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SUMMARY

The classification accuracy of a continuous marker is typically evaluated with the receiver operating char-
acteristic (ROC) curve. In this paper, we study an alternative conceptual framework, the “percentile value.”
In this framework, the controls only provide a reference distribution to standardize the marker. The anal-
ysis proceeds by analyzing the standardized marker in cases. The approach is shown to be equivalent to
ROC analysis. Advantages are that it provides a framework familiar to a broad spectrum of biostatisticians
and it opens up avenues for new statistical techniques in biomarker evaluation. We develop several new
procedures based on this framework for comparing biomarkers and biomarker performance in different
populations. We develop methods that adjust such comparisons for covariates. The methods are illustrated
on data from 2 cancer biomarker studies.
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1. INTRODUCTION

Molecular biotechnology may yield biomarkers for many purposes including early detection of disease,
accurate sophisticated diagnosis, and monitoring of treatment effect. The development of biomarkers is
a relatively recent area of research. Yet, the enormous investment of resources from public and private
sectors testifies to the promise that this approach holds. The receiver operating characteristic (ROC) curve
is typically used to describe the discriminatory capacity of a marker. However, most statisticians have
limited familiarity with ROC methodology. Here, we use an alternative conceptual framework for marker
evaluation that has very traditional statistical elements. We show that it has strong ties to ROC analysis,
and importantly, we describe some new techniques afforded by this framework.
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Fig. 1. Distributions of log(CA-125) in healthy women, women with benign tumors, and women with ovarian cancer
(a); distributions of the estimated case percentile values when F is estimated empirically (b) or parametrically (c).

Two specific problems are considered. The first is to determine if CA-125, a cancer antigen, discrim-
inates women with benign ovarian tumors from healthy women as well as it discriminates women with
clinically detected ovarian cancers from healthy women. Let Y be the CA-125 measurement. Previously
published data shown in Figure 1(a) are comprised of {YD̄i , i = 1, . . . , nD̄} for controls, {Y1 j , j =
1, . . . , n1} for cases with benign tumors, and {Y2 j , j = 1, . . . , n2} for cases with ovarian cancer, where
nD̄ = 41, n1 = 24, n2 = 66, and nD = n1 + n2 = 90 (McIntosh and others, 2004).

The second problem is to compare the discriminatory performances of 2 biomarkers, CA-19-9 and
CA-125, for pancreatic cancer. For each of nD = 90 cases with cancer and nD̄ = 51 controls who did
not have cancer but had pancreatitis (Wieand and others, 1989), the biomarkers denoted by (Y1, Y2) are
measured. The data are represented as {(Y1D̄i , Y2D̄i ), i = 1, . . . , nD̄, (Y1Dj , Y2Dj ), j = 1, . . . , nD}.

We start by setting these 2 statistical problems in the new conceptual framework, without assuming
any familiarity with ROC methodology. We develop several methods for inference, including a natural
approach to covariate adjustment. Finally, we discuss how this framework relates to existing ROC methods
and how it provides new methods for ROC analysis.

Proofs of theorems are given in Appendix B of the supplementary material (available at Biostatistics
online, http://www.biostatistics.oxfordjournals.org).

2. REFERENCE DISTRIBUTION STANDARDIZATION

The key idea is to use the biomarker distribution in controls as a reference distribution to standardize
marker values. Let F(Y ) denote the cumulative distribution of the marker Y in the control population.
The standardized marker value, which we call its percentile value, is

percentile value = Q ≡ 100 × F(Y ). (2.1)

This sort of standardization using a reference distribution is already commonplace in laboratory medicine
and clinical medicine. In clinical medicine, for example, consider that weight and height of children are
standardized relative to a healthy population of children of the same age and gender, so that reporting of
percentile values is typical in practice (Frischancho, 1990).

Suppose without loss of generality that larger biomarker values are associated with disease (else we
can use −Y as the marker). An unusually large value of Y has a percentile value close to 100. In laboratory
medicine, a value of Q above 95 or 99 might be flagged as outside the normal reference range. A good
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biomarker would flag most cases as being outside the normal range. We propose that the distribution of
case percentile values is a natural way to characterize the discriminatory performance of markers. On the
one hand, with a useless marker the case and control distributions of Y are the same so Q has a uniform
(0, 100) distribution. On the other hand, an ideal marker will place all cases at Q = 100. The closer the
case distribution of Q is to that of the ideal, the better is the marker.

One could compare benign ovarian tumors and malignant cancers by their respective distributions of
the standardized marker values. Substantially smaller values in benign tumor cases would indicate that
discrimination is not as good for them as it is for malignant cancer cases. The standardization simplifies
the problem by essentially reducing the number of groups from 3 to 2. In a sense, rather than evaluating if
there is an interaction between disease status and disease type on Y , we need only do a simple 2-sample
comparison of Q between benign tumor cases and malignant cancer cases.

To compare 2 markers for discriminating a single set of cases from controls, each marker would
be standardized with respect to its distribution in controls, yielding standardized values Q1 and Q2 for
markers 1 and 2, respectively. If Q1 tends to be larger than Q2, marker 1 is the better marker because for
cases it is more indicative of their disease than is marker 2. The standardization puts the 2 markers on a
common scale where they can be compared using simple paired comparisons.

The approach of adopting the control distribution as a reference to standardize a biomarker has been
taken in some biomarker studies (McIntosh and others, 2004) but has never been formalized as a valid
statistical method. Moreover, since in practice only a finite sample of controls is available, formal statis-
tical procedures need to acknowledge sampling variability in the reference distribution. We can estimate
F either empirically or parametrically with control data {YD̄i , i = 1, . . . , nD̄}. Write F̂ for the estimator
which in the setting of parametric estimation can also be written Fθ̂ , where θ̂ is the estimated parameter
for the model Fθ . Even if marker values among cases are independent, their estimated standardized val-
ues, Q̂ j = 100 × F̂(Y j ), are not independent because of their common dependence on F̂ . This makes
inference somewhat challenging.

3. COMPARING BENIGN TUMORS VERSUS OVARIAN CANCERS

3.1 Comparing means

Unconditional test. Let Qz(Q̂z) denote the percentile value (estimated) for the zth group of cases, with

mean E(Qz), z = 1, 2. Let � = E(Q1) − E(Q2). The difference in sample means �̂ = Q̂1 − Q̂2 can
serve as the basis of a test statistic. Let nD̄ and n1 and n2 be the numbers of subjects in the control group
and the first and second case groups, respectively.

THEOREM 3.1 Suppose marker observations are sampled independently and as nD̄ → ∞, n1/nD̄ →
λ1 ∈ (0, 1), n2/nD̄ → λ2 ∈ (0, 1), then

√
nD̄(�̂ − �) converges to a mean 0 normal random variable

with variance σ 2, where

(a) σ 2 = var{R1(YD̄) − R2(YD̄)} + var(Q1)

λ1
+ var(Q2)

λ2
, (3.1)

if F̂ is the empirical cumulative distribution function (CDF), where Rz(YD̄) = P(Yz < YD̄) denotes the
percentile value of the marker YD̄ from a control within the zth case distribution, and

(b) σ 2 =
(

∂�

∂θ

)T

�(θ)

(
∂�

∂θ

)
+ var(Q1)

λ1
+ var(Q2)

λ2
, (3.2)

if F is modeled parametrically, where �(θ) is the asymptotic variance of
√

nD̄(θ̂ − θ) and we assume
that � is differentiable with respect to θ .
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Thus, the variability of �̂ comes from 2 sources, one due to sampling controls that form the reference
population and the other due to sampling cases and calculating their percentile values given the reference
distribution. In practice, we can estimate σ 2 using these formulas or the bootstrap method. If subjects are
selected on the basis of their outcome status, resampling of subjects is done from the control and each
case group separately. By calculating the variance of �̂ − �, we can construct a confidence interval (CI)
for � and formally test for equality of E(Q1) and E(Q2).

In the ovarian cancer study (McIntosh and others, 2004), serum samples from 41 healthy women, 24
women with benign ovarian tumors, and 66 women with clinically detected ovarian cancer were assayed
for CA-125. Figure 1(a) displays the distribution of log(CA-125) in the 3 groups. The difference between
the ovarian cancer group and the healthy group is larger than the difference between the benign tumor
group and the healthy group. We computed the percentile values of CA-125 in each of the case groups,
using the empirical control distribution (Figure 1b) and under the assumption that log(CA-125) in controls
follows a normal distribution after Box–Cox transformation (Figure 1c). Women with ovarian cancer
appear to have larger percentile values of CA-125 compared to women with benign tumors.

Let Q1 and Q2 be percentile values for benign tumors and ovarian cancer groups, respectively. We

calculated a 95% CI for �. When F is estimated empirically, Q̂1 = 63.31, Q̂2 = 90.17, �̂ = −26.86,
and the 95% CI for � is (−42.77, −10.94) based on the asymptotic variance and (−42.74, −10.97)

based on the bootstrap variance. When F is estimated parametrically, Q̂1 = 64.56, Q̂2 = 90.03, �̂ =
−25.47, and the 95% CI for � is (−41.48, −9.46) based on the asymptotic variance and (−41.39, −9.56)
based on the bootstrap variance. Inferences based on the asymptotic and bootstrap variances agree fairly
well here. The population mean percentile values are highly significantly different between the 2 case
groups, regardless of how we model the marker distribution in controls (Table 1 in Appendix A of the
supplementary material, available at Biostatistics online). The ability of CA-125 to identify ovarian cancer
seems to be much better than its ability to detect benign tumors.

Conditional test. When our objective is hypothesis testing as opposed to estimation, we can consider
testing for equality of mean percentile values conditional on the control sample. We use the term “condi-
tional” inference here. The advantage of the conditional approach is that it maintains independence among
the estimated percentile values, allowing standard 2-sample tests for independent samples to be applied
when comparing case groups.

PROPOSITION 1 Using the notation
d= for “equal distributions,” under H0: Q1

d= Q2, if the support of

the marker Y in each case group is covered by its support in controls, then Y1
d= Y2 and Q̂1 and Q̂2 have

the same conditional distribution.

The implication of Proposition 1 is that if we reject the hypothesis that Q̂1 and Q̂2 have the same

conditional distribution, we can reject the null hypothesis that Q1
d= Q2. Earlier we used the unconditional

test to compare the means of Q1 and Q2. In other words, we tested whether E(�) = 0 where variability
enters through both case and control samples. Here, we compare the means of Q̂1 and Q̂2 conditioning
on the control sample. That is, we test whether E(�̂|Yi , i = 1, . . . , nD̄) = 0.

Observe that conditional on the control sample, the variance of �̂ is

var

⎛⎝ 1

n1

n1∑
j=1

Q̂1 j − 1

n2

n2∑
i=1

Q̂2 j

∣∣∣∣∣∣ Yi , i = 1, . . . , nD̄

⎞⎠
= var(Q̂1|Yi , i = 1, . . . , nD̄)

n1
+ var(Q̂2|Yi , i = 1, . . . , nD̄)

n2
, (3.3)
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which can be consistently estimated by v̂ar(Q̂1)/n1+v̂ar(Q̂2)/n2, where v̂ar denotes the sample variance.
On the other hand, the unconditional variance of �̂ can be estimated by

v̂ar(Q̂1)

n1
+ v̂ar(Q̂2)

n2
+ v̂ar{R̂1(YD̄) − R̂2(YD̄)}

nD̄
� v̂ar(Q̂1)

n1
+ v̂ar(Q̂2)

n2
. (3.4)

As a result, the conditional test comparing the means of Q̂1 and Q̂2 is always more powerful than the
unconditional test. This is corroborated by the highly significant results in the top row of Table 1 in
Appendix A of the supplementary material, available at Biostatistics online.

According to Proposition 1, Q1
d= Q2 ⇔ Y1

d= Y2. Therefore, an alternative way to test H0: Q1
d= Q2

is to compare the distributions of Y1 and Y2. Standard 2-sample tests for comparing 2 groups, such as the
t-test, Wilcoxon rank sum test, or permutation test, all can be used for this purpose. Tests based on raw
marker measurements and percentile values have the same type-I error under the null hypothesis but
different powers under alternative hypotheses. In the example, the test comparing means of Y1 and Y2 is
highly significant (Table 1 in Appendix A of the supplementary material, available at Biostatistics online),
reaching the same conclusion as the test for equal means of Q̂1 and Q̂2, but this might not be true in other
circumstances.

In summary, comparison of a marker’s ability to differentiate 2 case groups from the same control
group can be based on means of their percentile values Q1 and Q2. To construct a CI for E(Q1) −
E(Q2), we need to use unconditional inference that incorporates variability in controls as well as cases.
On the other hand, simply to perform a hypothesis test for equality of the distributions of Q1 and Q2, the
conditional methods should be used because of their enhanced power.

3.2 Rank statistics

Section 3.1 dealt with comparisons of mean percentile values. However, when distributions of percentile
values do not belong to the same location-scale family (as shown in Figures 1b and c), alternatives to
mean differences may be considered. For example, we can use rank-based statistics such as the Wilcoxon
rank sum test, which is often used for comparing 2 groups of independent observations. For the problem
at hand, we need to acknowledge the correlation among Q̂s when applying the Wilcoxon rank sum test to
them.

By analogy with methods in Section 3.1, we can apply the Wilcoxon rank sum test to Q̂1 and Q̂2
“unconditionally” or “conditional” on the control sample. In the former, the null hypothesis tested is

P(Q̂1 > Q̂2) = P(Q̂1 < Q̂2), which holds if Q1
d= Q2 according to Proposition 1. In the latter, the null

hypothesis tested is P(Q̂1 > Q̂2|Yi , i = 1, . . . , nD̄) = P(Q̂1 < Q̂2|Yi , i = 1, . . . , nD̄), which holds for

all sets of control samples if Q1
d= Q2. With the conditional testing, Q̂1 and Q̂2 are independent and the

standard Wilcoxon rank sum test can be applied. For the unconditional test, the variance of the Wilcoxon
rank sum test statistic can be estimated using the bootstrap.

In the ovarian cancer example, both the conditional and the unconditional Wilcoxon rank sum tests
applied to Q̂ suggest highly significant differences in the distributions of CA-125 percentile values be-
tween benign tumor cases and ovarian cancer cases (Table 1 in Appendix A of the supplementary material,
available at Biostatistics online). Again, the conditional test is more powerful than the unconditional test
since it does not involve variability in the control sample.

According to Proposition 1, we can also apply the Wilcoxon rank sum test to Y1 and Y2 to test the null

hypothesis Q1
d= Q2. Contrast the rank statistic based on Y1 and Y2 and that based on Q̂1 and Q̂2. If the

transformation from Y to Q̂ does not change each observation’s rank in the sample, then the rank-based
statistic remains the same. This happens when F is modeled as a strictly monotone increasing function but
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does not necessarily happen when F is estimated nonparametrically because ties may be created during
the empirical CDF transformation. The increase in the number of ties will potentially affect the value of
the test statistic and reduce its variance. For example, in the ovarian cancer data, the Wilcoxon rank sum
test statistic applied to Y1 and Y2 has a value of −524 with a standard error 109.6, while the statistic
applied to Q̂1 and Q̂2 has a value of −437 with a standard error 90.9 when F is estimated empirically.

Note that if the nonparametric bootstrap is used for inference, the increase in ties during sampling
with replacement can lead to underestimation of the variance. The severity of this problem depends on
the sample size and the distribution of the percentile values. We found in limited simulation studies that
for small sample size and good classification accuracy, applying the Wilcoxon rank sum test to Q̂ with
nonparametric bootstrap variance estimate led to anticonservative type-I error, especially when F is esti-
mated empirically. A solution is to use the smoothed bootstrap (Silverman, 1986; Silverman and Young,
1987). The idea is to simulate from smoothed distributions to avoid ties during resampling. There has been
little systematic investigation about the choice of optimal bandwidth in this context. We explored several
bandwidths in simulation studies and chose the bandwidth that covers around 40% of the total sample
points in our data example. If variance estimation itself is not of interest, an alternative is to construct CIs
based on percentiles of the nonparametric bootstrap distributions, an approach that turns out to be much
less liberal than the Wald test based on nonparametric bootstrap variance estimates.

In summary, we can compare the discriminatory performance of a marker across different case groups
using rank-based tests. We recommend (1) testing based on Q̂ instead of Y because the former is more rel-
evant to differences in diagnostic accuracy and (2) using the conditional rather than the unconditional test
because the former can be performed with standard statistical software and is more powerful, whereas the
latter calls for smoothed bootstrap for variance estimation without a sound theoretic basis for bandwidth
selection.

3.3 Adjusting for covariates

Suppose the biomarker distribution in controls varies with a covariate X that can vary among cases, then
the appropriate reference distribution should depend on X . We define the covariate-specific percentile
value

Q X = 100 × F(Y |X), (3.5)

where F(Y |X) is the CDF of the marker in the control population with covariate value X . In clinical
medicine, for anthropometric measurements it is standard practice to calculate covariate-specific per-
centile values. For example, the percentiles of height for children are age and gender specific because
these factors affect height in normal healthy children. Berres and others (2008) described methods to
estimate covariate-specific diagnostic scores.

To compare women with benign tumors and women with ovarian cancer, we can evaluate covariate-
specific percentile values for each case group and compare them using 2-sample test statistics. Is covariate
adjustment important? The answer is “potentially yes.” Suppose, for example, that X is age and that in
controls older age is associated with larger values of the biomarkers. If women with ovarian cancer tend to
be older than women with benign tumors, one would observe a difference in discriminatory performance
that is simply due to age. Using age-adjusted biomarker percentiles is a simple way to eliminate such
confounding.

If X is discrete and there are relatively large numbers of controls per X category, a nonparametric
approach to estimating F(Y |X) can be taken. Otherwise a parametric model is employed. For z = 1, 2,
let QzX (Q̂zX ) be the (estimated) covariate-specific percentile value for an observation in case group z.

Let � = E(Q1X ) − E(Q2X ) and �̂ = Q̂1X − Q̂2X . When covariate X is discrete with K categories, let
nD̄k and nzk be the number of controls and the number of zth type of cases in the kth covariate category,
k = 1, . . . , K .
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THEOREM 3.2 Suppose nD̄ → ∞, n1/nD̄ → λ1 ∈ (0, 1), and n2/nD̄ → λ2 ∈ (0, 1). When X is
discrete, suppose nD̄k/nD̄ → pD̄k ∈ (0, 1), n1k/n1 → p1k ∈ (0, 1), and n2k/n2 → p2k ∈ (0, 1). Then√

nD̄(�̂ − �) converges to a mean 0 normal random variable with variance σ 2, where

(a) σ 2 =
∑

k

[
var{Rk

1(Y k
D̄
)}

pD̄k/p2
1k

+ var{Rk
2(Y k

D̄
)}

pD̄k/p2
2k

]
+ var(Q1X )

λ1
+ var(Q2X )

λ2
, (3.6)

if F(Y |X) is modeled with the empirical CDF within the kth covariate category, where Rk
z (Y

k
D̄
) = P(Y k

z <

Y k
D̄
) and the k superscript indicates cases and controls in covariate category k, and

(b) σ 2 =
(

∂�

∂θ

)T

�(θ)

(
∂�

∂θ

)
+ var(Q1X )

λ1
+ var(Q2X )

λ2
, (3.7)

if F(Y |X) is modeled parametrically, where �(θ) is the asymptotic variance of
√

nD̄(θ̂ − θ) and we
assume that � is differentiable with respect to θ and that F = {Fθ (y|x): θ ∈ �} is a Donsker (1952)
class.

To illustrate, we simulated a continuous covariate X for the ovarian cancer data. X is generated to
be positively associated with both CA-125 and disease status, X ∼ N (µ, σ ) where µ = 10 × log{5 ×
I (benign tumors) × I (log(CA-125) > 2.2) + 0.8 × I (ovarian cancer) + 1.5 × log(CA-125)} and σ = 4.
Figure 2 shows the distribution of log(CA-125) ignoring covariate X and when X is equal to its first,
second, and third quartiles in the whole sample. Observe that the distribution of log(CA-125) in controls
varies with X . Moreover, the separations between controls and case groups differ with X .

We calculated the covariate-specific percentile values assuming normality of log(CA-125) in controls
conditional on X . The mean is modeled as a cubic B-spline in X , with pre-chosen knots at the first 3
quartiles in the control sample. Figure 3 plots the distributions of the marginal and covariate-specific
percentile values of CA-125 for women in the 2 case groups. It appears that adjusting for the covariate
X reduces the separation between women with benign tumors and healthy women, while the separation
between women with ovarian cancer and healthy women is unchanged. Indeed, the covariate-specific
percentile values have an approximately uniform (0, 100) distribution for women with benign tumors
indicating that their distribution is the same as that for controls. Therefore, covariate adjustment appears
to be desirable in this setting. After covariate adjustment, CA-125 picks up fewer benign tumor cases
while maintaining its ability to identify ovarian cancer cases.

We now formally compare the 2 groups of cases with regard to their covariate-specific percentile
values. All the unconditional tests described in Sections 3.1 and 3.2 can be applied. All tests suggest that
CA-125 has significantly better discriminatory performance for identifying ovarian cancer compared to
benign tumors (Table 2 in Appendix A of the supplementary material, available at Biostatistics online).

In terms of estimation, we find that, as expected for benign tumors, Q̂1X is close to the uninformative

marker value of 50 (Q̂1X = 50.13). In the ovarian cancer group, Q̂2X = 88.10 which is similar to the

mean unadjusted percentile values (Q̂2 = 90.17). The difference in the covariate-adjusted means is �̂ =
−37.96, with 95% CI (−57.76, −18.16) based on the asymptotic variance and (−58.79, −17.13) based
on the bootstrap variance.

In summary, when the marker distribution in controls varies with a covariate that can vary among
cases, covariate-specific percentile values can be calculated to eliminate potential confounding. The 2
groups of cases can then be compared using mean or rank-based statistics. This provides a covariate-
adjusted comparison of the discriminatory capacity of the marker. See Janes and Pepe (2008a,c) for a
broad discussion of covariate adjustment.
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Fig. 2. Marginal and covariate-specific distributions of log(CA-125) in healthy women, women with benign ovarian
tumors, and women with ovarian cancer.

4. COMPARING MARKERS

Next, consider the comparison of 2 markers with respect to their diagnostic accuracies. Two markers are
measured on each of nD cases and nD̄ controls. Let Fz, z = 1, 2, be the distribution function for the zth
marker in controls, and let Qz(Q̂z) denote the corresponding (estimated) case percentile value. Observe
that each marker is standardized with respect to its own control reference distribution. Even though the raw
marker values may be in different units, the transformation to percentile values put them on the same scale.

4.1 Using means

For each case, one can compare Q1 and Q2. If Q1 tends to be larger than Q2, then marker 1 is the better
marker. Formally, let � = E(Q1) − E(Q2). The difference in sample means can serve as the basis of a

test statistic �̂ = Q̂1 − Q̂2.
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Fig. 3. Marginal and covariate-adjusted distributions of estimated percentile values of CA-125 for women with benign
ovarian tumors and women with ovarian cancer.

In this 2-marker setting, correlation between the estimated percentile values comes from 2 sources:
one due to subject-specific effects and the other due to estimation of the reference distributions. We need
to acknowledge this correlation in making inference.

THEOREM 4.1 Suppose nD/nD̄ → λ as nD̄ → ∞, then
√

nD̄(�̂ − �) converges to a mean 0 normal
random variable with variance σ 2, where

(a) σ 2 = var{R1(Y1D̄) − R2(Y2D̄)} + var(Q1 − Q2)

λ
, (4.1)

if Fz is estimated with the empirical CDF, where YzD̄ and YzD are measurements of the zth marker for a
control and a case, respectively, and Rz(YzD̄) = P(YzD < YzD̄) is the percentile value of the zth marker
from a control in the corresponding case distribution (Delong and others, 1988), and

(b) σ 2 =
(

∂�

∂θ

)T

�(θ)

(
∂�

∂θ

)
+ var(Q1 − Q2)

λ
, (4.2)

if Fz is modeled parametrically with parameter θz , where θ = (θ1, θ2), �(θ) is the asymptotic variance of√
nD̄(θ̂ − θ), and we assume that � is differentiable with respect to θ .

In practice, σ 2 can be estimated based on these formulas or by bootstrap resampling.
Observe that, for this 2-marker problem, conditional inference is no longer applicable. Even if the

distributions of Q1 and Q2 are the same, the distributions of Q̂1 and Q̂2 conditional on the particular
control sample will not necessarily be equal. Therefore, testing the null hypothesis that Q̂1|{YD̄i , i =
1, . . . , nD̄} d= Q̂2|{YD̄i , i = 1, . . . , nD̄} is not equivalent to testing the null hypothesis that Q1

d= Q2.
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Fig. 4. Distributions of log(CA-19-9) and log(CA-125) in controls and cases (a); distributions of the estimated case
percentile values when control distributions are estimated empirically (b) or parametrically (c).

The data set we use for illustration here is from the pancreatic cancer serum biomarker study
(Wieand and others, 1989), which includes 90 cases and 51 controls. Serum samples from each patient
were assayed for CA-19-9, a carbohydrate antigen, and CA-125, a cancer antigen.

Figure 4(a) shows the probability distributions of the markers. Also displayed are the distributions
of the estimated case percentile values for each marker, with Fz estimated empirically in Figure 4(b),
and under the assumption that Y is normally distributed after Box–Cox transformation in Figure 4(c).
Clearly, the distribution of the percentile values for CA-19-9 is shifted to the right compared with CA-
125, indicating that it is a better biomarker.

Next, consider the mean percentile values. When Fz is estimated empirically, Q̂1 = 86.23 for CA-

19-9, Q̂2 = 70.70 for CA-125, and �̂ = 15.53. The corresponding 95% CI for � is (4.34, 26.73) using
the asymptotic variance and similarly (4.37, 26.70) using the bootstrap variance. When Fz is estimated

parametrically, results are similar: Q̂1 = 86.07, Q̂2 = 71.09, and �̂ = 14.97. The corresponding 95%
CI for � is (3.80, 26.15) using the asymptotic variance and (3.57, 26.38) using the bootstrap variance.
CA-19-9 performs significantly better than CA-125 for diagnosing pancreatic cancer (see also Table 2 in
Appendix A of the supplementary material, available at Biostatistics online, for p-values).

In summary, to compare the diagnostic accuracy of 2 markers, we can use the controls to standardize
the marker values in cases and compare the corresponding means. If nD̄ = ∞, this is essentially a paired
t-test. If nD̄ < ∞, the paired t-test needs to be modified to accommodate the additional variability in the
estimated control marker distributions.

4.2 Using rank statistics

Rank-based tests provide another avenue to compare the distributions of percentile values. Due to their
complicated correlation structure, standard variance formulas for rank-based test statistics no longer apply.
The bootstrap method is used instead. Moreover, as discussed earlier, conditional tests are not applicable
here. So only unconditional tests are considered.

PROPOSITION 2 Under H0: Q1
d= Q2, we have Q̂1

d= Q̂2 when Fz is estimated empirically.

PROPOSITION 3 Let U j = Q̂1 j − Q̂2 j , j = 1, . . . , nD . Let T and S be the Wilcoxon signed rank test

statistic and the Sign test statistic, respectively. Under H0: Q1
d= Q2, we have E(T ) = (nD + 1)/4 and

E(S) = 1/2 when Fz is estimated empirically.
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PROPOSITION 4 Let rk be the rank of Q̃k , where

{Q̃k, k = 1, . . . , 2nD} = {Q̂1 j , j = 1, . . . , nD, Q̂2 j , j = 1, . . . , nD}.

Let W = ∑nD
k=1 rk be the Wilcoxon rank sum test statistic. Then under H0: Q1

d= Q2, E(W ) = nD(2nD +
1)/12 when Fz is estimated empirically.

We expect the results in Propositions 2–4 to hold asymptotically when Fz is estimated parametrically.

In other words, under H0: Q1
d= Q2, the expectations of these rank-based test statistics applied to Q̂1

and Q̂2 are the same as that in the standard 2-sample setting (for W ) and the paired-data setting (for
T and S). Therefore, to test for equal discriminatory performance of 2 markers, we can apply the rank-
based test statistics to Q̂1 and Q̂2, bootstrapping the variance. Here, we face the same concerns about
underestimation of the variance as in Section 3.2. Using the smoothed bootstrap for variance estimation
or constructing CIs based on nonparametric bootstrap distributions seems to be a solution. Asymptotic
distribution theory appears to be very challenging. Using a smoothed bootstrap with a bandwidth covering
approximately 40% sample points, all rank-based tests suggest a highly significant difference between the
2 markers (Table 2 in Appendix A of the supplementary material, available at Biostatistics online).

4.3 Adjusting for covariates

We argued earlier that adjusting for covariates may be important when comparing 2 case groups. This is
also potentially important when comparing 2 biomarkers. Suppose, for example, that biomarker values in
the control group vary with study site in a multicenter study. Such might occur if collection or processing
procedures differed across sites. If the site-specific control populations are pooled to form a reference
set, the distribution of the case percentiles may be more diffuse than if the site-specific controls are used
as the reference group (see the right side of Figure 5 for an example). Even if the case–control ratio is
the same across study sites, biomarker performance can appear to be worse than it is by using a pooled
reference set (Janes and Pepe, 2008b). Markers may differ with regard to this phenomenon. For example,
processing techniques that vary across sites may affect one marker but not another. Differential covariate
effects on reference distributions of biomarkers therefore can bias the comparison of markers unless proper
adjustment is undertaken. The use of covariate-specific percentile values is a means to adjust for covariates
and avoid this bias. Note that pertinent covariates may be different for different markers.

For z = 1, 2, let QzX (Q̂zX ) be the (estimated) covariate-specific percentile value for the zth marker,

� = E(Q1X ) − E(Q2X ) and �̂ = Q̂1X − Q̂2X . When X is discrete with K categories, let nD̄k and
nDk be the numbers of controls and cases in the kth covariate category, k = 1, . . . , K . Again covariate
adjustment is only relevant when the covariate is defined for both cases and controls.

THEOREM 4.2 Suppose as nD̄ → ∞, nD/nD̄ → λ ∈ (0, 1), and for a discrete covariate, nD̄k/nD̄ →
pD̄k ∈ (0, 1), nDk/nD → pDk ∈ (0, 1), then

√
nD̄(�̂−�) converges to a mean 0 normal random variable

with variance σ 2, where

(a) σ 2 =
∑

k

var{Rk
1(Y k

1D̄
) − Rk

2(Y k
2D̄

)}
pD̄k/p2

Dk

+ var(Q1X − Q2X )

λ
, (4.3)

if the covariate-specific reference distribution F(Y |X) is estimated empirically within each covariate cat-
egory, where Rk

z (Y
k
zD̄

) = P(Y k
zD < Y k

zD̄
) is the percentile value for a control using its covariate-specific
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Fig. 5. Marginal and covariate-specific distributions of log(CA-19-9) and log(CA-125) in controls and cases.

case distribution as the reference for the zth marker in the kth covariate category, and

(b) σ 2 =
(

∂�

∂θ

)T

�(θ)

(
∂�

∂θ

)
+ var(Q1X − Q2X )

λ
, (4.4)

if F(Y |X) is modeled parametrically for marker z with parameter estimate θz , where θ = (θ1, θ2) and
�(θ) is the asymptotic variance of

√
nD̄(θ̂ − θ). We assume that � is differentiable with respect to θ and

that F = {Fθ (y|x) : θ ∈ �} is a Donsker class.

As shown in the supplementary material, available at Biostatistics online, Theorem 4 extends to the
setting when different covariates are used to adjust different markers.

To illustrate, we simulate a discrete covariate X for the pancreatic cancer data. We set X to 1 for those
with CA-125 above its median, and 0 otherwise. In total, 14 out of 51 (27.4%) controls and 57 out of 90
(63.3%) cases have X = 1. Figure 5 shows the probability distributions of log(CA-19-9) and log(CA-125)
conditional on X .

For CA-19-9, the value of X does not have a dramatic influence on the reference control distribution,
suggesting that covariate adjustment is not warranted. On the other hand, for CA-125, since the marker is
positively associated with X and a higher percentage of cases have X = 1 compared with controls, the
distribution for cases shifts to the right compared to the distribution for controls when data are pooled over
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Fig. 6. Marginal and covariate-adjusted distributions of the estimated case percentile values of CA-19-9 and CA-125.

X , even if there is not much difference between them conditional on X . In other words, X is a confounder
for CA-125 but not for CA-19-9. Distributions of the covariate-specific percentile values for CA-19-9
(Q̂1X ) and CA-125 (Q̂2X ) in cases are shown in Figure 6. For CA-19-9, covariate adjustment does not
affect the distribution of the case percentile values, whereas for CA-125, covariate adjustment removes
the confounding effect of X and suggests performance that is poorer than its marginal performance.

With F(Y |X) estimated empirically, we have Q̂1X = 87.25 for CA-19-9, Q̂2X = 53.85 for CA-125,
and �̂ = 33.40. The corresponding 95% CI for � is (20.04, 46.76) using the asymptotic variance and
(20.83, 45.97) using the bootstrap variance. With F(Y |X) estimated parametrically under the assump-
tion that Y is normally distributed after Box–Cox transformation within each covariate category, we find

Q̂1X = 87.09, Q̂2X = 54.20, and �̂ = 32.89. The corresponding 95% CIs for � are (18.97, 46.81) and
(20.38, 45.40) using the asymptotic and bootstrap variances, respectively. See Table 2 in Appendix A
of the supplementary material, available at Biostatistics online, for p-values based on mean and rank
statistics. CA-19-9 appears to be a much better marker than CA-125 for identifying pancreatic cancer,
especially after adjusting for the covariate.

5. RELATIONSHIPS WITH ROC ANALYSIS

Our approach to evaluating the capacity of a marker to distinguish cases from a reference set of controls
is to use the control marker distribution to standardize marker values for cases. If these percentile values
tend to be high for many cases, the marker’s discriminatory capacity is good. We noted earlier that the
approach is intuitive and is used in some applications (McIntosh and others, 2004). Interestingly, it is
equivalent to ROC analysis, which plays a central role in biomarker evaluation (Baker, 2003; Pepe, 2003).
The equivalence has been noted previously (Pepe and Cai, 2004; Pepe and Longton, 2005). In particular,
since the ROC curve, a plot of true-positive rate (TPR) = P(Y > c|D = 1) versus false-positive rate
(FPR) = P(Y > c|D = 0), can be written as

ROC(t) = P{Y > S−1(t)|D = 1} = P{S(Y ) < t |D = 1}, t ∈ (0, 1), (5.1)

where S = 1 − F , we see that the ROC curve is the CDF of 1 − F(Y ) in cases. Thus, comparing case
distributions of biomarker percentile values, Q = 100 × F(Y ), is entirely equivalent to comparing ROC
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curves. The representation of the distribution of Q in terms of the ROC curve provides further justification
for using case percentile values as the unit of analysis in evaluating and comparing markers. Empirical
ROC curves for the ovarian and pancreatic cancer data sets are shown in Figure 1 in Appendix A of the
supplementary material, available at Biostatistics online.

Some of the procedures presented in Sections 3 and 4 are alternative representations of existing pro-
cedures for comparing ROC curves while some are new procedures. Using the fact that the mean of a
random variable is equal to the area under its survival function, we see that the average of case percentile
values can be represented in terms of the area under the ROC curve (AUC) (Bamber, 1975),

AUC = E(Q)/100. (5.2)

Thus, comparisons based on mean percentile values are equivalent to comparisons of AUCs, the classical
approach to comparing ROC curves.

Hanley and Hajian-Tilaki (1997) represented the empirical AUC as the sample mean of case per-
centile values with F estimated empirically. The asymptotic results in Theorems 1(a) and 2(a) are results
for empirical AUC differences that have been previously reported (Sukhatme and Beam, 1994; Delong
and others, 1988). However, their semiparametric counterparts in Theorems 1(b) and 2(b) have not. Li
and others (1996) studied semiparametric estimation of the ROC curve when the case distribution is mod-
eled parametrically and the control distribution is modeled empirically. We did the reverse in this paper
using a flexible smooth form for the reference control distribution. The Box–Cox family has precedent in
modeling reference distributions for anthropometric measures (Cole, 1990). Returning to the asymptotic
results in Theorems 1(a) and 2(a), in contrast to Sukhatme and Beam (1994) and similar to Hanley and
Hajian-Tilaki (1997), we reparameterized the variances in terms of percentile values in this report, which
we feel is a more intuitive way to understand the components of the variance.

A problem with comparing the diagnostic accuracy of 2 tests using AUC is lack of power to detect
differences in ROC curves when they have the same area under the curve. As pointed out by Swets (1986),
ROC curves are typically asymmetric, and 2 ROC curves with different asymmetries might cross each
other but have the same AUC. Venkatraman and Begg (1996) developed a permutation test procedure to
compare 2 ROC curves with paired data. Extension of the permutation test to the setting of continuous
unpaired data was also proposed (Venkatraman, 2000). Extension to comparisons among more than 2
tests, however, might be computationally intensive.

The rank statistics described in Sections 3.2 and 4.2 provide an alternative solution to distinguishing
between curves with the same AUCs. They have power to reject H0: Q1

d= Q2 when E(Q1) = E(Q2) but
P(Q1 > Q2) 
= P(Q1 < Q2). These can be interpreted as new ROC analysis techniques. Yet, their in-
terpretation as rank statistics to compare distributions of standardized biomarkers in cases is equally valid
and may be preferred by some. The generalization to comparing distributions of multiple standardized
biomarkers is also tenable (Cuzick, 1985; Kruskal and Wallis, 1952).

Nakas and others (2003) proposed comparing markers using functions of case percentile values. Their
statistic is a nonstandard ROC summary index, namely, the 1-sample Anderson–Darling goodness-of-fit
test statistic for the hypothesis that F(Y ) in cases is uniformly distributed. This approach is in fact a special
case within our proposed framework of comparing standardized marker distributions. In our opinion,
applying a modified 2-sample version of the corresponding test directly to the standardized marker values
is conceptually more straightforward.

The concept of covariate adjustment has only recently been developed for ROC analysis. The use of
the covariate-specific percentiles provides a simple intuitive and easily implemented approach to adjust
for covariates. Interestingly, arguments similar to (5.1) prove that the distribution of the covariate-specific
case placement values, 1− Q/100, is the covariate-adjusted ROC curve,AROC(t), proposed by Janes and
Pepe (2008a,b,c). Thus, our methods for comparing distributions of the covariate-specific percentiles can
be interpreted as methods to compare theAROC curves. Formal methods for comparing theAROC curves
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have not been available heretofore. Our methods based on mean covariate-specific percentiles compare
areas under the AROC curves while methods based on ranks provide an alternative approach.

In this paper, we focus primarily on comparing the ROC curve across the entire range of FPRs ∈ (0, 1).
In practice, one might focus on a part of the ROC curve that is of primary interest. For example, in
screening studies, FPRs must be kept very low and so the ROC curve over a restricted range of FPR
may be of interest. The percentile value framework is well suited to evaluations over restricted regions.
If FPR is fixed at u, as we have shown, comparing ROC(u) can be achieved by comparing

∑nD
i=1 I (1 −

Q̂i/100 � u)/nD between samples. If FPR in the range (0, u) is of interest, the partial AUC defined as
pAUC(u) = ∫ u

0 ROC(t)dt has been proposed as the basis for marker comparisons (McClish, 1989). The
empirical estimator written in terms of percentile values is

̂pAUC = 1

nD

nD∑
i=1

max(Q̂i/100 − (1 − u), 0),

where the empirical F̂ is used to calculate Q̂i . This result follows by noting that

E[max{Q/100 − (1 − u), 0}] = u − E{min(1 − Q/100, u)}
= u −

∫ u

0
t dROC(t) − u{1 − ROC(u)}

= u − tROC(t)|u0 +
∫ u

0
ROC(t)dt − u + uROC(u)

= pAUC(u).

Returning now to the ovarian cancer and pancreatic cancer examples, suppose we are interested in compar-
isons based on ROC(u) and pAUC(u) for u = 0.20. We model the reference distributions parametrically
and rely on the resampling variance for inference. In the ovarian cancer example, before covariate adjust-
ment, ̂ROC1(u) = 0.5, ̂ROC2(u) = 0.86, with a difference of −0.36 (95% CI = (−0.61, −0.12));
̂pAUC1(u) = 0.07, ̂pAUC2(u) = 0.17, with a difference of −0.09 (95% CI = (−0.14, −0.05)).
After covariate adjustment, ̂ROC1(u) = 0.29, ̂ROC2(u) = 0.83, with a difference of −0.54 (95% CI =
(−0.80, −0.29)); ̂pAUC1(u) = 0.04, ̂pAUC2(u) = 0.16, with a difference of −0.12 (95% CI =
(−0.16, −0.07)). In the pancreatic cancer example, before covariate adjustment, ̂ROC1(u) = 0.79,
̂ROC2(u) = 0.49, with a difference of 0.3 (95% CI = (0.11, 0.49)); ̂pAUC1(u) = 0.14, ̂pAUC2(u) =
0.06, with a difference of 0.08 (95% CI = (0.05, 0.12)). After covariate adjustment, ̂ROC1(u) = 0.83,
̂ROC2(u) = 0.3, with a difference of 0.53 (95% CI = (0.36, 0.71)); ̂pAUC1(u) = 0.15, ̂pAUC2(u) =
0.03, with a difference of 0.12 (95% CI = (0.08, 0.15)). Comparisons based on points and partial areas
under the curve agree with those based on the whole curve.

6. CONCLUDING REMARKS

Standardizing a biomarker or diagnostic test to a reference population of controls is not an entirely new
concept. However, it is not yet a standard approach to biomarker evaluation. We suspect 2 reasons. First,
ROC analysis has become the standard of practice (Baker, 2003), and second, formal methods have not
been available for statistical inference that properly take account of sampling variability in the reference
distribution. This paper provides remedies by providing methods for statistical inference and by noting
that the approach is interchangeable with ROC analysis. We feel that the approach should be encouraged
because of its conceptual simplicity.
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The approach also opens up new avenues for evaluating biomarkers and diagnostic tests. For example,
covariate adjustment is naturally handled within this framework. We illustrated that covariate adjustment
can be important when comparing biomarkers or for comparing the performance of a biomarker in 2
populations. Pepe and Cai (2004) and Cai (2004) already showed how ROC regression can be accom-
plished by performing regression analysis of case standardized marker values. In the context of evaluating
biomarkers for event time outcomes, one might use the risk set at time t to standardize the biomarker for
the subject that fails at t (the case). Interestingly, it can be shown that the distribution of such standardized
values is closely related to the time-dependent ROC curves developed by Heagerty and Zheng (2005). We
hope that the methods presented here will encourage use of the percentile value standardized approach in
practice and encourage further development of new techniques for biomarker evaluation.
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