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Neuronal adaptation has been studied extensively in visual 
motion-sensitive neurons of the fly Calliphora vicina, a model 
system in which the computational principles of visual motion 
processing are amenable on a single-cell level. Evidenced by several 
recent papers, the original idea had to be dismissed that motion 
adaptation adjusts velocity coding to the current stimulus range 
by a simple parameter change in the motion detection scheme. In 
contrast, linear encoding of velocity modulations and total infor-
mation rates might even go down in the course of adaptation. Thus 
it seems that rather than improving absolute velocity encoding 
motion adaptation might bring forward an efficient extraction of 
those features in the visual input signal that are most relevant for 
visually guided course control and obstacle avoidance.

Visual motion plays an important role in behavioral control.1 
Blowflies are equipped with a set of visual motion-sensitive tangential 
cells (TCs).2 These neurons have large receptive fields and a high 
selectivity for visual motion patterns occurring during certain trans-
lational or rotational movements.3,4 Visual image flow experienced 
by a fast flying animal like a blowfly changes dramatically in its inten-
sity and statistical properties depending on the environment and, in 
particular, the animal’s current flight maneuvers.5,6 This may pose a 
problem to the neuronal machinery, because neuronal input-output 
functions are inevitably constrained by thresholds and saturation 
limits. As a consequence, the working range in which a neuron can 
effectively respond to small changes in input intensity with a high 
signal-to-noise ratio can be much smaller than the range of inputs 
that may be encountered.7 It is thus not surprising that in the first 
accounts on adaptation in fly TCs it had been assumed that motion 
adaptation leads to an improved encoding of changes in velocity by 
aligning the neuronal velocity-response function with the range of 
velocities currently present in the input.8,9

The results of a recent study are hardly compatible with the 
notion that motion adaptation leads to an improved representation 

of motion velocity by fly TCs, e.g., by tuning neuronal input-output 
functions to the current demands.10 In this study TCs were stimu-
lated with a drifting grating, which changed its velocity in a random 
fashion (Fig. 1). When analyzing how well the time-varying stimuli 
can be recovered from the neuronal responses by reverse reconstruc-
tion it turned out, that adaptation led to a change for the worse 
rather than an improvement. A change in reverse reconstruction 
performance can have two reasons. The first one is a decrease in 
signal-to-noise ratio in the course of adaptation. Surprisingly, this 
was not the case, although the neuronal response amplitude was 
nearly halved with adaptation. The second possibility is that adap-
tation leads to an increase in nonlinear stimulus processing by the 
neurons. Nonlinear processing would degrade reverse reconstruction, 
because this is based entirely on linear filtering. Thus it was shown 
that stimulus encoding by TCs shifts from a fairly linear representa-
tion of velocity modulations in the non-adapted state to a more and 
more nonlinear representation in the adapted state.

Which type of nonlinear process is becoming more and more rele-
vant in visual motion processing by fly TCs in the course of motion 
adaptation? And what functional benefit results from nonlinear 
processing—a benefit that may count more than precise tracking of 
absolute velocity? First of all, the study gives a hint where this adap-
tation-induced change in coding is located. Two types of TCs were 
studied, one of which, the VS-neuron, is thought to receive direct 
input from local motion-detector elements in the periphery. The 
second type of TC, the V1-neuron, is postsynaptic to the first and 
delivers motion information to the contralateral brain hemisphere. 
Adaptation effects were similar in the two cell types, indicating that 
they are either generated in the presynaptic neuron or even further 
in the periphery. Second, it was observed that in the adapted state 
fairly strong neuronal responses were present when the velocity of 
the grating pattern changed abruptly, whereas the neuronal response 
during phases of comparatively slow velocity changes was attenu-
ated more. Hints into a similar direction come from another recent 
study, which addressed the impact of adaptation on information 
transmission by a fly TC.11 In this study the neuron was adapted to 
different velocity stimuli and the responses were fit by a correlation-
type motion detector model to assess which of the model parameters 
change with adaptation. It was found that a shortening of the time 
constant of a high-pass filter in the periphery provides the best 
explanation for the observed adaptation phenomena. Such a change 
could have the effect of emphasizing abrupt changes in the input 
at the expense of slowly varying inputs. Intriguingly, the system’s 
overall information transmission was not optimized by adaptation. 
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In contrast, a model in which the peripheral high-pass filter was held 
in the non-adapted state reached higher information rates than a 
fully adaptable model.

The recent findings described above are in some respects reminis-
cent of the results obtained in the first report on motion adaptation 
in fly TCs.8 There, a drifting grating was presented that had a 
constant velocity over a sustained period of time, apart from brief 
steps to a higher or a lower velocity. The neuronal response to these 
velocity discontinuities was enhanced with adaptation, although the 
response to baseline velocity was drastically reduced. Originally, it 
was suggested that adaptation caused a shift in the velocity-response 
function. However, two observations render this obvious explanation 
unlikely and imply more complex adaptation-induced changes. First, 
shifts in the velocity-response function with adaptation appear not 
to be present in TCs. This was initially shown for adaptation with 
constant velocity12 and recently corroborated when using randomly 
modulated velocity.10 Second, an enhanced sensitivity to stimulus 
discontinuities can be found also when other stimulus parameters 
than motion velocity are transiently changed, e.g., pattern contrast.13 
What does this mean in a functional context? When the system’s 
overall excitability is reduced with adaptation, but abrupt changes 
in any of the parameters of the stimulus are still able to elicit strong 
responses, the system might operate as a “novelty detector”. The 
idea of improved novelty detections by adaptation has called much 
attention in the auditory system.14,15 Here it is particularly useful to 
filter novel stimuli from background noise, e.g., by adaptation that 
is specific for different frequencies of sound. However, such input-
specific adaptation might be more difficult to implement in motion 
vision than in auditory processing, where different frequencies can be 
separately processed from early on in the system.

An interesting alternative mechanism to accentuate abrupt 
changes in an input signal was recently demonstrated by a compu-
tational network model of mammalian visual cortex.16 In this 
model presynaptic spike-frequency adaptation was combined with 
synaptic short-term depression. The postsynaptic neurons decreased 
their activity during tonic activation of the network, but they were 
still able to respond strongly whenever the input current given to 
the presynaptic neurons was changed abruptly. In the fly visual 
system, the cellular basis of adaptation is largely unknown. However, 
similar to the mechanisms underlying spike-frequency adaptation in 
mammalian visual cortex, an activity-dependent conductance that is 
activated by sustained excitatory stimulation has been demonstrated 
in fly TCs.17-19

In how far is the processing of natural visual input affected by an 
accentuation of stimulus discontinuities in the course of adaptation, 
or “novelty detection”? In a recent study retinal image sequences 
as seen during flight were reconstructed from the flight trajectory 
and replayed during recordings from TCs.20 Repeated presenta-
tion of these natural image sequences caused a strong decline in the 
neuronal response. However, when virtual objects were added to 
the image sequences, the object-induced responses remained much 
higher than the responses elicited by pure background motion. This 
result implies that motion adaptation can enhance the detectability 
of objects, which elicit a prominent discontinuity in image flow 
during flight. Studies that address in more detail how the dynamics 
of motion adaptation interact with the complex spatio-temporal 
profile of natural visual stimuli may in the future help understand the 
functional benefits of adaptation under real-life conditions.
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