informative variables,
which are used in the calculation of distance or similarity.

The bar plots of the partitions produced using the top-3
PCs are shown and compared to the one by STRUCTURE
in Figure 5. We can see that the populations in Africa are

Bar plots of results of the distant dataset (K = 3)Figure 6
Bar plots of results of the distant dataset (K = 3).

Bar plots of results of the distant dataset (K = 2)Figure 5
Bar plots of results of the distant dataset (K = 2).
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grouped into one cluster and all the other populations are
grouped into the other one. This phenomenon is more
evident when K = 3. As seen in Table 5, the partitions pro-
duced by the generic algorithms using 3 PCs are more sim-
ilar to the one produced by STRUCTURE than those
produced using 70 PCs. The bar plots are shown in Figure
6. For K = 4, however, the partitions generated by the
generic clustering algorithms are very different from that
by STRUCTURE. Using the top-3 PCs hardly makes the

distance smaller. From the plots in Figure 7, we can see
that STRUCTURE infers that the genome of individuals in
Pakistan is the mixture of the blue, yellow and pink clus-
ters and the yellow one makes the most contribution. The
other algorithms group the individuals in Pakistan and
Europe into the same cluster.

As for the close dataset, it can be seen in Table 6 that K-
means and spectral clustering with soft K-means produce
the most similar partitions to the one generated by
STRUCTURE at K = 2 using the top-3 PCs. The bar plots
for K = 2 and K = 3 using 3PCs are shown in Figure 8 and
9, respectively. When K = 2, K-means groups almost all the
individuals in Israel into one cluster and groups the rest
into the other cluster, which is very similar to the results
given by STRUCTURE. At K = 3, although K-means does
not produce the most similar partition, it subdivides the
individuals in Israel into two clusters, which correspond
to the Druze and Bedouin populations. We can also
observe a similar pattern in the bar plot produced by
STRUCTURE. The individuals in the Bedouin population
generally have a higher proportion of genome from the
blue cluster than the individuals in the Druze population,
enabling us to distinguish between the two populations.

It is difficult if not impossible to assess the correctness of
the predicted number of clusters for the real datasets. We
can see in Table 3 that, the three methods give completely
different predictions on the two real datasets. STRUC-
TURE suggests that there are 6 clusters in the close dataset.
However, the bar plot (not shown) at K = 6 is very noisy
and does not reveal 6 clusters in the population. The BIC
score predicts 3 clusters in the close dataset. The bar plot

Bar plots of results of the close dataset (K = 2)Figure 8
Bar plots of results of the close dataset (K = 2).

Bar plots of results of the distant dataset (K = 4)Figure 7
Bar plots of results of the distant dataset (K = 4).
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generated by soft K-means at K = 3 in Figure 9, however,
is not convincing, since only one individual is assigned to
the yellow cluster. STRUCTURE and the BIC score (with
70 PCs) suggest 6 and 3 clusters, repectively. Three clusters
seem reasonable according to the bar plots in Figure 6.
However, we can not observe 6 clusters in the bar plots
generated by STRUCTURE at K = 6 (not shown). For both
real datasets, the likelihood given by STRUCTURE
increases as K increases, which is a sign of over-fitting. The
gap statistic seems to suffer from the presence of noisy and
non-informative PCs and either predicts no structure (K =
1) or a large K of 7, which is not supported by the bar plot
(not shown).

Conclusion
In this study, we investigated three generic clustering algo-
rithms on genotype data. We applied PCA to genotype
data in order to reduce the number of variables. Based on
the TW-statistic, the significant PCs were kept for subse-
quent cluster analyses. A p-value of 0.05 was used in
selecting significant PCs. We showed that all the generic
clustering algorithms perform as well as STRUCTURE on
the first three simulated datasets. Moreover, for the fourth
dataset, all these algorithms produce better partitions
than the one predicted by STRUCTURE. We showed that
soft K-means and K-means perform comparably well to
STRUCTURE on the distant and close datasets, respec-

Bar plots of results of the close dataset (K = 3)Figure 9
Bar plots of results of the close dataset (K = 3).
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tively. However, all the three generic clustering algorithms
show different degrees of susceptibility to noisy and non-
informative PCs. Therefore, the choice of p-value remains
an important issue.

We also showed that STRUCTURE and the BIC score pro-
duce identical predictions on the simulated datasets.
When it comes to real datasets, STRUCTURE predicts the
number of clusters to be the largest K investigated, show-
ing a sign of over-fitting. The BIC score is, therefore, a bet-
ter index in predicting the number of clusters for real
datasets, which reinforces the finding by Zhu et al. [15].
The gap statistic performs poorly due to the presence of
non-informative PCs.

While STRUCTURE is a sophisticated clustering algorithm
designed for genotype data, it is very time-consuming
because of the nature of MCMC. We believe that the
choice of clustering algorithms depends on the purpose of
population structure inference. If we want to infer recent
demographic events, STRUCTURE would be a good
choice since it even considers the origin of an alelle copy
in the model. However, if population structure inference
is used as a preprocessing step in association studies, PCA
with soft K-means would be very handy. In stratified asso-
ciation study, we need sufficient individuals in each clus-
ter to make significant and meaningful associations.
Hence, splitting two slightly different populations and
thus making each cluster smaller may not be helpful to
association studies.

Based on the results of this study, we recommend choos-
ing suitable clustering algorithms according to the nature
of applications of population structure inference. In addi-
tion to the proper choice of p-value in selecting PCs, we
recommend applying unsupervised feature selection algo-
rithms, such as the one proposed by Paschou et al. [16], to
genotype data to improve the stability and robustness of
the combination of PCA and a generic clustering algo-
rithm.
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