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SUMMARY

Recently, meta-analysis has been widely utilized to combine information across comparative clinical stud-
ies for evaluating drug efficacy or safety profile. When dealing with rather rare events, a substantial pro-
portion of studies may not have any events of interest. Conventional methods either exclude such studies
or add an arbitrary positive value to each cell of the corresponding 2 × 2 tables in the analysis. In this
article, we present a simple, effective procedure to make valid inferences about the parameter of interest
with all available data without artificial continuity corrections. We then use the procedure to analyze the
data from 48 comparative trials involving rosiglitazone with respect to its possible cardiovascular toxicity.
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1. INTRODUCTION

Meta-analysis provides a framework for combining information across multiple independent, but “simi-
lar” clinical studies to make inferences about a common parameter (Egger and Smith, 1997a; Egger and
others, 1997b). Almost all existing methods rely on large-sample approximations to the distributions of
the combined point estimators. Such approximations may be inaccurate and lead to invalid conclusions
when the individual study sample sizes are small, the number of studies is not large, or the event rates
are low (Brown and others, 2001). Moreover, when the events of interest are very rare, the standard pro-
cedures either apply continuity corrections to the studies with zero events or simply exclude them from
the analysis (Sankey and others, 1996; Bradburn and others, 2007). For example, recently Nissen and
Wolski (2007) (N&W) performed a meta-analysis to examine whether rosiglitazone, a drug for treating
type 2 diabetes mellitus, significantly increases the risk of myocardial infarction (MI) or cardiovascular
disease (CVD)–related death. Of 48 trials satisfied the inclusion criteria for their analysis, 10 studies have
no MI events and 25 studies have no CVD-related deaths. N&W simply excluded those studies from their
analysis. On the other hand, different continuity corrections may result in different conclusions (Sweeting
and others, 2004). An interesting yet challenging methodology question is how to use all available data
without assigning an arbitrary number to the empty cells in meta-analysis.

In this article, we present a simple procedure to construct “valid” confidence intervals (CIs) for a com-
mon parameter using all available data. The new proposal does not rely on the large-sample approximation
or arbitrary continuity corrections to obtain interval estimates. We reanalyze the CVD-related event data
of N&W with the proposed method. A numerical study is also conducted to compare the performance of
the new proposal to existing procedures.

2. COMBINING INDIVIDUAL CIS FOR A COMMON PARAMETER OF INTEREST

Suppose that we are interested in constructing a 100(1 − α)% 1-sided CI (a, ∞) for �, a common
parameter, based on all data from n independent studies. For a given η, there are n study-specific 1-sided
η-level CIs for �. Now, for any fixed value of �, say 0, we examine whether 0 is the true value of �. If
yes, then on average, 0 should belong to at least 100η% of the above n intervals. The decision on whether
the interval (a, ∞) should include 0 can be made easily via a simple hypothesis testing procedure. To this
end, let yi = 1, if 0 belongs to the observed η interval from the i th study, and yi = 0, otherwise. Then,
we include 0 in (a, ∞) if

t (η) =
n∑

i=1

wi (yi − η) � c, (2.1)

where wi is a study-specific positive weight, c is chosen such that pr{T (η) < c} � α,

T (η) =
n∑

i=1

wi (Bi − η) (2.2)

is the null counterpart of t (η), and {Bi , i = 1, . . . , n} are n independent Bernoulli random variables with
a “success” probability of η. We repeat this process with all other possible values for � and obtain the
final CI (a, ∞). Here, the weight wi may be the sample size for the i th study.

One may further improve the aforementioned interval estimate for � by utilizing multiple intervals
with various levels of confidence from each study. Specifically, let Ji j = (ai j , ∞) denote the η j -level
1-sided CI based on the i th study, for j = 1, . . . , K . Without loss of generality, we assume that 0 < η1 <
· · · < ηK < 1 and ai1 � · · · � ai K . For any given �, we would include � in the final combined interval
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(a, ∞) if

K∑
j=1

w̃ j t (η j ) � d, (2.3)

where w̃ j is a positive weight for the η j -level intervals and t (η j ) is obtained by replacing yi and η in
(2.1) with yi j and η j , respectively. Here, the critical value d is chosen such that

pr

⎧⎨
⎩

K∑
j=1

w̃ j T (η j ) < d

⎫⎬
⎭ � α, (2.4)

where T (ηi ) is obtained by replacing Bi and η in (2.2) by Bi j and η j , respectively, and {(Bi1, . . . , Bi K )′,
i = 1, . . . , n} are n independent random vectors whose components are correlated Bernoulli variables
such that Bi1 � Bi2 � · · · � Bi K and pr(Bi j = 1) = η j . The final interval (a, ∞) may be obtained
by repeating the process for all possible values of �. We justify the validity of the proposed procedure
in the Appendix. For the present case, one may let w̃ j be {η j (1 − η j )}−1 (Wei and Johnson, 1995; Xu
and others, 2003).

Similarly, we can obtain combined 100(1 − α)% 1-sided CI, (−∞, b). It follows that (a, b) would be
a 100(1 − 2α)% 2-sided CI for �. A point estimator for � may be obtained as �̂ such that �̂ belongs to
the intersection of all nonempty 2-sided CIs for �.

3. EXAMPLE AND NUMERICAL STUDY

First, we illustrate the new procedure with the rosiglitazone data set described in Section 1. For conve-
nience, we provide the data from 48 studies in Table I of the supplementary material available at Biostatis-
tics online (http://www.biostatistics.oxfordjournals.org). It is important to note that N&W did not utilize
the information from studies which reported zero events of interest. Thus, their analysis only included 38
studies for the MI end point and 23 studies for the CVD-related mortality.

With respect to MI, N&W obtained a 95% CI of (1.03, 1.98) with a p-value of 0.03 for the odds
ratio (OR) between rosiglitazone and the control arm (in favor of the control). With respect to mortality,
the 95% CI is (0.98, 2.74) with a p-value of 0.06, an almost statistically significant result in favor of the
control arm. The findings by N&W are summarized in Figure I of the supplementary material available at
Biostatistics online.

While it is unclear how to utilize studies with zero events without arbitrary continuity corrections to
obtain an overall assessment for OR in meta-analysis, we are able to use all data to make inference about

Table 1. The empirical coverage levels of 95% CIs for the OR obtained based on (i) the MH method
with 0.5 imputation (MH-0.5) and (ii) Peto’s procedure with event rates ranging from extremely low to
moderately low. The results are based on 1000 simulated data sets consisting of 48 2 × 2 tables with the

observed sample sizes listed

OR (a) pCi ∼ U (0, 0.01%) (b)pCi ∼ U (0, 0.1%) (c) pCi ∼ U (0, 10%)

MH-0.5 Peto MH-0.5 Peto MH-0.5 Peto

1 1.000 0.987 0.995 0.958 0.948 0.947
2 0.974 0.968 0.878 0.961 0.944 0.862
5 0.741 0.972 0.233 0.975 0.957 0.000
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Fig. 1. The 95% CIs of the RD for CVD death (rosiglitazone minus control) with 48 studies (small circles are the
observed RDs).

the risk difference (RD), as a measure of the group difference. To this end, we let � be the RD (rosigli-
tazone minus control) in our analysis. We construct 95% CIs for � based on the data from 48 studies
via the proposed procedure. Here, we let {η j } be 20 equally spaced levels from 0.1 to 0.95. Moreover,
for each study, the η j -level CI for � is obtained via the mid-p-value method (Chan and Zhang, 1999;
Hwang and Yang, 2001). The cutoff point d in (2.4) is determined by randomly generating 50 000 inde-
pendent samples {(Bi1, . . . , Bi K )}. For comparison, we also obtain the corresponding Mantel–Haenszel
(MH) weighted CI estimates for RD.

For the mortality end point, we present the forest tree diagram in Figure 1(a). The thick line segment
right above the x-axis is the combined 95% CI (−0.13, 0.23)%. The point estimator of RD is 0.063%, and
the p-value for testing RD = 0 is 0.83. On the other hand, in Figure 1(b), the 95% MH final interval for
RD is (0.00, 0.31)% with a p-value of 0.05 after excluding 25 studies with no events.

For the MI endpoint, the final combined 95% interval is (−0.08, 0.38)%. The point estimator for RD
is 0.183% with a p-value of 0.27. Again, if we exclude 10 studies with no events and use the asymptotic
inference as in N&W, the final 95% MH interval is (0.02, 0.42)% with a p-value of 0.03 (see Figure II in
the supplementary material available at Biostatistics online).
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Table 2. The empirical coverage levels and average lengths of 95% CIs for RD obtained based on (i)
the MH-0 method, (ii) the MH-0.5 method, and (iii) the new exact method for cases with extremely to
moderately low event rates. The results are based on 1000 simulated data sets consisting of 48 2 × 2

tables with the observed sample sizes listed in Table 1

Empirical coverage level (average length × 1000)

(a) pc ∼ U (0, 0.01%) (b) pc ∼ U (0, 10%)

RD MH-0 MH-0.5 Exact RD MH-0 MH-0.5 Exact

0 0.761 (0.29) 1.000 (2.10) 1.000 (1.45) 0 0.959 (10.3) 0.959 (10.3) 0.995 (12.3)
0.01% 0.896 (0.44) 1.000 (2.13) 1.000 (1.51) 5% 0.947 (12.2) 0.947 (12.2) 0.959 (14.8)
0.05% 0.930 (0.78) 0.999 (2.22) 0.999 (1.91) 10% 0.957 (13.7) 0.957 (13.7) 0.958 (16.8)
0.50% 0.955 (2.28) 0.998 (3.69) 0.987 (3.67)

Numerical studies were conducted to examine the performance of the new proposal and the standard
large-sample interval estimation procedures. The current literature suggests that the large-sample MH-
type combining techniques for the OR or RD are relatively more reliable than other methods (Bradburn
and others, 2007). To save space, we only report the results with the MH-type procedures as the main
comparators in the study.

The first part of our simulation study was designed to examine the performance of various existing
interval estimation procedures for � = OR. We mimicked the data structure presented in Table I of
the supplementary material available at Biostatistics online and generated 48 studies with the observed
sample sizes. Let pci and pri be the incidence rates for the control and rosiglitazone groups in the i th
study, respectively. For each given OR, {pci , i = 1, . . . , 48} were generated randomly from a uniform
distribution U (0, ξ). Then, we let logit(pri ) = log(OR)+ logit(pci ) to generate data for the treated group.
In Table 1, we present the empirical coverage levels of 95% CIs obtained based on (i) the MH method
with 0.5 imputation (MH-0.5) for studies with zero event in one arm and (ii) the Peto’s method utilized in
N&W. All results are based on 1000 replications. It is clear that either method may not be valid when the
true OR is away from one. Through our simulation studies, we also find that the existing exact method for
the OR conditional on all marginal totals of 2 × 2 tables works well.

In the second part of our simulation, we use the RD as the contrast measure �. We generate pci from
the uniform distribution and pri = RD + pci . The results are reported in Table 2. When the underlying
event rates for both groups are low, the MH method without imputation has serious coverage problems.
For this case, both our exact and MH-0.5 methods are conservative. However, the average interval lengths
from exact method are shorter than that of the MH-0.5 method. On the other hand, when the underlying
event rates are not very low, all procedure have proper coverage levels and comparable interval lengths.

4. REMARKS

Unlike the standard large-sample meta-analysis procedures, the proposed simple method provides valid
exact inferences about the parameter of interest under any fixed-effects framework. It effectively utilizes
all data without artificial imputation. Our method may be regarded as a generalization of the combi-
nation method of confidence distributions studied by Singh and others (2005). As other exact proce-
dures, the proposed method can be over conservative in some cases. It would be interesting to examine
if one can improve the efficiency of the proposed exact method by considering a priori (or random-
effect) distribution for the nuisance parameter, such as the control success rate in the 2 × 2 tables, as
suggested by the associate editor. The computer code for implementing the procedure is available at
“http://biosun1.harvard.edu/∼tcai/MetaCode.r”.
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APPENDIX A

A.1 Justification of validity for the final combined interval

Assume that the n studies in our meta-analysis are realizations of a random sample from a population
whose distribution is generated by a random quantity �. For example, for the 2 × 2 tables, � consists
of �0, the underlying event rate for the control arm, and possibly the sample sizes for 2 arms of the
study. Let πi be the realization of � for the i th study, i = 1, 2, . . . , n. Note that one may further assume
that the number n of studies is a random component N of �. Given πi , the data Xi were generated for
i = 1, . . . , n. The 1-sided CI Ji j = (ai j , ∞) for �0 satisfies the condition

pr(�0 ∈ Ji j |πi ) � η j , j = 1, . . . , K , (A.1)

where the probability is generated by Xi . Now, for any given �, we test the null hypothesis that � =
�0. Let Yi j = 1, if � ∈ Ji j ; Yi j = 0, otherwise. Consider the test statistic T0 = ∑n

i=1
∑K

j=1(Yi j −
η j )wi w̃ j . We then derive the critical value d in (2.3) and (2.4) from the null counterpart of T0, T̃ =∑n

i=1
∑K

j=1(Bi j − η j )wi w̃ j . Note that if � = �0, (A.1) implies that

pr(Yi j = 1|πi ) � η j , j = 1, . . . , K . (A.2)

Under this condition, we will show that

pr(T0 � v) � pr(T̃ � v), for all v . (A.3)

Equation (A.3) directly implies that conditional on any set of realizations {π1, . . . , πn}, pr(T0 < d|� =
�0, π1, . . . , πn) � α, where the probability is generated by {Xi , i = 1, . . . , n}. It follows that pr(T0 <
d|� = �0) � α, where the probability is generated under the random pairs {(Xi ,�i ), i = 1, . . . , n}.
Here, Xi is a random quantity associated with �i and {�i } is a random sample from the population �.

To show (A.3), first let g(u1, . . . , uK ) = ∑K
j=1(u j − η j )w̃ j . Since for each individual study, the

K CIs are nested, g(yi1, . . . , yi K ) or g(Bi1, . . . , Bi K ) can only assume K + 1 possible distinct values:
vk = ∑

j�k+1 w̃ j −∑K
j=1 η j w̃ j , k = 1, . . . , K , where y is the observed value of Y and v0 > v1 · · · > vK .

Furthermore, g(yi1, . . . , yi K ) = vs if and only if yi j = I ( j > s). Similarly, g(Bi1, . . . , Bi K ) = vs if and
only if Bi j = I ( j > s). It follows that for v ∈ (vs, vs−1],

pr{g(Yi1, . . . , Yi K ) � v} = pr{g(Yi1, . . . , Yi K ) � vs−1} = pr(Yis = 1).

Under (A.2), pr(Yis = 1) � ηs = pr(Bis = 1) = pr{g(Bi1, . . . , Bi K ) � v}. Consequently, pr{g(Yi1, . . . ,
Yi K ) � v} � pr{g(Bi1, . . . , Bi K ) � v} and (A.3) follows.
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