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Abstract
Many cellular responses to corticosteroids involve the transcriptional modulation of target genes
by a prototypical nuclear receptor, the glucocorticoid receptor (GR). In the classic model of steroid
hormone action GR acts as ligand-dependent transcription factor by either activating or repressing
gene expression through direct interactions with DNA or other transcription factors. Recent
evidence suggests an important role for nontranscriptional effects of GR in the vascular system.
The nontranscriptional actions of GR involve the rapid activation of protein kinases, such as
phosphatidylinositol-3 kinase and Akt, leading to the activation of endothelial nitric oxide
synthase. This novel pathway of steroid hormone action protects against ischemic injury by
augmenting blood flow and decreasing vascular inflammation.
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Introduction
The study of steroid hormone action has provided many important insights into the
regulation of cellular functions by nuclear receptors and at the same time has revealed
surprising levels of biological complexity. Corticosteroids are essential for normal
development and the stress responses through the regulation of intermediary metabolism and
the immune system [1,2]. Produced by the adrenal glands under the regulation of the
hypothalamus-pituitary gland axis, corticosteroids were among the first hormones to be
identified and later found to exert their effects through a specific DNA-binding protein, the
glucocorticoid receptor (GR) [3]. It was subsequently shown that GR can act as a ligand-
dependent transcription factor that positively regulates genes through interaction with DNA
enhancer sequences, called glucocorticoid response elements (GRE) [4,5,6]. Molecular
analysis of the anti-inflammatory actions of GR later revealed a second important
mechanism of GR function in the nucleus. Activated GR can negatively regulate expression
of inflammatory genes through direct protein-protein interaction with proinflammatory
transcription factors without DNA binding (termed transrepression) [7,8]. Recent findings
suggest that there is yet another level of GR action with particular importance for the
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vascular system. A rapid, nontranscriptional effect of GR was found to mediate tissue
protection in myocardial infarction and stroke through activation of endothelial nitric oxide
synthase (eNOS), which is mediated by the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway [9,10].

In this contribution we review and discuss existing data on the use of corticosteroids in
vascular inflammation and acute ischemia, provide an overview of the molecular
mechanisms of GR action with emphasis on physiological and pharmacological significance,
and discuss the implications for potential future therapeutic approaches.

Beneficial and harmful effects of corticosteroids in acute ischemia
Corticosteroids have been used in the treatment of cardiovascular disease, such as acute
myocardial infarction and stroke, with conflicting results [11]. Several features make
steroids attractive candidates for the treatment of acute ischemia. The degree of ischemic
tissue damage is related to the extent of the inflammatory response, which is coordinated
through the interaction of leukocytes with activated vascular endothelium. Corticosteroids
inhibit endothelial cell activation and leukocyte-endothelial interaction, thereby exerting
prominent, and very rapid, anti-inflammatory effects on the vasculature [12]. Steroid
treatment improves survival of patients with acute myocardial infarction and protects the
myocardium from experimental ischemic injury [13,14,15]. In ischemic stroke steroids can
improve clinical outcome in a subset of patients with severe stroke and administration of
high doses of corticosteroids substantially reduces tissue damage in experimental focal
cerebral ischemia [16,17,18,19]. In addition, our group has recently shown that high-dose
steroid treatment decreases vascular inflammation and ischemic tissue damage after
myocardial infarction and stroke through direct vascular effects involving the
nontranscriptional activation of eNOS [9,10].

The prolonged use of steroids, however, is often limited by their adverse effects attributed to
a delayed genomic response initiated by GR. This is exemplified by the clinical syndrome of
hyperglycemia, dyslipidemia, hypertension, osteoporosis, and impaired wound healing in
patients with chronic corticosteroid excess (i.e., Cushing syndrome) [20]. Furthermore,
down-regulation of eNOS is thought to contribute to steroid-induced hypertension [21].
Indeed, continued low-dose steroid administration increases ischemic injury after global
ischemia of the brain [22]. In myocardial infarction impaired wound healing and cardiac
remodeling can lead to cardiac rupture within 2 weeks of myocardial infarction [23,24], and
this has led to discontinuation of steroid treatment for acute ischemia. Therefore defining the
exact molecular mechanisms involved in the beneficial and detrimental effects of GR could
have important therapeutic implications.

Molecular structure of GR
GR is expressed ubiquitously and belongs to the nuclear receptor superfamily, which also
includes receptors for the mineralocorticoids, estrogens (ER), progestins, and androgens, as
well as receptors for peroxisome proliferators, vitamin D, and thyroid hormones.
Phylogenetic and sequence analysis has shown that GR with the receptors for progestins,
mineralocorticoids, and androgens form a subfamily of oxosteroid receptors that is distinct
from the ER subfamily [25]. GR has the prototypical modular structure of nuclear receptors:
an N-terminal transcriptional activation function 1 domain, a central DNA-binding domain
(DBD), and a C-terminal ligand-binding domain (LBD) harboring a ligand-dependent
transcriptional activation function-2 domain [6,26]. Alternative mRNA splicing results in a
second GR isoform, GRβ, that is defective in steroid binding and acts as a dominant
negative inhibitor of GRα in vitro [3,27,28]. However, a clear functional role for GRβ has
yet to be established.
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The activation of GR is regulated by the LBD. In the absence of ligand, GR is assembled
into a multiprotein complex that includes heat shock proteins and immunophilins. This
retains GR in the cytoplasm but enables high-affinity ligand binding [29,30]. Hormone
binding to the LBD leads to a conformational change in the receptor followed by
dissociation of the multiprotein complex and rapid nuclear entry. Nuclear translocation is
mediated by two nuclear localization sequences located adjacent to the DBD, and in the
LBD, respectively [31,32]. Interestingly, hormone-bound GR is not permanently localized to
the nucleus. Rather, GR rapidly and continuously shuttles between the nucleus and the
cytoplasm [33,34].

Transcriptional modulation by GR: DNA binding vs. protein-protein
interaction

In the nucleus GR regulates transcription by two distinct mechanisms: DNA binding-
dependent transcriptional modulation or DNA binding-independent modulation mediated by
protein-protein interaction. In the first instance, activated GR binds to GRE present in the
regulatory regions of target genes and activates transcription through recruitment of
transcriptional coactivators, such as steroid receptor coactivator-1, and the basic
transcription machinery [6,35]. Transcriptional activation by GR requires homodimerization
through two different dimerization interfaces. A five amino acid sequence (D loop) in the
second zinc-finger of the DBD mediates cooperative DNA-binding to the palindromic
motive of the GRE, and mutations in the D loop abrogate transactivation by GR [36,37]. In
addition, dimerization requires reciprocal interactions of two hydrophobic amino acids in the
LBD. Consequently mutations in this region also interfere with transactivation [38]. By the
same mechanism of direct interaction with DNA, GR has also been reported to repress
transcription through negative GREs [39].

The second instance of GR nuclear action is independent of DNA binding and involves
modulation of transcriptional activity through direct protein-protein interaction with
inducible transcription factors [40]. An important example of DNA-independent actions of
steroids is transrepression of the proinflammatory transcription factors activator protein
(AP) 1 and nuclear transcription factor κB (NF-κB). GR weakly interacts with and inhibits
AP-1-dependent transcription without altering its DNA binding [7,41,42]. Importantly, DNA
binding inactive mutants of GR are fully capable of AP-1 transrepression [37]. Interaction
between activated GR and NF-κB is mediated by the second zinc-finger in the DBD of GR,
and transrepression does not require DNA binding of GR. Instead, GR interferes with the
transactivation potential of the p65/RelA subunit of NF-κB (see [43] and references herein).
In addition to transrepression, protein-protein interaction can also lead to synergistic
induction of promoter activity, as shown for interaction of GR with Stat-5 on the β-casein
promoter [44].

To link the pleiotropic molecular actions of GR to biologically significant functions,
Reichardt and Schutz [45] have generated different genetically modified mice. Mice lacking
GR (GR−/−) die shortly after birth due to impaired maturation of several organs including
the lungs [46]. In contrast, overexpression of GR renders mice resistant to stress and
endotoxic shock, which seem to involve a decrease in the inflammatory response [47].
While the absence of GR is incompatible with life, DNA binding and transactivation of
target genes by GR is not essential for development or survival. Mice with a targeted
mutation in the D loop dimerization domain of GR (GRdim), which impairs cooperative
DNA binding and transactivation by GR, lack GRE-dependent gene expression but survive
to adulthood [48]. GRdim mice, however, do not respond to corticosteroids with induction of
gluconeogenic enzymes, such as tyrosine aminotransferase, demonstrating that they are
defective in mounting a positive GRE-mediated transcriptional response. Interestingly, the
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anti-inflammatory actions of steroids are preserved in these mice. Steroids potently suppress
the local and systemic inflammatory response in GRdim mice, and repression of AP-1 and
NF-κB-dependent genes, such as matrix metalloproteinase-3 and collagenase-3, is
comparable to wild-type mice [48,49,50]. Indeed, analysis of GRdim mice has recently
provided insight into the mechanism of impaired wound repair [51]. After skin injury there
is enhanced granulation tissue and increased numbers of fibroblasts in GRdim mice as
compared to control, suggesting that the inhibitory effect of steroids on wound healing is
mediated by the DNA binding activity of GR (see Table 1).

Rapid nontranscriptional effects of GR
Some effects of corticosteroids are very rapid, making primarily transcriptional mechanisms
of action unlikely and hence have been referred to as “nontranscriptional” effects [52].
However, it should be noted that this concept does not exclude the possibility of indirect
downstream transcriptional modulation secondary to the initiated signaling pathways.
Corticosteroids alter amphibian behavior and increase inositol trisphosphate in vascular
smooth muscle cells within minutes of administration [53,54]. In mice the antianaphylactic
effect of high-dose corticosteroids occurs acutely and is unaltered by the transcriptional
inhibitor actinomycin D [55]. Furthermore, in patients with active rheumatoid arthritis
steroids rapidly inhibit leukocyte recruitment into inflamed joints [56]. In myocardial
infarction and ischemic stroke, high-dose steroids cause a transient decrease in blood
pressure and systemic vascular resistance accompanied by an increase in coronary and
cerebral blood flow within minutes of administration [10,14,57].

Although some effects of steroids do not seem to be mediated by GR, and are therefore
designated nonspecific, there is growing evidence for rapid nontranscriptional actions of
GR, especially with regard to inflammation [58,59]. The synthetic corticosteroid
dexamethasone (Dex) rapidly inhibits cytosolic phospholipase A2 activity and release of
arachidonic acid, which are important mediators of inflammation. Inhibition was reversed by
the GR antagonist RU486 (mifepristone), and by pharmacological inhibition of Src,
suggesting that rapid inhibition of cytosolic phospholipase A2 by GR is mediated by Src
[60]. Interestingly, a nonclassical effect of GR on rapid kinase signaling is also involved in
the inhibition of AP-1 by steroids. The transcriptional activity of the AP-1 subunit c-Jun is
enhanced through phosphorylation on Ser63/73 by members of the Jun N-terminal kinase
(JNK) subfamily in response to inflammatory cytokines [61]. Activated GR prevented
phosphorylation of c-Jun, and transcriptional enhancement of AP-1, by blocking the JNK
signaling cascade [62]. Acute Dex treatment interfered with JNK activation in the cytoplasm
and nucleus without altering JNK subcellular distribution. These effects did not involve
direct interaction between JNK and GR and were independent of DNA binding, since a
dimerization defective GR mutant, which lacks transcriptional capacity, is still able to
suppress JNK activation in response to Dex [63].

There is growing evidence that the nontranscriptional actions of several other steroid
hormone receptors regulate physiologically important processes [64]. For example,
osteocyte apoptosis and bone loss is prevented by the androgen and estrogen steroid
receptors through nontranscriptional activation of protein kinase Src and mitogen-activated
protein kinase [65,66]. Vascular nitric oxide production and vasodilation by estrogen
depends on nontranscriptional activation of eNOS and are mediated by ERα-dependent
activation of the PI3 K/Akt pathway [67,68,69]. Indeed, the vascular protective effects of
estrogen are dependent on the nontranscriptional activation of eNOS via PI3 K/Akt [68].
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Nontranscriptional activation of eNOS by corticosteroids
Many beneficial actions of corticosteroids in vivo involve the vascular endothelium. An
important endogenous mediator of vascular integrity is endothelium-derived NO [70]. NO
produced by eNOS possesses anti-inflammatory, antiatherogenic, and anti-ischemic
properties [71,72]. Enhanced NO production by administration of the eNOS substrate L-
arginine or upregulation of eNOS by statins confers stroke protection [73,74,75], and
transgenic mice overexpressing eNOS show decreased leukocyte accumulation and reduced
vascular lesion formation following vascular injury [76]. Conversely, mice with targeted
disruption of eNOS (eNOS−/−) exhibit increased vascular inflammation and larger cerebral
infarctions following experimental ischemia [77,78], while inhibition of NOS activity
decreases cerebral blood flow and increases infarct size after ischemia [79].

In two different mouse models of ischemic injury, transient myocardial ischemia and
transient focal cerebral ischemia, the protective effects of steroids were mediated by the
nontranscriptional activation of eNOS by GR [9,10]. High-dose corticosteroids significantly
reduced ischemic tissue damage to the heart and the brain, while low doses were ineffective.
Cotreatment with the GR antagonist RU486 completely reversed the effects of Dex,
suggesting that GR mediated tissue protection. Furthermore, ischemia protection was
mediated by NO, since the beneficial actions of steroids were absent in eNOS−/− mice or
blocked by cotreatment with the NOS inhibitor Nω-Nitro-L-arginine methylester. Steroid
treatment acutely increased eNOS activity in vitro and in vivo, which led to decreased
vascular inflammation and increased vasorelaxation and regional cerebral blood flow in a
NO-dependent manner.

Activation of PI3 K/Akt by corticosteroids
Corticosteroids have recently been reported to activate protein kinase Akt [9,10,68,80],
which is an important regulator of cell cycle progression and mediator of cellular survival
downstream of PI3 K [81]. Phosphorylation of eNOS by Akt leads to increase endothelial
NO release [82,83]. In a ligand-dependent manner corticosteroids activate PI3 K and Akt,
which is blocked by cotreatment with RU486 or the PI3 K inhibitor LY294002 but not by
transcriptional inhibitors [9,10] (Fig. 1). Although induction of nontranscriptional actions
requires high doses of steroids, these effects are nevertheless specifically mediated by GR.
This was demonstrated in transfection studies in COS7 cells, which lack endogenous GR.
Whereas Dex did not activate PI3 K or Akt in the absence of GR, it readily induced Akt
kinase activation after transfection with GR, or the dimerization defective GR mutant
(A458T), which is unable to transactivate target genes [10]. This suggests a DNA binding
independent mechanism of activation. The fact that PI3 K activation can be suppressed by
the GR antagonist RU486 further argues against the involvement of transrepression in this
process, since the RU486 compound still induces transrepression of AP-1 dependent gene
expression in reporter assays [37]. Akt

The mechanism of PI3 K activation by GR is currently unknown but seems to involve
association of GR with the regulatory p85α subunit of PI3 K. Also, activation does not
require dimerization of the receptor since the dimerization defective mutant is equally active
[10]. A model of the nontranscriptional actions of GR is depicted in Fig. 2. Analogies might
be drawn to PI3 K activation by another steroid receptor, ERα, although there is only modest
sequence homology between the two receptors. Activation of PI3 K by ERα involves
activation of Src and formation of a ternary complex of p85 and Src with the activated
receptor, which was mediated by the C-terminus of ERα including the LBD [84]. Since
positive cross talk between Src and PI3 K has already been described it might be speculated
that this mechanism is also involved in activation of PI3 K by GR [85].
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Corticosteroids as anti-ischemic therapy
The study of corticosteroid action in acute ischemia has yielded conflicting results, which
may reflect differences in dosage regimens, time to onset of treatment, or the specific
clinical or experimental condition. Several new aspects concerning the mechanism of
ischemia protection have emerged from recent studies, which might allow for optimized
treatment strategies.

A consistent feature of the beneficial actions of corticosteroids is the requirement for high-
dose steroids [9,10,14,19,57]. Ischemia protection usually requires acute treatment (e.g., less
than 6 h after the onset of ischemia). These features are in agreement with a
nontranscriptional mechanism of ischemia protection by GR mediated by NO. By enhancing
endothelial NO production corticosteroids decrease postischemic vascular inflammation and
increase ischemic blood flow [9,10]. The therapeutic use of corticosteroids is limited by side
effects, which are typically associated with chronic treatment. Thus it appears that these
detrimental effects are related to the genomic actions of corticosteroids. By exploring the
rapid, nontranscriptional actions of GR the biological and pharmacological actions of
corticosteroids could be considerably broadened. This could lead to the development of a
novel class of drugs that selectively activates the nontranscriptional actions of GR. Indeed,
synthetic compounds that separate specific GR functions, such as transactivation from
transrepression by GR, have recently been identified [86]. It remains to be determined
whether these compounds are capable of separating the beneficial from the detrimental
effects of corticosteroids.
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Abbreviations

AP Activator protein

DBD DNA-binding domain

Dex Dexamethasone

eNOS Endothelial nitric oxide synthase

ER Estrogen receptor

GR Glucocorticoid receptor

GRE Glucocorticoid response elements

JNK Jun N-terminal kinase

LBD Ligand-binding domain

NF-κB Nuclear transcription factor κB

PI3K Phosphatidylinositol 3-kinase
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Fig. 1.
GR activates Akt through PI3 K. Above Effect of Dex with and without RU486 (RU) and
LY294002 (LY) on Akt kinase activity, measured by phosphorylation of the Akt downstream
target GSK-3 by immunoblotting (P-GSK-3). Below Immunoblotting for total Akt levels in
the kinase reaction. (Reprinted from [9])
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Fig. 2.
Nuclear and nonnuclear actions of the glucocorticoid receptor. Association of GR with the
regulatory p85 subunit of PI3 K stimulates formation of 3′-phosphorylated
phosphatidylinositols (e.g., phosphatidylinositol 3,4,5-trisphosphate, PIP3) from
phosphatidylinositol phosphate precursors (e.g., phosphatidylinositol 4,5-trisphosphate,
PIP2). This leads to the subsequent recruitment and activation of protein kinase Akt, which
enhances NO release through phosphorylation of eNOS. In the nucleus GR binds either
directly to glucocorticoid response elements (GRE) or modulates the function of other
transcription factors
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Table 1

Different GR actions mediate the response to steroids. The mode of GR action mediating the response to
steroids is indicated (D DNA binding-dependent action, I DNA binding-independent action, NT
nontranscriptional action) (adapted from [1,87])

Organ/system Effect GR action

Brain Anxiety reaction ?

Hippocampal neuron response D

Lung Postnatal maturation I

Cardiovascular system Ischemia protection NT

Suppression of vascular inflammation NT

Hematopoietic system Erythroblast proliferation D

Liver Induction of gluconeogenic enzymes D

Bone Osteoporosis ?

Immune system Thymocyte apoptosis D

Inflammation Suppression of local and systemic inflammatory response I
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