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Abstract
The plasma membrane of all eukaryotic cells contain heterogeneous self organizing intrinsically
unstable liquid ordered domains or lipid assemblies in which key signal transduction proteins are
localized. These assemblies are classified as “lipid rafts” (10–200 nm), which are composed mostly
of cholesterol and sphingolipid microdomains and therefore do not integrate well into the fluid
phospholipid bilayers. In addition, caveolae represent a subtype of lipid raft macrodomain that form
flask-shaped membrane invaginations containing structural proteins, i.e., caveolins. With respect to
the diverse biological effects of long chain polyunsaturated fatty acids (PUFA), increasing evidence
suggests that n-3 PUFA and perhaps conjugated fatty acids uniquely alter the basic properties of cell
membranes. Because of its polyunsaturation, docosahexaenoic acid (DHA) and possibly conjugated
linoleic acid (CLA) are sterically incompatible with sphingolipid and cholesterol and, therefore,
appear to alter lipid raft behavior and protein function. This review examines the evidence indicating
that dietary sources of n-3 PUFA can profoundly alter the biochemical make up of lipid rafts/caveolae
microdomains, thereby influencing cell signaling, protein trafficking, and cell cytokinetics.
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The balance between cell proliferation and apoptosis is critical to the maintenance of steady-
state cell populations in the body. In general, dysregulation of this mechanism can disrupt
homeostasis, resulting in clonal expansion, with the resultant over production of affected cells.
The programmed induction of cell death also represents a mechanism by which inappropriately
activated cells and cells possessing DNA damage can be deleted. It has now been clearly
established that chronic inflammation can perturb cellular homeostasis and drive malignant
transformation by progressively inhibiting apoptosis of target cell types, e.g., T-cells and
epithelial cells (1,2). Hence, chemotherapeutic agents such as dietary long chain n-3
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polyunsaturated fatty acids (PUFA) and possibly conjugated fatty acid species, which restore
the normal proliferative and apoptotic pathways have the potential for effectively treating
cancers that depend on aberrations of these pathways to stay alive (3). The following sections
describe a mechanistic membrane-based model which may in part explain the pleiotropic
chemoprotective properties of bioactive PUFA.

n-3 PUFA
Although beyond the scope of this review, a number of investigators have recently addressed
the role of n-3 PUFA in suppressing chronic inflammation and cancer (4,5,6). With respect to
mechanisms which functionally link the pleiotropic effects of bioactive dietary long chain n-3
PUFA, inflammation and cancer, examples include (i) metabolic interconversion into novel
bioactive eicosanoids (7,8), (ii) modulation of nuclear receptor activation, gene transcription
and translation (9–12) (Figure 1), (iii) alteration of membrane phospholipid composition and
functionality of self organizing lipid domains (13) (Figure 2), (iv) effects on protein trafficking,
including cytosol-to-membrane translocation (4,14), and (v) interaction with short chain fatty
acids to trigger lipid oxidation and intracellular Ca2+ compartmentalization (15,16).

The health benefits of long chain PUFA are diverse and nutritional studies continue to
demonstrate important benefits from the consumption of n-3 PUFA (4,7,8,17–19). Since the
use of a health claim on labels for foods containing n-3 PUFA has been approved, food
companies are now mobilizing to incorporate these fatty acids into a range of novel commercial
foods in order to provide for the wider public consumption of these bioactive compounds.
Hence, it is now important to precisely determine how specific long chain PUFA modulate cell
phenotype and reduce the risk of developing cancer and inflammatory disorders.

Conjugated Linoleic acid (CLA)
There is growing interest with regard to the use and commercial availability of conjugated
positional and geometric isomers of PUFA, particularly conjugated dienoic isomers of linoleic
acid (CLA). For example, in certain model systems, CLA is a powerful anti-cancer agent,
capable of promoting growth arrest and apoptosis in tumor cells (20–22). In addition, CLA
triggers adipose delipidation in rodent species (23–25), and although there has been very little
published clinical research (26,27), recent preliminary evidence suggests that mixed isomer
CLA supplementation can alter fat oxidation and energy expenditure in humans (28,29).
However, the precise mechanism of action remains elusive. Since n-3 PUFA and CLA exhibit
overlapping phenotypic properties, we propose a unifying molecular mechanism which may
in part explain their protective effects.

Effect of bioactive PUFA on cell membranes
It is generally believed that the plasma membrane consists of a mosaic of functional
microdomains that facilitate interactions between resident proteins and lipids (30,31). Visible
examples of these include caveolae, flask shaped invaginations containing the structural protein
caveolin-1 and many signal transduction proteins (32). In addition, morphologically
heterogeneous featureless microdomains, consisting mostly of cholesterol and sphingolipids,
unable to integrate well into the fluid phospholipid bilayers, exist as “lipid rafts” (33).
Although, the existence of lipid rafts is still debated, new sophisticated imaging approaches
have started to define cell surface nanoscale organization (31). Significantly, both cholesterol-
dependent microdomains, analogous to lipid rafts, and non-raft signaling microdomains have
been observed using electron microscopic imaging of 2D plasma membrane sheets (34). These
studies have provided a template for further investigation into the effects of dietary PUFA on
cell surface organization and cell cytokinetics, apoptosis and disease progression.
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With respect to the biological effects of n-3 PUFA, increasing evidence suggests that
docosahexaenoic acid (DHA) is a unique fatty acid because it significantly alters basic
properties of cell membranes, including acyl acyl (ester linked fatty acid) chain order and
fluidity, phase behavior, elastic compressibility, ion permeability, fusion, rapid flip-flop and
resident protein function (35). In part, due to the number of cis double bonds, DHA is sterically
incompatible with sphingolipid and cholesterol and, therefore, appears to alter lipid raft
behavior (35). Interestingly, a number of studies have recently demonstrated that dietary n-3
PUFA are incorporated into diverse cell types and appear to uniquely modulate cell membrane
microdomains (13,36–39). Indeed, we recently demonstrated that n-3 PUFA feeding can
markedly alter lipid/protein composition of mouse colonic caveolae microdomains, thereby
selectively modulating the localization and function of caveolar proteins (13,14,37). In
addition, we demonstrated that H-Ras and endothelial nitric oxide synthase (eNOS) are
displaced from caveolae in n-3 PUFA-fed mice, which was associated with the suppression of
Ras-dependent signaling. In contrast, localization of non-caveolae resident proteins, K-ras and
clathrin, was not affected indicating selective displacement of acylated signaling proteins from
caveolae by n-3 PUFA. Our findings highlight a novel modality by which n-3 PUFA influence
membrane micro-organization, thereby modulating biological responses.

Using T-cell culture models, Stulnig and colleagues were the first to document the ability of
PUFA enrichment to selectively modify the cytoplasmic layer of lipid rafts (40,41). In
complimentary experiments, we investigated the effect of dietary n-3 PUFA on cholesterol/
sphingolipid-rich plasma membrane microdomains (i.e., rafts) in mouse splenic T-cells (5,
42,43). A very novel and unexpected outcome from this effort was the demonstration that
dietary n-3 PUFA reduced (by ~45%) lipid raft sphingolipid content and altered raft fatty acid
composition (36,44,45). Therefore, we hypothesized that PUFA classes (n-6 vs n-3)
differentially modulate T-cell membrane microdomains, which is supported by recent studies
indicating that stimulation-induced PKCθ translocation into T-cell lipid rafts is suppressed by
dietary n-3 PUFA (36). In addition, in an attempt to further probe the effects of DHA on
PKCθ effector pathway signaling, we have recently demonstrated that the diet modification of
lipid rafts is associated with the suppression of NF-kB, AP-1 activation, IL-2 secretion and
lymphoproliferation (36). With respect to lymphocyte subsets, recent studies indicate that the
macromolecular complex organization in lipid rafts is distinct in nonpolarized, Th1 and Th2
polarized subsets (46). This would suggest that these subsets, i.e., regulators of cell-mediated
immunity (Th1) and humoral immunity (Th2), would respond differently to dietary PUFA-
induced perturbation. However, the ability of DHA to influence membrane raft-mediated
signaling in polarized T-cells has not been determined to date.

There is cogent evidence indicating that lipid raft integrity is a prerequisite for optimized
signaling between T-cells and antigen presenting cells (47,48). In addition, recent studies
suggest that long chain PUFAs can block antigen presentation by interfering with lipid raft-
dependent formation of the immunological synapse (38,39,49). Overall, these findings provide
evidence indicating that dietary n-3 PUFA can profoundly alter the biochemical make up of
cell membrane lipid rafts/caveolae microdomains, which may directly or indirectly influence
membrane fusion and cell-cell signaling. Interestingly, only a single study to date has examined
the effects of CLA with regard to lipid raft/caveolae composition. Huot and Ma (50)
demonstrated that mixed CLA isomers are concentrated in caveolae phospholipids, resulting
in the reduction of caveolae resident proteins, caveolin-1 and Her-2/neu, in MCF-7 breast
cancer cells. Unfortunately, few studies to date have assessed the physical properties of CLA
isomers (51). Ergo, future studies using purified CLA isomers are needed in order to elucidate
how conjugated fatty acid structure affects membrane structure and function.
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DHA alters the size and distribution of lipid rafts
In a proof of principle study, we sought to determine the effect of DHA on the size and
distribution of lipid rafts in vivo (17). Using immunogold electron microscopy of plasma
membrane sheets coupled with spatial point analysis, morphologically featureless
microdomains were visualized in HeLa cells. Cells were transfected with green fluorescent
protein truncated H-ras (GFP-tH), which is located exclusively to inner leaflet rafts, and
subsequently incubated with DHA and control fatty acid, e.g., oleic acid (18:1 n-9) for 48 h.
Univariate K-function analysis of GFP-tH (5 nm gold) revealed that the interparticle distance
was significantly reduced by DHA treatment compared to control fatty acid, indicating that
select PUFA can increase clustering of proteins in cholesterol-dependent microdomains (GFP-
tH). whereas non raft microdomains are insensitive to DHA modulation. These novel findings
suggest that the plasma membrane organization of inner leaflets is fundamentally altered by
DHA-enrichment (Figure 2).

“Cholesterol-centric” view of membranes
Saturated fatty acids compared to PUFA have a preferential affinity for cholesterol. This
relationship provides the basis for a lipid-driven mechanism for the lateral segregation of
membrane elements into cholesterol-rich and -poor microdomains (35,52–55). For example,
unfavorable interaction between cholesterol and PUFA chains has been clearly demonstrated
by the exclusion of cholesterol from dipolyunsaturated phosphatidylcholine (PC) membranes
where it is forced to directly contact polyunsaturated chains. Studies using a variety of
techniques including differential scanning calorimetry (56), 1H NMR and nuclear Overhauser
enhancement spectroscopy with magic angle spinning (52), determination of partition
coefficients (57), measurements of lateral compressibility (58), and fluorescence anisotropy
(53,59), indicate that the poor affinity of DHA and perhaps CLA for cholesterol provides a
lipid-driven mechanism for lateral phase separation of cholesterol-rich lipid microdomains
from the surrounding bulk membrane. This could in principle alter the size, stability and
distribution of cell surface lipid microdomains such as rafts. Indeed, growing evidence from
model membrane studies suggest that the energetically less favorable interaction between
cholesterol and PUFAs, especially DHA, promotes lateral phase segregation into sterol-poor/
PUFA-rich and sterol-rich/saturated fatty acid-rich microdomains (52,53,57,60–62).

Huang and co-workers proposed the umbrella model to describe the solubility and condensing
effect of cholesterol within membranes (63). According to this model, phospholipid head
groups act as ‘umbrellas’ to prevent the energetically unfavorable contact of the non-polar part
of cholesterol with interfacial water. This shielding will be less effective for DHA-containing
phospholipids with a large molecular cross-sectional area, facilitating cholesterol precipitation
at a lower concentration. In addition, this model allows for speculation that
phosphatidylethanolamine (PE) with a smaller head group may enhance the DHA-associated
reduction in shielding effects relative to PC. Consistent with this notion, unlike PC bilayers
where a marked reduction in cholesterol solubility requires polyunsaturation at both sn-1 and
sn-2 positions, DHA at sn-2 position with a saturated sn-1 chain is sufficient in PE to trigger
cholesterol precipitation (64).

Conjugated n-3 PUFA
There is growing evidence that the combination of conjugated double bonds and n-3 PUFA
may have enhanced chemoprotective properties. Recent studies using a number of model
systems suggest that conjugated EPA (CEPA) and conjugated DHA (CDHA) suppress tumor
growth (65,66), suppress topoisomerases (67), induce apoptosis (68,69), inhibit lipid
accumulation (70) and have potential use as therapeutic dietary supplements for minimizing

Chapkin et al. Page 4

Br J Nutr. Author manuscript; available in PMC 2009 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tumor angiogenesis (68,71). Typically, CEPA and CDHA are generated by alkaline
isomerization, producing a mixture of isomers with conjugated double bonds, although small
amounts are found in marine algae and seal oil. Since the exact structure of these novel fatty
acid species has not been fully characterized, future studies are required to verify their safety
and efficacy in humans. In addition, it remains to be determined whether CEPA and CDHA
alter the size and distribution of cell surface microdomains.

Conclusion
A growing body of literature supports the contention that bioactive food components containing
n-3 PUFA are important in suppressing chronic inflammation and cancer. Although the
mechanism of EPA and DHA action is still not fully defined in molecular terms, it is becoming
increasingly clear that n-3 PUFA alter cell membrane lipid microdomain composition, thereby
favorably modulating the relay of extracellular signals from surface receptors to downstream
signaling networks. Clearly, further studies are needed to clarify the nature of lipid rafts and
the biological role of conjugated fatty acid species, including CLA, CEPA and CDHA families.
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Figure 1. Nuclear receptor activation by conjugated linoleic acid
ER, endoplasmic reticulum; FABP, fatty acid binding proteins (molecular chaperone); PPAR,
peroxisome proliferators-activated receptors; RXR, retinoid X receptors. CLA transactivates
PPAR nuclear receptors, n-3 PUFA suppress NF-kB activation. All membranes incorporporate
EPA, DHA and conjugated PUFA to different degrees.
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Figure 2. Putative membrane microdomain altering properties of n-3 PUFA and CLA
Dietary DHA and CLA are incorporated into both the bulk phase of the plasma membrane as
well as discrete heterogeneous cholesterol/sphingolipid-rich raft domains. This can alter
plasma membrane organization of inner leaflets and the dynamic partitioning of transduction
proteins, thereby modulating their function
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