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An Interface-driven Analysis of User Interactions with an
Electronic Health Records System

KAI ZHENG, PHD, REMA PADMAN, PHD, MICHAEL P. JOHNSON, PHD, HERBERT S. DIAMOND, MD

A b s t r a c t Objectives: This study sought to investigate user interactions with an electronic health records
(EHR) system by uncovering hidden navigational patterns in the EHR usage data automatically recorded as
clinicians navigated through the system’s software user interface (UI) to perform different clinical tasks.

Design: A homegrown EHR was adapted to allow real-time capture of comprehensive UI interaction events.
These events, constituting time-stamped event sequences, were used to replay how the EHR was used in actual
patient care settings. The study site is an ambulatory primary care clinic at an urban teaching hospital. Internal
medicine residents were the primary EHR users.

Measurements: Computer-recorded event sequences reflecting the order in which different EHR features were
sequentially accessed.

Methods: We apply sequential pattern analysis (SPA) and a first-order Markov chain model to uncover recurring
UI navigational patterns.

Results: Of 17 main EHR features provided in the system, SPA identified 3 bundled features: “Assessment and
Plan” and “Diagnosis,” “Order” and “Medication,” and “Order” and “Laboratory Test.” Clinicians often accessed
these paired features in a bundle together in a continuous sequence. The Markov chain analysis revealed a global
navigational pathway, suggesting an overall sequential order of EHR feature accesses. “History of Present Illness”
followed by “Social History” and then “Assessment and Plan” was identified as an example of such global
navigational pathways commonly traversed by the EHR users.

Conclusion: Users showed consistent UI navigational patterns, some of which were not anticipated by system
designers or the clinic management. Awareness of such unanticipated patterns may help identify undesirable user
behavior as well as reengineering opportunities for improving the system’s usability.
� J Am Med Inform Assoc. 2009;16:228–237. DOI 10.1197/jamia.M2852.
Introduction
Clinical practice in ambulatory care demands complex pro-
cessing of data and information, usually at the point of care
and during busy office hours. The increasing availability
and capability of computerized systems offer great potential
for effectively acquiring, storing, retrieving, and analyzing
data and information; however, these desirable outcomes
cannot be achieved if they fail to present data and informa-
tion to the right people, at the right time, and in the right
sequence. Mindfully designed software user interface (UI)
and application flow (AF) are therefore of vital importance.
Appealing, intuitive UI and AF designs also offer superior
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use experience, which is the key for any technological inno-
vation to prevail.

Unfortunately, the lack of a systematic consideration of
users, tasks, and environments often results in poor UI and
AF designs in health information technology (IT) systems, a
major impediment to their widespread adoption and routine
use.1,2 Poorly designed UI and AF may also account for
unintended adverse consequences, leading to decreased
time efficiency, jeopardized quality of care, and escalated
threat to patient safety.3–8 Consequently, these systems fail to
deliver on their promise, user dissatisfaction increases over
time, and systems are often abandoned.2,9,10

It is evident that in addition to outcomes-based evaluation,
health informatics research should also focus on analyzing
end users’ usage behavior to reveal the cognitive, behav-
ioral, and organizational roots that have led to suboptimal
outcomes and caused many health IT implementation
projects to fail.11–14 Human-centered computing has been
increasingly recognized as an important means to address
this gap. For example, Kushniruk and Patel14 (2004) pro-
posed to use cognitive engineering methods to improve the
usability of clinical information systems, Johnson et al.11

(2005) introduced a user-centered framework for guiding
the redesign process of health care software user interfaces,

and Harrison et al.15 (2007) developed an interactive socio-
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technical analysis model for studying human–machine in-
teraction issues associated with introducing new technolo-
gies into health care. Usability studies, many instantiating
the models and frameworks above, have been conducted to
study a wide range of health IT applications, from electronic
health records (EHR) systems16–18 to computerized pre-
scriber order entry (CPOE) systems19 and emergency room
medical devices.20–22 The results amply show the value of
applying a human-centered approach to improving the
design of health IT.

Existing usability studies mainly employ research designs
such as expert inspection, simulated experiments, and
self-reported user satisfaction surveys. Some of these
designs are difficult and/or expensive to conduct (e.g.,
videotaping computer use sessions to infer users’ cogni-
tive processes during interactions with a software system)
or are subject to various sources of data unreliability, such
as the Hawthorne effect commonly found in observational
and experimental studies23 and the Halo effect and cog-
nitive inconsistencies when eliciting end users’ self-re-
ports.24 In this article, we illustrate a novel approach for
studying user behavior with a homegrown EHR by un-
covering hidden navigational patterns in the automati-
cally recorded usage data. Because EHR usage data can be
usually extracted from its transaction database, this ap-
proach allows for the discovery of realistic user behavior
demonstrated in actual patient care settings. To accom-
modate the full spectrum of UI usage, we also built into
the EHR a special, nonintrusive tracking mechanism that
captures additional UI interaction events such as mouse
clicks to expand or collapse a tree view. These transitory
events may not result in a record in an EHR’s transaction
database, and thus may not be captured otherwise.

To analyze the collected EHR interaction data, we use: (1)
sequential pattern analysis (SPA), which searches for
recurring patterns in which a series of EHR feature
accesses occurred consecutively in a given chronological
sequence; (2) a within-session SPA that computes the
probability of reusing certain EHR features or combina-
tions of features during a single patient encounter; and (3)
a first-order Markov chain model that reveals an overall
sequential order of EHR feature accesses by estimating the
transition probability of users navigating from one feature
to another. Together, these methods delineate common
navigational patterns when the users navigating through
the EHR’s user interface to perform varying clinical tasks,
reflecting patient care processes and clinical workflow.

It should be noted that although the uncovered UI
navigational patterns reveal valuable insights into user
behavior with the EHR, such patterns may not be a
comprehensive representation of EHR use. For example,
reading information from a computer display without
interacting with the UI cannot be readily detected. More-
over, UI navigational patterns derived from user interac-
tions with the EHR may not accurately represent the
clinical behavior at the point of care due to the possibility
of deferred documentation— clinicians may use alterna-
tive documentation strategies during a patient encounter
and transcribe the data into the EHR afterward. Therefore,
we recommend that use of this UI-driven behavior anal-

ysis approach be combined with other research designs
such as context inquiry and ethnographically based ob-
servations to better delineate and understand user behav-
ior with the EHR and its root causes.

Background
Since 2000, the research team has been working with prac-
titioners at the Western Pennsylvania Hospital to design and
develop a clinical decision-support system for enhancing the
hospital’s internal medicine residency training program.
This system, called Clinical Reminder System (CRS), was a
result of this joint effort. It is designed to manage an
ambulatory clinic’s routine operations, facilitate clinical doc-
umentation, and generate clinician-directed point-of-care
reminders based on evidence-based clinical guidelines.25 An
increased emphasis on patient data management as a pre-
cursor to reminder generation has also led CRS to evolve
over time into a standalone, lightweight EHR. Comprehen-
sive patient data including patient descriptors, symptoms,
and orders are captured in CRS, in addition to live or
batched data feeds of billing transactions, patient registra-
tions, and laboratory test results from other hospital infor-
mation systems.

In February 2002, the first version of CRS (Figure 1) was
deployed in the West Penn Medical Associates, an ambula-
tory primary care clinic at the hospital. This clinic is one of
the rotation sites serving the hospital’s internal medicine
residency training program. The clerical staff and nurses in
the clinic used the system to schedule appointments, man-
age workflow, and collect pre-encounter assessments such
as vital signs; the residents and attending physicians used
the system to document clinical findings, prescribe medica-
tions, enter orders, and generate patient-specific chronic
disease management and preventive care reminders. Clini-
cians’ interaction with the system was enabled through
desktop computers installed in every examination room in
the clinic.

In a qualitative study evaluating this initial implementation,
several negative themes emerged, including a salient user
complaint that the system’s UI/AF design lacked clear
“navigational guidance.”26 To address this issue, we initi-
ated a reengineering effort and worked closely with the
intended end users in the study clinic to jointly explore the
problems identified. This reengineering process took over
one and half years to complete, resulting in a completely
redesigned and redeveloped system. Enhancements in-
cluded a full migration of CRS into a web-enabled applica-
tion (the initial version was implemented in client-server
architecture using Microsoft Visual Basic, Microsoft, Red-
mond, WA), a more intuitive user interface layout, and
enhanced features supporting the clinic’s resident training
activities. The reengineered CRS thus incorporated lessons
learned from a suboptimal pilot implementation combined
with a better understanding of the routine clinical practice
requirements of its intended end users. The present study
evaluates these new design assumptions and choices by
analyzing the subsequent day-to-day usage of the reengi-
neered system deployed anew in the same clinic. Some
preliminary results of this research were previously re-

ported by Zheng et al. in 2007.27
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Methods
Study Setting and Participants
The redeployment took place in June 2005. Hands-on train-
ing was provided to every clinical staff member in the
subsequent month. In this study, we allowed three months
to pre-populate patient data and to let clinicians adjust to the
new designs and new features before starting the research
data collection. The study was approved by the Western
Pennsylvania Hospital institution review board of the partici-
pating hospital. The EHR usage data collected from its trans-
action database were appropriately anonymized to remove
clinicians’ identities. Our data analysis only requires UI inter-
action event types, session IDs, and timestamps. No patient
health information was collected.

In this article, we analyzed 10-month EHR usage data
recorded from October 1, 2005, to August 1, 2006. During
this time period, 40 residents were registered in the system,
10 of whom were excluded because they recorded EHR usage
in fewer than 5 patient encounters. Their limited exposure to
the system was deemed inadequate to allow the development
of mature user behavior. Because the attending physicians in
the study clinic only used the system to review and approve
the residents’ work, their usage was not considered.

The provisioning of point-of-care reminders was previously
found to significantly interrupt patient care practice and
clinical workflow.27 Because we did not have a readily
available solution to the problem and the present research
was focused on studying EHR usage patterns, we chose to
defer the activation of the reminder generation functionality

while the data collection for this study was being conducted.
Hence, the usage of CRS analyzed in this article constitutes
only the usage of its generic EHR features. Seventeen such
features are provided that were considered essential by the
intended end users in supporting their everyday work, such
as family and social history, diagnosis and assessment, and
medication management. These features are labeled in this
article using the first letter of a feature’s name unless there is
a conflict; for example, A denotes “Assessment and Plan,” G
denotes “AllerGies,” M denotes “Medication,” E denotes
“Medication Side Effects,” and so forth. The full feature
labeling scheme is provided in Table 1.

The reengineered CRS user interface is shown in Figure 2.
Note that this UI layout features a unique design in which
all essential EHR features are placed in a single workspace.
The objective of this design is to maintain cognitive conti-
nuity when users navigate from one EHR feature to another.
It also may help to avoid confusion caused by “fragmented
displays” and “hidden information” problems, as discussed
in several studies investigating unintended adverse conse-
quences introduced by CPOE implementations (e.g., Ash et
al., 2004; Koppel et al., 2005). Within this main workspace,
users may scroll up or down to navigate to different EHR
functional areas, or they may use the navigation menu
provided to the left of the main workspace to quickly jump
to a specific feature. The rationale for this UI design is
discussed in more detail in Zheng et al.,25 2007.

Construction of Event Sequences
The EHR feature accesses events during each patient en-
counter were extracted from the EHR’s transaction database,

F i g u r e 1. User interface of the
pilot CRS implementation.
encoded according to the feature labeling scheme, and
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ordered chronologically based on their recorded times-
tamps. HMXAD, for example, is an event sequence com-
posed of five sequential feature accesses: “History of Present
Illness” (H) ¡ “Medication” (M) ¡ “Physical Examination”
(X) ¡ “Assessment and Plan” (A) ¡ “Diagnosis” (D). In this
study, successively accessing the same EHR feature was
treated as a single interaction event, as these repeated accesses
did not incur the cognitive challenge of “locating the next EHR
feature to work on.” Below we present three analytical meth-
ods that we use for analyzing the event sequences hereby
constructed. Note that we use the timestamps only to generate
the chronologically ordered sequences and do not consider the
temporal relations in the data.

Sequential Pattern Analysis
Sequential pattern analysis searches for recurring patterns
within a large number of event sequences, where each
sequence is composed of a series of timestamped events.28

The SPA finds combinations of events appearing consis-
tently in a given chronological order and recurring across
multiple sequences. An SPA has applications in many areas,
such as predicting future merchandise purchases based on a
customer’s past shopping record28 and providing personal-
ized web content based on a user’s past surfing history.29 In
this study, we use a simple form of SPA to detect sequential
patterns composed of consecutive EHR features access
events. In other words, we use SPA to uncover those related
EHR features that tend to be accessed one after another in a
consistent sequential order. More sophisticated SPA algo-
rithms and other analytical methods such as lag sequential
analysis are capable of detecting sequential patterns with
intermediate steps. We chose not to use these approaches
because in this study context “locating the next EHR feature
to work on” is the primary cognitive task a user is con-
fronted with at each UI navigation episode. Which features
will need to be located in a few steps into the future, that is,
the lagged sequential dependencies between EHR features,
is less of an immediate concern.

If a combination of consecutive events, s, appears in X
sequences in a Y-sequence space, we note that s receives a

Table 1 y Feature Labeling Scheme and the Overall
Frequency of Use
Label Feature Frequency of Use (%)

A Assessment and Plan 21.18
B Retaking BP 0.34
D Diagnosis (problem list) 16.36
E Medication Side Effects 0.22
F Family History 1.24
G AllerGies 1.88
H History of Present Illness (HPI) 7.26
L Laboratory Test 3.58
M Medication 14.53
O Order 17.17
P Procedure 0.38
R EncounteR Memo 0.44
S Social History 2.85
T Office Test 0.62
V Vaccination 0.83
X Physical EXamination 6.69
Y Review of SYstems 4.43
support of X divided by Y. In this study, s is reported as a
sequential pattern if it receives a support of 0.15 or above from
the empirical data, that is, clinicians accessed this sequential
combination of EHR features in more than 15% of patient
encounters. Note that if an event combination appears
multiple times within a single sequence, it is counted only
once (the within-sequence recurrence rate analysis is dis-
cussed in the next section). Also note that some sequential
patterns may be a subset of longer patterns, for example a
hypothetical pattern abc is a subsequence contained in abcd.
We only report the longest patterns in the article, referred to
as maximal patterns in sequential pattern analysis.

Analysis of Within-session Recurrence Rates
An SPA leads to the discovery of maximal sequential
patterns across encounter sessions. We are also interested in
learning whether certain cross-session patterns have a ten-
dency to recur within a session. Within-session recurrence
rates are thus calculated as the number of event sequences in
which a sequential pattern appears more than once divided
by the total number of sequences that contain the pattern.
An SPA, in combination with the within-session recurrence
rate analysis, could provide empirical evidence with respect
to which EHR features tend to be glued together in the
EHR’s UI navigation. Such knowledge may help inform
more effective UI/AF designs, for example the glued EHR
features can be then placed next to each other in adjacent
onscreen locations to facilitate UI navigation.

First-order Markov Chain Analysis
The analyses above identify recurring sequential patterns,
which are, however, fragmented regularities that do not
contribute to the delineation of an overall sequential order of
EHR feature accesses. This section introduces our use of a
first-order Markov chain model to uncover such global
navigational pathways.

A Markov chain is a stochastic process, with a memoryless
property, in which a system changes its state at discrete
points in time.30 In the context of this study, we define a
Markov state as the EHR feature access observed at a given
point in time. A state change occurs when a user navigates
from one feature to another on the EHR’s UI. The sequential
dependencies between EHR features during the state
change, or EHR feature transition probabilities, can be
estimated using the empirical data. A Markov chain can be
constructed based on the feature transition probability ma-
trix to reveals the hidden, global navigational pathways. In
this study, we use a first-order Markov chain model in which
the probability of observing a feature access event in a given
state is solely dependent on the feature access observed in the
immediately preceding state. We did not use higher-order
Markov chain models or other lagged sequential analysis
methods for the same reason as discussed in Section B.2.

The initial stationary probability vector, the probabilities of
observing each of the EHR features being accessed in the initial
Markov chain state, is computed using a maximum-likelihood
estimate as the fraction of event sequences starting with a given
feature. The transition probability of a ¡ b is a maximum-
likelihood estimate of observing this transition out of all
possible transitions originating from a. For example, suppose
there were three event sequences: AMRHFTXYXADAD,
BMOMHFXADABLO, and DXADAPMOMAO (underlined:

the starting feature of a sequence; italic: feature transitions
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F i g u r e 2. Reengineered CRS UI and
the onscreen positioning of the 17 main
EHR features. The screenshot is manipu-
lated for print: on a regular computer
display approximately 1/3 of the screen
will be visible at one time. Dashed line �
anticipated navigational pathway by de-
sign; solid line � actual navigational path-
way observed.
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originating from M). The initial probability vector would be
{0.33, 0.33, 0.33, 0, 0, . . ., 0}, because A, B, and D each leads once
in these three observations. The transition probability from
feature M to feature R, O, H, and A would be 0.2, 0.4, 0.2, and
0.2, respectively, because of the 5 transitions originating from
M, the combination MR, MH, and MA each occurs once (20%
probability of occurring) and MO occurs twice (40% probabil-
ity of occurring). Zero probabilities indicate that such feature
transitions were never observed in the empirical data. A brief
description of the first-order Markov chain model we use in
this article is provided in Appendix 1, available as a JAMIA
online data supplement at www.jamia.org. An in-depth intro-
duction to Markov chains and their mathematical properties
can be found elsewhere.30

Results
During the 10-month study period, 30 active CRS users
recorded EHR usage in 973 distinct patient encounters. The
data tables of the CRS’ transaction database (Oracle, Red-
wood Shores, CA) contain basic fields such as sessionID,
userID (masked during the data collection), eventType, and
timeStamp. We developed a computer program in Microsoft
Visual C# (Microsoft, Redmond, WA) to extract these data
fields to construct event sequences and to perform the data
analyses.

The overall usage rate of each of the 17 main EHR features
is reported in Table 1. As Table 1 shows, “Assessment and
Plan” (21.18%), “Order” (17.17%), “Diagnosis” (16.36%), and
“Medication” (14.53%) were among the most frequently
accessed features—together their usage constituted nearly
70% of all EHR user interactions; whereas features such as
“Medication Side Effects” (0.22%), “Retaking BP” (0.34%),
“Procedure” (0.38%), and “Encounter Memo” (0.44%) were
rarely used.

Consecutive Feature Access Events
The SPA identified 11 maximal sequential patterns that
satisfy a minimum support threshold of 15%. These patterns
are shown in Table 2. ADAD (51.16%) and DADA (43.97%)
are found to be the most commonly used sequential feature
combinations, indicating that the CRS users often accessed
“Assessment and Plan” and “Diagnosis” together and
switched between these two features back and forth. A post
hoc analysis was performed to determine whether accessing
“Assessment and Plan” first occurred more often or vice
versa. The results show that “Assessment and Plan” led in

Table 2 y Sequential Patterns
Pattern Level of Support (%)

ADAD 51.16
DADA 43.97
XADA 40.17
OMOM 32.77
MOMO 29.39
YXAD 21.78
HS 19.03
OL 18.6
OMY 16.7
LO 15.64
HO 15.01
89.18% of the . . . ADAD . . . or . . . DADA . . . sequence seg-
ments. Similarly, “Order” % “Medication” (32.77%) and
“Order” % “Laboratory Test” (18.6%) are two other fre-
quently appearing feature combinations, in which “Order”
was more likely to be accessed before “Medication” (72.57%)
or “Laboratory Test” (71.58%). Other patterns that received
significant support from the empirical data also include
“Physician Examination” ¡ “Assessment and Plan” %
“Diagnosis” (XADA), observed in 40.17% of CRS use ses-
sions; “Review of System” ¡ “Physician Examination” ¡
“Assessment and Plan”% “Diagnosis” (YXAD), occurred in
21.78% of patients encounters; and “History of Present Ill-
ness” ¡ “Social History,” appeared in 19.03% of the con-
structed event sequences. Note that we use the symbol % to
denote bidirectional feature transitions, for example a clinician
may switch between “Assessment and Plan” and “Diagnosis”
back and forth multiple times; whereas the symbol ¡ denotes
one-way feature transitions.

Within-session Sequential Patterns
Table 3 shows the within-session recurrence rates of the
sequential patterns identified in the previous step. Three
patterns are found to have high probabilities of recurring
within a single patient encounter context, namely “Assess-
ment and Plan” % “Diagnosis,” “Order” % “Medication,”
and “Order”% “Laboratory Test.” “Assessment and Plan” ¡
“Diagnosis,” for example, indicates that conditional on an
initial use of this sequential feature combination, there is a
70.22% chance that it will be used again at a later point
during the same encounter. As noted earlier, “Assessment
and Plan” % “Diagnosis,” “Order” % “Medication,” and
“Order”% “Laboratory Test” are also cross-session sequen-
tial patterns. These pairs of features are hereby referred to as
bundled features.

Higher-order Pattern Detection
Bundled features were further collapsed to form new event
sequences to allow for higher-order pattern detection.
AD . . . AD in the sequence HADAD . . . ADADXY, for exam-
ple, was collapsed to create a new sequence H-K-XY, which
was then inspected by another pass of sequential pattern
analysis. AD . . . ADO (“Assessment and Plan” % “Diagno-
sis” ¡ “Order”) is the only higher-order pattern thus
identified, supported by 15.64% of patient encounters. This
pattern suggests that once a clinician completes working on
the “Assessment and Plan”% “Diagnosis” bundled feature,
she may immediately move on to write medication orders.

The Global Navigational Pathway
The estimated transition probabilities between the 17 main
EHR features are provided in Appendix 2, available as a
JAMIA online data supplement at www.jamia.org. Figure 3
depicts a network graph that presents the feature transition

Table 3 y Within-session Recurrence Rates of the
Sequential Patterns
Pattern Level of Support (%)

AD 70.22
MO 64.98
OL 64.77
DA 64.35
OM 63.67

LO 51.35

http://www.jamia.org
http://www.jamia.org
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probabilities in a graphical format. In Figure 3, these 17
features are horizontally positioned according to their se-
quential placement on the EHR’s UI. The directional arcs
represent the feature transitions with respective estimated
probabilities.

In Figure 3, the feature transitions with a probability above
0.5 are highlighted using bold arcs. These high probabilities
indicate dominant feature transitions; for example, after a
clinician works on “Physical Examination,” the chance that
she or he would immediately move on to use “Assessment
and Plan” (0.687) is higher than the probabilities of using all
other EHR features combined. Similarly, “Assessment and
Plan” ¡ “Diagnosis” (0.764) is a transition that is very likely
to occur, suggesting that after documenting in “Assessment
and Plan,” the next EHR feature a clinician would interact
with is most likely to be “Diagnosis.” Further, “Order” has
a high probability of transitioning to “Medication” (0.57), as
does “Family History” ¡ “Social History” (0.538). “Family
History” ¡ “Social History” is an anticipated pattern be-
cause these two features are co-located on the EHR’s UI.

Furthermore, “Physical Examination” has a high probability
of following “Review of Systems” (0.693), which is also

F i g u r e 3. The feature transition probability matrix plotte
according to their sequential placement on the EHR’s UI. Size
Feature transitions with a probability lower than 0.15 are not
arcs � nonadjacent feature transitions running counter to th

Table 4 y The 7-Step Markov Chain
Step 1 Step 2

A - Assessment and Plan 0.006 0.071
B - Retaking BP 0.015 0.008
D - Diagnosis 0.002 0.012
E - Medication Side Effects 0.002 0.018
F - Family History 0.006 0.07
G - Allergies 0.131 0.044
H - History of Present Illness 0.681 0.067
L - Laboratory Test 0 0.008
M - Medication 0.021 0.121
O - Order 0.036 0.136
P - Procedure 0 0.002
R - Encounter Memo 0.036 0.007
S - Social History 0.004 0.161
T - Office Test 0 0.007
V - Vaccination 0.019 0.008
X - Physical Examination 0.008 0.137

Y - Review of Systems 0.032 0.123 0.0
anticipated because “Physical Examination” on the UI ap-
pears right next to “Review of Systems.” Nonetheless, after
“Physical Examination,” the most likely EHR feature to be
accessed next is not the adjacent feature on the screen
(“Office Test”), but “Assessment and Plan,” which is farther
away from where “Physical Examination” is located. Pat-
terns that demonstrate switching to a distant feature also
include “Procedure” ¡ “Assessment and Plan,” “Office
Test” ¡ “Assessment and Plan,” and “Vaccination” ¡
“Assessment and Plan,” with transition probabilities of
0.632, 0.585, and 0.51, respectively. These nonadjacent fea-
ture transitions running counter to the default UI layout are
designated in Figure 3 using dashed arcs.

Based on the estimated feature transition probabilities, a
Markov chain was constructed (Table 4) that converges in
about 7 steps, possibly because a small set of EHR features
(e.g., “Assessment and Plan”) received consistently heavy
usage. The first column in Table 4 is the estimated initial
probability vector. The nth column lists the likelihood of
observing each of the row features in the nth step. To better
illustrate the Markov chain, we turn Table 4 into a visual
representation, or an EHR Feature Spectrum, shown in Figure

network graph (the 17 features are horizontally positioned
ode is proportional to the feature’s overall frequency of use.

n. Bold arcs � transitions with a probability over 0.5; dashed
ault UI layout.

p 3 Step 4 Step 5 Step 6 Step 7

65 0.193 0.19 0.193 0.191
05 0.004 0.004 0.004 0.004
76 0.149 0.169 0.166 0.168
03 0.002 0.002 0.002 0.002
26 0.017 0.015 0.014 0.014
29 0.015 0.013 0.012 0.012
54 0.048 0.048 0.048 0.048
32 0.037 0.041 0.043 0.043
3 0.114 0.109 0.112 0.112
33 0.129 0.134 0.135 0.135
04 0.008 0.01 0.011 0.011
03 0.003 0.003 0.004 0.004
71 0.041 0.033 0.031 0.031
13 0.013 0.012 0.012 0.012
12 0.013 0.017 0.018 0.018
52 0.131 0.126 0.122 0.121
d as a
of a n

show
Ste

0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.1
93 0.082 0.075 0.073 0.074
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4. The grayscale gradient on the feature spectrum is propor-
tional to the probabilities of observing a row feature in each
of the 7 Markov chain steps. Darker areas are associated
with higher probabilities.

As both Table 4 and Figure 4 suggest, among the 17 main
EHR features provided in CRS, “Retaking BP,” “Allergies,”
“History of Present Illness,” “Encounter Memo,” and “Vac-
cination” have the highest probability of being accessed in
the initial Markov state; in other words, if these features ever
get used, they are most likely to be used at the very
beginning of a patient encounter. Similarly, “Medication
Side Effects,” “Family History,” “Order,” “Social History,”
and “Review of Systems” are most likely to be accessed in
the next step; “Medication,” “Office Test,” and “Physical
Examination” are most likely to be accessed in the third step;
and so forth.

The global navigational pathway can be immediately ob-
served from Table 4 as the sequence of column maximums.
These values indicate which row feature has the greatest
likelihood of being used in a given step. In contrast, row
maximums in Table 4 suggest in which step accessing a
given row feature is most likely to occur. “History of Present
Illness” ¡ “Social History” ¡ “Assessment and Plan” is the
most commonly traversed pathway in the first three steps.
Afterward, the use of “Assessment and Plan” dominates the
system’s state, because “Assessment and Plan” was the most
intensively used feature and the most popular recipient
node among all observed feature transitions. Aside from this
favorite pathway, several other navigational routes were
also frequented by the CRS users. “History of Present
Illness” ¡ “Physical Examination” ¡ “Assessment and
Plan” ¡ “Diagnosis” ¡ “Order” . . ., for example, is another
popular pathway that emerged from the empirical data.

Discussion
Figure 2 draws a comparison between the actual, observed

F i g u r e 4. The EHR feature spectrum in a timed space (g
a row feature in each of the 7 Markov chain steps. Darker a
range of probabilities of observing a row feature in these 7
maximum probability of observing a row feature.
navigational pathway (solid line) and the anticipated, ideal
pathway as a reflection of the system’s original UI/AF
design principles (dashed line). These principles were derived
through extensive design discussions with the system’s in-
tended end users and the clinic management. Allowing for the
fact that actual EHR use must cater to specific patient care
needs and contexts, there still exist substantial differences
between the observed and the anticipated navigational path-
ways. This deviation may suggest that: (1) there may be a
significant gap between clinicians’ day-to-day clinical practice
and recommended standards; in addition, what the design
team learned from the design discussions with the end users
might be their perceptions of how ambulatory care should
be practiced, rather than how it was practiced in reality; and
(2) the reengineered CRS still had issues in its UI/AF design
that require further reengineering efforts. Below we discuss
these two possible sources of the deviation in more detail.

Unanticipated/Undesirable User Behavior
The most noticeable divide between the actual and the
anticipated pathways lies in the different utilization rates of
EHR features that require structured data entry versus EHR
features that allow for unstructured, narrative data. As
shown in Figure 2, after entering free-text documentation in
the “History of Present Illness” and “Social History” sec-
tions, clinicians tended to directly jump to “Assessment and
Plan” that is presented last on the EHR’s UI while skipping
all other intermediate features where codified patient data
are expected. This indicates both limited usage of structured
data entry as well as undesirable sequence of clinical docu-
mentation. According to recommended standards, “Assess-
ment and Plan” should be used at the end of an encounter
session to add summative highlights of structured data
entered in other relevant sections. This finding suggests that
either certain critical patient care procedures (e.g., physical
examination) were not routinely performed, or they were
performed but not properly documented, or were not doc-

le gradient is proportional to the probabilities of observing
ndicate higher probabilities. Numbers in parentheses � the
kov chain steps; numeric labels on grayscale stripes � the
raysca
reas i

Mar
umented in a desirable sequence. In either case, quality of
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care may be undermined and patients may be exposed to a
higher risk of adverse events.

Second, counter to expectations, “Encounter Memo” was
seldom used. “Encounter Memo” allows clinicians to docu-
ment contextual information that may not fit in any other
categories, or transitory information that does not need to,
or should not, appear in a patient’s permanent record; for
example, handoff notes. The end users on the system’s
design team reiterated that this was a critical feature; there-
fore, it was allocated to one of the most prominent screen
positions, top right corner. However as the empirical data
have shown, this feature was rarely utilized during the
10-month study period.

Insights into UI/AF Design
The navigational patterns identified also suggest design
insights for further improving the UI/AF design of CRS.
First, “History of Present Illness” should be placed in a
distinctive, salient onscreen position because it is one of the
most frequently used features and is usually accessed im-
mediately after a clinician launches the system. Second, the
three bundled features identified (“Assessment and Plan”%
“Diagnosis,” “Order” % “Medication,” and “Order” %
“Laboratory Test”) highlight the need to place them in
adjacent UI locations. If that is not possible, certain naviga-
tional aids should be provided in the system to facilitate
such frequent feature switches, for example, hyperlink
shortcuts or “take me to” buttons. Third, the onscreen
position of “Medication Side Effects” and “Allergies” may
need to be swapped. “Allergies” is used more often and has
a much higher probability of transitioning to “Medication
Side Effects” instead of vice versa. Similarly, the onscreen
position of “Family History” and “Social History” may also
need to be swapped. Finally, some of the navigational
patterns may suggest general EHR design insights that may
not apply in this study context. For example, zero-transition
probabilities indicate that such feature transitions never
occurred in the empirical setting; having these features next
to each other on a UI or presenting them consecutively in a
stepwise guided wizard would therefore require further
consideration.

Study Limitations
This study has several limitations. First, actual EHR usage
can only be collected through a system deployed in the field.
The idiosyncrasies of this system will inevitably alter user
behavior, making achieved results difficult to generalize.
Second, our study participants were internal medicine resi-
dents. Their clinical practice can be very different from that
of other internal medicine practitioners and medical profes-
sionals in other specialties. In addition, the residency train-
ing activities in the study clinic could have generated unique
EHR usage that may not apply in other settings. Third, a
comprehensive analysis of user interactions with an EHR
needs to further delineate between sequences resulting from
real-time recording of encounter information vs. recording
the data at the end of a patient visit. For example, if a
clinician’s physical and cognitive interactions with a patient
are recorded in the EHR in real time during the patient
encounter, the sequences are likely to reveal true point-of-
care clinical behavior. However, if the relevant data are entered
into the EHR afterward, the generated sequence may be a

reflection of the order in which features are currently presented
in the EHR interface. Although, as the results show, there is
no predominance of deferred documentation in our empir-
ical study, this study limitation may potentially lead to false
conclusions. Fourth, real temporal relations need to be
included in the study for better insights into the impact of
feature access durations on sequences and revealed patterns.
These extensions are part of our ongoing study. As such, the
findings of this study do not necessarily suggest direct
design insights for other EHR systems or other types of
clinical information systems, but rather illustrate the prom-
ise of the methods in revealing user behavior with informat-
ics applications at the point of care.

Future Directions
Using automatically recorded EHR usage data to uncover
hidden UI navigational patterns may be a cost-effective
approach for improving the usability of other EHRs or other
types of clinical information systems. For example, numer-
ous qualitative studies have analyzed the UI/AF-related
unintended adverse consequences when introducing CPOE
into clinical workspace.5–7 Such unintended consequences
may manifest themselves as abnormal patterns in a CPOE’s
UI navigation. For example, workarounds that bypass cer-
tain system-enforced blocks (e.g., patient safety assurance
procedures) can be easily detected by looking for undesir-
able UI navigational patterns.

Future work may also consider providing a highly customi-
zable EHR software user interface. However, although it
should be acknowledged that different clinicians have dis-
tinct practice styles, compared with a deliberately calibrated
default layout, a highly customizable UI may not be as
effective in achieving desirable usability improvement goals.
As shown in the literature, default screen layout and options
exert a strong influence on clinician behavior,31 whereas
relying on end users’ self-customization to let the usability of
a system spontaneously improve often results in suboptimal
outcomes due to several cognitive and practical reasons.32 To
some extent, allowing for extensive user customization may
also facilitate undesirable user behavior, rather than fostering
healthier ones.

Future work may also examine the boundary events con-
necting the patterns identified by SPA to look for potential
regularities. Regularities at the boundaries—EHR feature
accesses that occurred before, between, or after the com-
monly recurring sequential patterns—may suggest addi-
tional consistent user behavior through their interactions
with the EHR.

This article provides evidence regarding the UI navigational
behavior of EHR users. However, our analyses do not yet
provide insights as to why users demonstrated observed
behaviors, and if such behaviors are undesirable, possible
remedies. In our follow-up studies, we will use supplemen-
tal phenomenologically based methods such as observations
and interviews to further understand the findings reported
in this article. We plan to seek the end users’ opinions on the
cognitive, social, and organizational root cause of the dem-
onstrated behavior and how the system and its design
processes could be further improved to address this com-
plex interplay between users, computerized systems, and

other dynamics in the clinical environment.
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Conclusion
Many health IT implementation projects have failed because
of poor UI/AF designs or the poor fit between a UI/AF
design with a specific use context. In this article, we show a
novel approach for improving the UI/AF design of a home-
grown EHR and for fine-tuning its UI/AF design with the
end users’ day-to-day clinical practice. This was achieved by
analyzing the automatically recorded EHR usage data to
uncover hidden UI navigational patterns. We show that
clinicians demonstrated consistent patterns when navigat-
ing through the EHR’s UI to perform different clinical tasks.
Some of these patterns were unanticipated, significantly
deviating from the ideal patterns according to the system’s
original design principles. Understanding the nature of this
deviation can help identify undesirable user behavior
and/or UI/AF design deficiencies, informing corrective
actions such as focused user training or continued system
reengineering. Finally, the lack of concordance between
clinicians’ actual clinical practice and recommended stan-
dards, as shown in this study, is an imperative concern that
must be carefully addressed in the health IT design and
implementation processes.
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