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Background: Aicardi-Goutières syndrome (AGS) is an auto-
somal recessive, early onset encephalopathy characterised
by calcification of the basal ganglia, chronic cerebrospinal
fluid lymphocytosis, and negative serological investigations
for common prenatal infections. AGS may result from a
perturbation of interferon a metabolism. The disorder is
genetically heterogeneous with approximately 50% of
families mapping to the first known locus at 3p21 (AGS1).
Methods: A genome-wide scan was performed in 10
families with a clinical diagnosis of AGS in whom linkage
to AGS1 had been excluded. Higher density genotyping in
regions of interest was also undertaken using the 10
mapping pedigrees and seven additional AGS families.
Results: Our results demonstrate significant linkage to a
second AGS locus (AGS2) at chromosome 13q14–21 with a
maximum multipoint heterogeneity logarithm of the odds
(LOD) score of 5.75 at D13S768. The AGS2 locus lies within
a 4.7 cM region as defined by a 1 LOD-unit support interval.
Conclusions: We have identified a second AGS disease
locus and at least one further locus. As in a number of other
conditions, genetic heterogeneity represents a significant
obstacle to gene identification in AGS. The localisation of
AGS2 represents an important step in this process.

A
icardi-Goutierès syndrome (AGS; MIM 225750) is an
autosomal recessive encephalopathy characterised by
cerebral atrophy, leukodystrophic changes, intracranial

calcification, chronic cerebrospinal fluid (CSF) lymphocyto-
sis, raised levels of interferon a (IFN-a) in the CSF, and
negative serological investigations for common prenatal
infections (MIM 225750).1 2 Clinically, AGS can usefully be
considered as a Mendelian mimic of congenital viral
infection. Recognition of the condition is therefore
important because of the possibility of misdiagnosis as a
non-genetic disorder and counselling of a falsely low risk of
recurrence.

The features of AGS may have a prenatal onset or develop
over the first few months of life.2 3 Typically, neurodegenera-
tion is associated with microcephaly, spasticity, dystonic
posturing, and psychomotor retardation. Death frequently
occurs within the first decade. However, we are aware of
several children in their teenage years with apparently non-
progressive disease. Systemic abnormalities include fever,
raised levels of immunoglobulins and autoantibodies, throm-
bocytopenia, abnormal liver function with hepatosplenome-
galy, and chilblain-like cutaneous lesions.2 4–7

Levels of CSF IFN-a are consistently elevated in the early
stages of AGS and significantly higher than those recorded

systemically.2 8 Such raised levels of CSF IFN-a are not
always accompanied by CSF lymphocytosis.9 IFN-a does not
cross the blood-brain barrier, so when 100 IU/ml of IFN-a is
experimentally released into the blood, ,1 IU/ml is detected
in the CSF.10 It is likely then that in AGS, IFN-a is produced
intrathecally, possibly by astrocytes or microglia.11 12

The pathological finding of wedge shaped infarctions
together with patchy myelin loss and calcified deposits in
the media, adventitia, and perivascular space of small blood
vessels suggests that AGS may represent a genetic cerebral
angiopathy.13 IFN-a is known to have an inhibitory effect on
angiogenesis and astrocyte specific chronic overproduction of
IFN-a in transgenic mice recapitulates the neuropathological
findings seen in AGS.14–17 These observations raise the
possibility that the AGS phenotype results from exposure of
the developing brain to high levels of IFN-a. Identification of
the causative genetic defect in AGS may, therefore, provide
novel insights into IFN-a metabolism.

Previously, we identified linkage to an interval on 3p21 in
48% of AGS families tested.18 Locus heterogeneity was
considered the explanation for a failure to identify genetic
linkage in a previous study.19 Since then, we have refined the
AGS1 critical interval to a 3.47 cM region by demonstrating
that AGS and Cree encephalitis are allelic disorders.9

Given that half of the families in our cohort were
unlinked to the AGS1 locus, we performed a genome-wide
scan using 10 families incompatible with linkage to AGS1.
Herein, we report the identification of a second AGS locus at
chromosome 13q14–21 resulting from an analysis of this data
set.

METHODS
Subjects
For inclusion in the study, affected individuals had to
demonstrate a compatible neurological phenotype with
intracranial calcification and CSF lymphocytosis (.5 cells/
mm3) and/or raised levels of IFN-a in the CSF (.2 IU/ml;
measured with a biological assay) as well as negative
investigations for common prenatal infections.2

Seventeen families (15 consanguineous and two non-
consanguineous comprising three affected siblings) satisfied
the inclusion criteria (tables 1 and 2). Blood samples were
obtained with consent from affected children, their parents,
and unaffected siblings where possible, for DNA extraction,
genotyping, and subsequent linkage analysis. The study was
approved by the Leeds Health Authority/United Teaching
Hospitals NHS Trust Research Ethics Committee.

Abbreviations: AGS, Aicardi-Goutières syndrome; HLOD,
heterogeneity LOD; IFN-a, interferon a; LOD, logarithm of the odds

444

www.jmedgenet.com



Table 1 Clinical characteristics of affected individuals from families consistent with linkage to AGS2

Family/
patient Ethnicity

Age at
presentation

Birth OFC in
centiles (gestation
in weeks)

Postnatal OFC
in centiles (age
in months)

Brain
calcification

CSF WCC/mm3*
(age in
months)

IFN-a IU/ml in CSF/
serum� (age in
months)

1/IV:3 Algerian Birth 2nd–9th (40) ,,0.4th (18) PV; BG 28 (1) 100/NA (1)
1/IV:4 2 months 50th–75th (39) ,0.4th (44) PV; BG NA NA
1/IV:5 Prenatal 75th (37) 0.4th–2nd (2) BG NR 25/NA (1)
2/V:1 Algerian 9 months 75th–91st (40) NR BG 43 (10) 16/4 (10); ,4/,2

(60)
2/V:2 3 months Normal Normal BG 105 (5) 60/8 (5)
3/IV:1 Irish 12 months 50th (40) 75th (108) BG; WM 16 (12); 8 (108) ,2/NA (108)
3/IV:3 ,12 months 50th (40) 3rd (21) BG; WM 13 (1); 13 (21) 25/,2 (21)
4/IV:1 Moroccan 7 months NR NR BG 8 (7) 6/,2 (7)
5/IV:1 Italian 2 months 9th (40) NR BG 25 (2) .100/NA (2)
6/II:1 Dutch 3 weeks NR ,3rd (132) BG; WM 22 (8) NA
6/II:2 3 weeks 9th (39) 30th (84) BG, WM 13 (4) 18/NA (3)
6/II:3 2–3 weeks 25th–50th (38) 30th (60) BG 13 (2) 37/NA (48)
7/II:1 French 4 months 75th–91st (40) NR BG 0 (78) ,2/,2 (78)
7/II:2 5 months NR NR BG 22 (6) 32/12 (6)
7/II:3 8 months NR NR BG 39 (9) 50/6 (9)
8/IV:1 Spanish 1 month Normal Microcephaly (18) BG 97 (24) NA
8/IV:3 10 days Normal Microcephaly (18) BG 38 (18) NA

BG, basal ganglia; CSF, cerebrospinal fluid; NA, not analysed; NR, not recorded; OFC, occipito-frontal circumference; PV, periventricular; WCC, white cell count;
WM, white matter.
*Abnormal >5 cells/mm3; �normal levels ,2 IU/l.
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Figure 1 Genotype data for families 1–5 consistent with linkage to AGS2.
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Genotyping
All included families were initially genotyped across the
AGS1 critical region. These families either gave logarithm of
the odds (LOD) scores of ,22 across this interval or, where
the family was too small to allow for statistical exclusion,
consanguineous affected individuals showed a number of

heterozygous markers within the critical region (data not
shown).

A genome-wide scan was performed in 10 pedigrees
(families 1, 2, 3, 6, 7, 8, 11, 15, 16, and 17) by the National
Heart, Lung and Blood Institute genotyping facility
(NHLBI; http://research.marshfieldclinic.org/genetics/) using
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Figure 2 Genotype data for families 6–8 consistent with linkage to AGS2.

Table 2 Clinical characteristics of affected individuals from families inconsistent with linkage to AGS2

Family/
patient Ethnicity

Age at
presentation

Birth OFC in
centiles (gestation
in weeks)

Postnatal OFC in
centiles (age in
months)

Brain
calcification

CSF WCC/mm3*
(age in months)

IFN-a IU/ml in CSF/
serum� (age in
months)

9/IV:1 Pakistani Antenatal 9th–25th (38) NR BG; WM; PV 63 (2) NA
10/V:1 Algerian Birth 25th–50th (40) ,,0.4th (132) BG 26 (,1) 60/16 (,1); 90/,10 (2)
10/V:3 Birth 9th (40) ,,0.4th (72) BG 10 (,1) 60/30 (,1); 30/24 (3)
11/IV:1 Moroccan 4 months NR ,,0.4th (72) BG 23 (6); 11 (12) 6/,2 (12)
11/IV:2 Birth NR ,,0.4th (36) BG; WM 36 (3) NA
12/VI:1 Hungarian 2 months NR Microcephaly (25) PV 22 (25) NA
12/VI:2 ,12 months NR Microcephaly (48) PV 80 (48) NA
13/IV:1 Pakistani 6 months NR ,,3rd BG 21 (6) 32/4 (6)
13/IV:2 Birth 50th (40) NR BG NR 200/9 (birth); NA/18 (3)
14/IV:1 Dutch 8 months Normal 3rd (60) BG 14 (13) NA
14/IV:3 12 months Normal 75th–91st (36) BG 550 (30) NA
15/IV:2 Pakistani 8 months Normal 75th–91st (36) BG 0 (84) ,2/,2 (84)
15/IV:3 6 months 50th (34) ,0.4th (9) BG 4 (11) 3/,2 (11)
16/IV:1 Belgian 4 months 25th (38) NR BG; PV 38 (4) NA
17/IV:1 Spanish Birth ,0.4th (37) ,,0.4th (84) BG 25 (,1) NA
17/IV:2 1 week ,0.4th (40) ,,0.4th (13) BG; WM 52 (1) 70/NA (1)

BG, basal ganglia; CSF, cerebrospinal fluid; NA, not analysed; NR, not recorded; OFC, occipito-frontal circumference; PV, periventricular; WCC, white cell count;
WM, white matter.
*Abnormal >5 cells/mm3; �normal levels ,2 IU/l.
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404 polymorphic markers spaced at approximately 10 cM
intervals.20 For higher density genotyping across the AGS2
interval, information regarding marker order and genetic
distance was obtained from the Marshfield linkage maps and
the Human Genome Browser (http://genome.ucsc.edu/) May
2004 freeze. After individually optimised PCR amplification,
markers were analysed using previously described methods.18

Linkage analysis
A model of autosomal recessive inheritance with full
penetrance was used with a disease allele frequency
estimated at 1 in 500. Marker allele frequencies were
calculated from transmitted and non-transmitted parental
alleles with a minimum marker allele frequency set at 0.05.
Genetic map distances were taken from the Marshfield map.
Pedigree allele inconsistencies were identified using
PedCheck.21 Two point analysis was performed with the

LINKAGE program.22 Multipoint LOD scores and heteroge-
neity testing were computed by means of the GENEHUNTER
program, version 2.0 beta.23

RESULTS
An initial genome screen was performed using eight
consanguineous families and two non-consanguineous pedi-
grees. Under the hypothesis of locus heterogeneity, the
highest heterogeneity LOD (HLOD) score obtained after two
point linkage analysis of this data set was at D13S768 (HLOD
score of 2.41 with recombination fraction [h] = 0.05) (data
not shown).

Further genotyping using polymorphic microsatellite mar-
kers around D13S768 was undertaken in the original 10
families and an additional seven consanguineous pedigrees
satisfying the inclusion criteria (figs 1 and 2). Two point LOD
scores for the individual pedigrees are given in table 3 with
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Figure 3 Genotype data for families 11–15 unlikely to be linked to the AGS2 locus.
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Table 3 Two point LOD scores (h= 0) for each family at specified markers

Family
number D13S325 D13S291 D13S623 D13S284 D13S768 D13S176 D13S1309 D13S634 D13S800

1 20.75 20.73 21.47 2.46 1.19 1.34 0.96 21.1 1.34
2 20.6 21.20 1.11 1.25 1.67 1.13 20.61 20.81 0.52
3 21.6 20.97 20.88 1.04 0.76 0.68 1.22 1.09 20.83
4 0.8 0.71 ? 0.89 0.99 0.57 0.29 0.94 0.81
5 0.23 0.40 0.88 0.79 0.34 0.49 0.29 21.63 21.58
6 2‘ 2‘ 2‘ 1.32 0.73 1.07 2‘ 2‘ 0.43
7 0.99 0.82 0.83 0.96 0.78 0.94 1.05 2‘ 2‘

8 1.3 21.3 20.97 20.96 0.86 1.11 22.04 21.82 21.04
9 0.74 21.66 21.66 21.65 21.66 21.66 21.66 21.66 21.66

10 2‘ 2‘ 21.32 20.11 20.46 21.02 1.29 20.26 0.38
11 2‘ 2‘ 21.63 2‘ 0.27 21.55 21.63 20.96 2‘

12 2‘ 2‘ 2‘ 2‘ 2‘ 2‘ 20.47 2‘ 2‘

13 2‘ 21.33 ? 21.07 2‘ 2‘ 2‘ 2‘ 2‘

14 2‘ 21.6 ? 21.58 0.23 2‘ 2‘ 21.78 2‘

15 2‘ 2‘ 2‘ 2‘ 2‘ 2‘ 2‘ 2‘ 2‘

16 0.63 21.61 21.61 21.76 0.40 2‘ 2‘ 21.61 21.66
17 2‘ 2‘ 2‘ 20.76 2‘ 2‘ 2‘ 2‘ 2‘
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Figure 4 Genotype data for families 16 and 17 unlikely to be linked to the AGS2 locus.
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the highest individual score obtained in family 1. Under the
hypothesis of locus heterogeneity, a maximum multipoint
HLOD score of 5.75 was obtained at marker D13S768 with
a= 0.43 (where a is the population of linked families) (fig 3).
Construction of a 1 LOD-unit support measure suggests the
AGS2 critical region encompasses an approximately 4.7 cM
interval (fig 3).

DISCUSSION
Our search for outstanding AGS disease loci was initiated by
the previously observed genetic heterogeneity. We report here
the mapping of the AGS2 locus to chromosome 13q14–21,
with a maximum multipoint HLOD score of 5.75. This
exceeds the accepted threshold value of 3.3 for significant
linkage of a Mendelian disorder in the presence of locus
heterogeneity.24 On this basis, our data establish the existence
of a novel AGS locus, AGS2, on chromosome 13q14–21 and
suggest that mutations in at least one other, as yet
unmapped, gene produce a similar phenotype.

Based on the minimum region of shared homozygous
markers between consanguineous families, the AGS2 critical
interval covers a genetic distance of less than 5 cM (D13S284
to D13S1309) (fig 1). However, no single family shows
independent linkage to AGS2 (that is, a LOD score .3)
(table 3). Consequently, the AGS2 critical interval is most
appropriately defined using a 1 LOD-unit support interval
(fig 3).25 On this basis, the AGS2 locus contains approxi-
mately 70 genes and unannotated transcripts. Of note, the
majority of these genes are positioned towards the centro-
meric end of the AGS2 locus. Consequently, refinement of the
region may significantly reduce the number of positional
candidate genes. To this end, work to identify shared
ancestral haplotypes within the critical region is ongoing.

We were unable to discern any obvious differences in the
clinical characteristics of those families linking to either
AGS1, AGS2, or other, as yet undefined, AGS loci (tables 1
and 2). However, phenotypic differences may become
apparent when the genes for AGS are eventually identified.
In particular, gene identification will enable the issue of
phenotypic overlap of AGS with pseudo-TORCH syndrome to
be addressed.9 Some patients demonstrate elevated levels of
CSF IFN-a even when the number of white cells in the CSF is
not raised. In the absence of CSF IFN-a measurements, such
cases might be inappropriately considered as pseudo-TORCH
syndrome. Furthermore, Blau et al recently described three
children with intracranial calcification and a neurological
phenotype reminiscent of AGS in whom both CSF white cells
and IFN-a were consistently normal.26 A molecular basis for
classifying these disorders will therefore be of significant
clinical utility.

The mechanism responsible for the elevated levels of CSF
IFN-a observed in AGS is not understood. In general terms,
such a finding might result from the loss of a negative
regulator of IFN-a production or the presence of an IFN-a
inducer normally absent from the central nervous system.
None of the genes within the AGS2 critical interval are
known to have such a role and we have been unable to
recognise any obvious paralogs or genes from the same
cellular pathway within the AGS1 and AGS2 critical intervals.

AGS is a Mendelian mimic of congenital viral infection that
continues to be overlooked in the clinical diagnosis of in
utero infection.27 The concept of AGS as a primary genetic
‘‘interferon-opathy’’ highlights a possible unifying theme in
the neuropathogenesis of AGS, congenital viral infection, and
cerebral systemic lupus erythematosus.9 Consequently, iden-
tification of the genes responsible for AGS may provide novel
insights into a common neurodegenerative mechanism
resulting from exposure of the developing human brain to
abnormally high levels of IFN-a. As in a number of other
disorders such as Joubert syndrome, Walker-Warburg syn-
drome, and Meckel-Gruber syndrome, genetic heterogeneity
poses a significant obstacle to defining the molecular basis of
AGS. Localisation of the AGS2 locus represents an important
step towards gene identification in AGS.
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