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Abstract
Despite compelling evidence from twin and family studies indicating a strong genetic involvement
in the etiology of autism, the unequivocal detection of autism susceptibility genes remains an elusive
goal. The purpose of this review is to evaluate the current state of autism genetics research, with
attention focused on new techniques and analytic approaches. We first present a brief overview of
evidence for the genetic basis of autism, followed by an appraisal of linkage and candidate gene study
findings and consideration of new analytic approaches to the study of complex psychiatric conditions,
namely, genome-wide association studies, assessment of structural variation within the genome, and
the incorporation of endophenotypes in genetic analysis.
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INTRODUCTION
First formally documented in 1943 by child psychiatrist Leo Kanner (1), autism is a severe
neurodevelopmental disorder defined by profound impairments in language, social-emotional
functioning, and restricted, repetitive interests and behaviors (2). Although once considered to
be relatively rare, striking new prevalence estimates of 1 in 500 for strict diagnosis and 1 in
150 using broader diagnostic criteria (3) have prompted the Centers for Disease Control and
Prevention to declare autism a national public health crisis. Such reports underscore the
pressing urgency for determining the etiology of autism, which remains cryptic. Bolstered by
historic highs in public awareness, advocacy, and funding, research into the basis of autism is
advancing at an accelerated pace. Several large autism consortia now exist and bring to bear
increased resources to enable more powerful and rapid pursuit of etiologic clues.

The last decade has witnessed the development of an armamentarium of genetic techniques
and tools for studying the genetic basis of disease, such as sequencing of the human genome
(4), identification of common genetic variants via the HapMap project (5), and development
of cost-efficient high-throughput genotyping and analysis methodologies. Although these tools
have led to major breakthroughs in medical genetics, we have not yet witnessed successful
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disease gene discovery in psychiatric diseases. Autism has proven particularly frustrating to
genetic dissection. Despite compelling evidence from twin and family studies indicating a
strong genetic involvement, the unequivocal detection of autism susceptibility genes remains
an elusive goal. The purpose of this review is to evaluate the current state of autism genetics
research critically with focused attention on new techniques and analytic approaches. We first
present a brief overview of evidence for the genetic basis of autism, followed by an appraisal
of linkage and candidate gene study findings and consideration of new analytic approaches to
the study of complex psychiatric conditions, including genome-wide association studies
(GWAS), assessment of structural variation within the genome, and the incorporation of
endophenotypes in genetic analysis.

EVIDENCE FOR A GENETIC BASIS: FAMILY AND TWIN STUDIES OF AUTISM
Strong but indirect evidence supports the role of genetic factors in the etiology of autism.
Monozygotic twins show ~60% concordance in contrast to only 3% to 5% concordance in
dizygotic twins with a heritability estimate of ~90% (6-9). Family studies indicate 5% to 8%
recurrence rate within families (10); this translates into a 25- to 40-fold increase in risk over
current population base rates (3,11). The detailed clinical characterizations performed in many
of these family and twin studies also documented among relatives a phenotype similar in quality
to the defining features of autism, but much milder in expression. This constellation of subtle
language, cognitive, and personality traits mirrors the symptom domains of autism and occurs
more frequently among unaffected relatives of autistic individuals than controls (Table 1).
Concordance for this broader phenotype leaps to around 80% in monozygotic versus 10% in
dizygotic twins (6-9), thereby supporting the notion that such traits reflect a genetic liability
to autism.

Whereas language abnormalities figure prominently, the literature also reveals multiple reports
of social and repetitive features, along with more recent reports of neuro-cognitive
abnormalities. Recent evidence suggests that such features segregate independently in relatives
and appear more commonly in families with higher genetic loading (12-14), consistent with
their relevance to autism susceptibility. As discussed later in this review, such features,
measurable in unaffected relatives, could provide an index of genetic effects of salience to the
etiology of autism. Inclusion of such phenotypic information in relatives may provide a
potentially important, complementary approach for detecting the genes causing autism.

GENOME SCREENS: AN UNBIASED SEARCH FOR GENES
Genome-wide linkage analysis was initially viewed as a valuable approach for guiding the
search for autism disease genes because this approach holds the advantage of scanning the
genome for disease-associated loci in the absence of a priori hypotheses about the genetic
architecture of a disease. Such studies have led to gene discoveries for more than 1,600
Mendelian disorders (15); however, this approach when applied to complex traits and disorders
has met with considerably less success. There now exist more than a dozen genome-wide
linkage studies of autism (16-31). Because most of these studies have applied different
genotyping and analysis tools and include substantially overlapping samples, comparisons
across them are complex. In Figure 1, we present results from the primary genome-wide scans
of autism, including those analyzing the broader phenotype. These studies comprise between
12 and 1,181 pedigrees that typically are multiplex. Ancestry was generally well controlled
within each sample but varied across studies. Genotyping density ranged from 264 to 9,505
genetic markers.

These studies reveal numerous suggestive linkage peaks but with relatively little congruence
across them. The most consistent evidence for linkage occurs on 7q, with 7q22-q32 most
strongly implicated by meta-analysis (31). In the largest sample analyzed to date, however,
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this region yielded no evidence for linkage (20). Although this review does not relect a number
of fine-mapping and targeted follow-up studies, the picture emerging from those data is of
numerous suggestive signals with little compelling evidence for replication. What may underlie
these largely inconsistent findings? One problem may lie in the phenotypic and etiologic
complexity of the disorder itself, which may be compounded by varying phenotypic definitions
used across studies (e.g. strict vs broad). As in other complex human traits and disorders,
different genes may contribute to distinct components of the phenotype, thereby giving rise to
the full disorder through concerted actions (27,32,33). In this case, success in detecting
susceptibility loci may rest on our ability to disaggregate such complex clinical phenomena
into more basic phenotypes that may be more amenable to genetic dissection. In a subsequent
section, we review the growing body of research adopting this more refined phenotypic
approach.

Another reason that linkage analyses of autism have generated only inconsistent findings may
lie in the limitations inherent in this analytic approach. Although useful for highly penetrant
single-gene disorders, linkage analysis seems ill suited for gene detection in oligogenic
disorders involving multiple risk alleles of small effects (34). Without minimizing the
tremendous effort required to undertake this work, it is important to note that the sample sizes
are generally relatively small. Of the genome-wide scans listed in Figure 1, fewer than half
had more than 100 pedigrees. Such limited sample sizes are insufficient to delineate true genetic
signals from the noise of multiple comparisons and study-specific artifacts.

Genome-wide association studies may provide a more powerful alternative approach. As in
association studies of candidate genes, GWAS compares genetic risk factors (in the form of
specific genetic markers) in cases and controls; in GWAS, markers are distributed throughout
the genome rather than limited to candidate regions, thus providing a more unbiased canvassing
of the genome. In a seminal article, Risch and Merikangas (34) demonstrated that association
affords significantly greater power over linkage for detecting susceptibility loci that confer
weak effects. This indicated that GWAS is a more appropriate approach for genetic studies of
complex disorders such as autism. Previously cost and technically prohibitive, GWAS has only
recently been applied to psychiatric disorders, and the first high-density GWAS of autism are
currently underway (35). By the conclusion of 2008, 3 groups should have published GWAS
for autism, and a meta-analysis will soon follow.

CANDIDATE GENE ASSOCIATION: TARGETED INVESTIGATIONS
The first molecular genetic studies of autism took form incandidate gene association studies.
Plausible candidates were selected based on known involvement in pathways related to
neurodevelopment and/or evidence from pharmacological interventions that implicate specific
biomolecular pathways. By and large, these investigations have been forestalled by inadequate
sample sizes and sparse genotyping. Indeed, of more than 100 genes having been investigated
for involvement in autism, only a few have been supported by replication. We review briefly
those that have surfaced as the most plausible candidates: MET; SLC6A4 (the serotonin
transporter); RELN (reelin); the tumor suppressor genes PTEN, TSC1, and TSC2; and
neuroligins and their binding partners.

MET
The MET gene, which is located in the 7q31 candidate gene region, is implicated in genome-
wide linkage studies. MET is also a strong functional candidate for involvement in autism
because it encodes a receptor tyrosine kinase involved in neuronal growth and organization,
as well as immunological and gastrointestinal functioning; these are systems in which
abnormalities have been suggested in autism. Variants in the MET promoter region show strong
association with autism. In particular, Campbell et al (36) found significant overtransmission
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of the common C allele in autism cases in multiple samples. Case-control comparisons found
significant overrepresentation of the C allele in autism, with a relative risk of 2.27. In a separate
study, significantly decreased MET protein levels were found in autopsied cortical tissue from
individuals with autism (37). The C risk allele is believed to be a functional regulator of the
MET gene. Campbell et al (36) also found that mouse cells transfected with human MET
promoter variants showed a 2-fold decrease in MET promoter activity associated with the C
allele.

SLC6A4
Implicated by pharmacological evidence (38) and repeated findings of elevated levels of
platelet serotonin (5HT) in approximately 25% to 30% cases of autism (39), the serotonin
pathway was one of the initial targets for candidate gene studies of autism. Studies examining
the SLC6A4 locus generally support its involvement in autism, but findings have not converged
on a specific allele, nor have they consistently reported association with the same
polymorphism (40-44). Several reports have focused on SLC6A4 and its promoter region,
5HTTLPR. Whereas biased transmission of 5HTTLPR alleles has been reported in several data
sets (45,46), the findings are mixed in reporting overtransmission of the long or short allele of
this polymorphism (47,48); there are also reports that contradict a role of 5HTTLPR (49).

RELN
Reelin encodes a protein that controls intercellular interactions involved in neuronal migration
and positioning in brain development (50). RELN maps to the 7q22 chromosomal region, where
suggestive or significant linkage to autism has been reported in several studies (Fig. 1). Both
family- and population-based association studies also indicate that variations in RELN may
confer risk to autism. In particular, a large polymorphic trinucleotide repeat in the 5′ UTR of
the RELN gene has been implicated in autism in several studies (51-53). Preferential
transmission of the large repeat polymorphisms to autistic versus unaffected siblings has also
been reported (54,55). A contribution of RELN in autism is further supported by studies of
mutant reeler mice, which carry a large deletion in RELN and show atypical cortical
organization similar to the cytoarchitectural cerebral abnormalities documented in postmortem
studies in autism (56).

Tumor Suppressor Genes—PTEN, TSC1, and TSC2
As detailed below, mutations in these genes cause disorders that have been associated robustly
with autism. Because their signaling pathways have been well characterized, their association
with autism may offer important clues into etiologic mechanisms of this complex and
heterogeneous disorder.

PTEN (phosphatase and tensin homolog) is a tumor suppressor gene involved in the chemical
pathway that prevents uncontrolled cell growth and division. Mutations in PTEN cause Cowden
syndrome and related disorders involving hamartomas and are often associated with
macrocephaly. Building on the observation that autism sometimes occurs with Cowden
syndrome and related PTEN disorders, Butler et al initially examined the PTEN gene in
individuals with autism and macrocephaly. They sequenced the PTEN gene in 18 of such
patients and reported 3 individuals with PTEN mutations (57). Several additional studies have
also documented PTEN mutations in cases of autism and macrocephaly (58-60). Moreover,
studies of transgenic mice further support a role of PTEN in autism. In particular, mice lacking
PTEN in regions of the hippocampus and frontal lobe show arborization of neuronal processes
in these brain regions and display some autistic-like behaviors (61).

The tumor suppressor genes TSC1 and TSC2 have also been associated with autism. TSC1 and
TSC2 encode the growth suppressor proteins hamartin and tuberin, respectively. Mutations in
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either gene cause tuberous sclerosis complex (TSC), a neurodevelopmental disorder
characterized by benign tumors or lesions in many organs, including characteristic lesions in
the brain. Clinically, TSC typically presents with cognitive delays and epilepsy, and autism
has been reported in approximately 15% to 60% of cases (62,63). Because TSC involves easily
identifiable cortical lesions, studies have attempted to correlate lesion localization with the
presence of autism symptomatology. Whereas several studies have reported lesions in the
temporal lobe associated with autism (64,65), others have reported associations with more
diffusely localized lesions (66,67); in other cases, the presence of autism in TSC was not
correlated with lesions in any particular brain regions.

Neuroligins and Neurexins
Neuroligins are cell adhesion molecules that play a prominent role in synaptic maturation and
function; this renders them as plausible candidates for involvement in neurodevelopmental
disorders such as autism (69). A link between neuroligins and autism was first supported by
findings of mutations in the X-linked neuroligins, NLGN3 and NLGN4, in 2 affected sib pairs
(70). Subsequently, Laumonier and colleagues detected a 2-bp deletion in the NLGN4 gene in
individuals affected with mental retardation within a large French family (71). Although not
specific to autism, it was notable that all affected individuals were found to have the same
frameshift mutation. Another study detected missense mutations in the NLGN4 gene in 4 of
148 individuals with autism, whereas no mutations were found in healthy or psychiatric
controls (72). More recently, Lawson-Yuen et al (73) reported exonic deletions in NLGN4 in
a family affected with autism and a range of other learning and psychiatric disorders. Not all
studies report significant findings for neuroligins (74-76), yet evidence implicating the
neuroligin binding partners neurexins, CNTNAP2, and SHANK3 (reviewed next), bolsters
support for the role of neuroligins in autism.

Neurexins encode a highly polymorphic family of neuronal proteins that interact with
neuroligins to promote synaptic functioning (77). Evidence for neurexin involvement in autism
comes from a number of recent investigations. Feng et al (78) screened 3 neurexin beta genes
in 72 individuals with autism and 535 controls, followed by sequencing of exon 1 of
NRXN1β in an additional 192 additional cases. Missense mutations were found in 4 individuals
with autism and in-frame deletions, and insertions were detected in 9 additional cases. No such
mutations were reported in controls. Neurexin mutations were also detected in a recent genome
screen conducted by the Autism Genome Project Consortium (20); a hemizygous deletion of
coding exons from NRXN1 was found in a pair of affected siblings. Finally, Kim et al (79)
recently identified a number of rare coding variants in a scan of NRXN1 coding exons in 57
individuals with autism. These mutations were not observed in controls with Tourette
syndrome or obsessive compulsive disorder.

Contactin-associated protein-like 2 (CNTNAP2) is part of the neurexin superfamily that
encodes CASPR2, a transmembrane scaffolding protein (80). CNTNAP2 was recently
associated with autism in a study of an Old Order Amish community that is densely affected
with cortical dysplasia-focal epilepsy; the syndrome was associated with autism in 67% of
cases (81). By screening individuals affected with cortical dysplasia-focal epilepsy, the
investigators detected a frameshift mutation in CNTNAP2 exon 22 present among all 9 affected
individuals. Screening of 105 healthy Old Order Amish controls revealed 4 carriers, but none
who were homozygous for the mutation.

Three recent studies further support a role of CNTNAP2 in autism. In a 2-stage study, Arking
et al (82) detected significant linkage at 7q35 (which covers the CNTNAP2 locus), and a follow-
up association study in 72 multiplex families found significant overtransmission of the T allele
in a common polymorphism residing in the intron between exons 2 and 3 of CNTNAP2.
Notably, this result was then replicated in an independent sample of 1,295 parent-child trios.
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In another report, Bakkaloglu et al (83) resequenced CNTNAP2 in a cohort of 635 individuals
with autism and 942 controls, finding several rare variants in individuals with autism that were
not present in controls. Alarcon et al (84) reported further evidence implicating CNTNAP2 as
an autism susceptibility gene and specifically investigated the association of CNTNAP2 with
an autism language phenotype. In a 2-stage association study, investigators found significant
association between variants in CNTNAP2 and an index of language delay in autistic children.
In addition, a microdeletion in CNTNAP2 was identified in 1 proband and his father but was
not seen in 1,000 controls. An independent expression study of fetal brain development was
then performed, with results indicating preferential expression of CNTNAP2 in the language
centers of the brain (i.e. frontal and anterior temporal lobes). Collectively, these studies provide
compelling evidence that CNTNAP2 mutations could be associated with autism and perhaps
particularly the language endophenotypes of autism. CNTNAP2 is one of the largest genes in
the human genome (2.3 million bases or ~1.5% of chromosome 7), and future studies will
therefore be important to tease out specific variants that underlie these associations.

SHANK3 is another neuroligin binding partner that has been associated with autism.
SHANK3 belongs to a family of neuronal scaffolding proteins that play a critical role in synaptic
functioning and also regulate dendritic spine morphology. Durand et al found mutations in
SHANK3 in 3 of 226 families of autistic individuals. In 1 family, the child with autism carried
a de novo deletion in SHANK3 (85). Two siblings in another family carried a frameshift
mutation; and in a third family, the proband carried a deletion in SHANK3 and her affected
brother had an additional copy. In another study evaluating sequence and copy number variants
in the SHANK3 region, Moessner et al (86) detected 1 de novo mutation and 2 gene deletions
in a group of 400 individuals with autism. Although SHANK3 mutations may account for only
a minority of cases, when considered together with findings from several other neuroligin
binding partners along with findings for SLC6A4 and MET, there seems to be accumulating
evidence for the role of synaptic function genes in autism.

STRUCTURAL VARIANTS: AN ADDITIONAL GENETIC MECHANISM
The development of high-resolution platforms with capabilities for characterizing alterations
in the DNA copy number with unprecedented resolution has led to a new appreciation of the
frequency with which de novo structural variations occur throughout the human genome. Such
microdeletions and duplications (or copy number variations [CNVs]) occur in abundance in
the general population and appear widespread throughout the genome. For example, Sebat et
al (87) found CNVs averaging ~400 kb in length and covering 12% of the genome in the
HapMap samples. It is possible that CNVs could cause subsets of cases in complex diseases
such as autism (88). It is worth noting that larger-scale genomic changes also have been
associated with autism (89). For instance, inherited duplications in the 15q11Yq13 region
(which is causal in Prader-Willi and Angelman syndromes) have been reported to occur in ~1%
to 3% of autism cases (90). Our focus here, however, is on the previously under-appreciated
role of de novo events in autism.

Jacquemont et al (91) detected de novo CNVs in 24% of individuals with autism, and in a
genome-wide association screen, 1 pair of affected siblings showed spontaneous CNVs in
NRXN1 (see above) (20). Adding to these findings, Weiss and colleagues (35) recently reported
a compelling CNV in autism in multiple samples. In the initial stage of a GWAS of autism
among 751 multiplex families, the investigators found deletions and duplications at 16p11.2
associated with autism in 1% of cases, which were not apparent in 2 separate psychiatric control
groups, and detected in only 0.01% of a large unscreened Icelandic population. The identical
593-kb deletion and a reciprocal microduplication were subsequently found in 2 separate
replication samples. Copy number variations in this region have been detected in 2 other studies
of autism (92,93). Although these findings were compelling, they were not necessarily specific
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to autism because the 16p11.2 deletions and duplications were also observed at elevated rates
among individuals with developmental delays. Therefore, additional work will be necessary
to clarify the significance of this region to autism susceptibility.

Although still in its infancy, the study of CNVs has already enriched our understanding of
autism genetics. In addition to more traditional explanatory models positing multiplicative
effects of common variants, it seems that rare, spontaneous, and highly penetrant mutations
may explain a portion of autism cases (93). The latter of these mechanisms is most compatible
with sporadic cases of autism, whereas multiplicative models may better account for families
in which multiple cases of autism and/or broader phenotypes exist among relatives (94). In
support of this view, recent work by Sebat and colleagues (93) suggest that de novo CNVs are
present much more frequently among pedigrees with only a single case with autism than in
multiplex pedigrees. In their study, spontaneous CNVs were present in 10% of affected
individuals from single-incidence families (i.e. sporadic cases), contrasting with substantially
lower rates observed in controls (1%) and autism cases from multiplex families (3%). Using
a similar design in a genome-wide scan for CNVs, Marshall et al (92) found this same pattern
—de novo CNVs were detected in 7% of autistic individuals from single-incidence families,
2% of cases from multiplex families. These findings may prove useful for guiding selection of
appropriate analytic techniques and specific subgroups of autistic cases in future genetic
studies. This method may be complemented by an endophenotypic approach, described below,
which may also help to refine more homogenous samples through detailed phenotypic
assessment.

NARROWING THE SCOPE: THE STUDY OF AUTISM ENDOPHENOTYPES
Endophenotypes are subclinical markers of disease (e.g. behavioral, physiological,
neuropsychological, and others) that are present among both affected and unaffected
individuals and which are hypothesized to hold more straightforward ties to underlying
neurobiological and genetic etiologies than downstream clinical outcomes (95). Rather than
searching for “autism genes,” studies using an endophenotypic approach confront the less
daunting task of searching for smaller constellations of genes that contribute to distinct
phenotypic features. This approach is supported by family and twin studies that show
independent segregation of component features of autism and suggest that although the
component features of autism all have strong genetic effects, they seem largely independent
in patterns of transmission, with relatively little phenotypic or genetic overlap (13,96-99).
Endophenotypes may, therefore, benefit genetic studies by providing a means for defining
more etiologically homogenous subgroups. In addition, endophenotypes are by definition
measurable in both affected and unaffected individuals (95), thereby affording analysis of
larger sample sizes with greater power.

Table 2 lists the endophenotypic features for which significant linkages or associations with
autism have been reported to date. Language phenotypes, such as age at first word or phrase,
emerge as the most promising of such endophenotypes because they show significant linkage
or association across several independent samples. Of particular interest are the significant
linkages observed on chromosome 7 that have been observed in 5 separate investigations. The
7q region has been an intense focus of studies of developmental language disorders (100), and
the candidate gene and expression findings discussed above further suggest that this region
may harbor loci associated with the autism language phenotype (84). These data underscore
the value of delineating more specific and powerful associations with endophenotypes and
highlight this region as an important focus for continued focused investigation.
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SUMMARY
More than 30 years have passed since Folstein and Rutter (7) first reported compelling evidence
for a genetic etiology to autism in their landmark twin study. Scores of linkage and candidate
gene studies have since attempted to move beyond such promising genetic epidemiologic
findings to identify specific DNA sequence variations causing autism. In aggregate, however,
these efforts have been fraught with several methodological and analytic challenges. Limited
power, varying designs, genotyping and analyses, and imprecise phenotypic definitions are
some of the factors that contribute to the scarcity of hard replicated findings to date. Further
complicating this picture may be several environmental factors associated with autism that
may interact with genetic vulnerabilities in complex ways. We have attempted to highlight
those findings that have best withstood rigorous replication standards, with an eye toward
recent advancements in the methodological and analytic tools for the study of complex traits
and disease, including GWAS, screening for CNVs, and the incorporation of endophenotypes
in molecular genetic studies. When implemented into the large-scale collaborative efforts
currently underway, such techniques may afford increased power and sensitivity for defining
different etiologic pathways and, ultimately, translate into important new knowledge of the
pathogenetics of autism.
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FIGURE 1.
Summary of genome-wide linkage scans in autism with LOD/equivalents plotted. Red
indicates LOD ≥3, dark gray indicates LOD ≥2, and light gray indicates LOD ≥1.5. First author
and year of publication for each study are listed. AS, Asperger syndrome; BAP, broad autism
phenotype; Chr, chromosome; NQA, not quite autism (diagnostic criteria not fully met).
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TABLE 1
Summary of Broad Phenotypes Identified in Relatives

Language Impairment

• Delayed acquisition (6-9,13,14,32,97,101-114)

• Narrative and/or pragmatic language deficits (13,32,96,97,103,109,110,115) Social Functioning

• Delayed social behavioral development (8,9,96,112,113,116-120)

• Socially reticent, undemonstrative personality, few reciprocal friendships (8,9,13,14,32,96,97,104,108,115,116,121-123)

Restricted Interests and Behaviors

• Rigid/perfectionistic personality (13,14,32,104,124,125)

Neurocognition

• Social-cognitive impairment (4,5,10,12,25)

• Executive control deficits (107,126,127)

• Featural processing bias (107,126-133)
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TABLE 2
Endophenotype Findings

Phenotype Chromosome Locus Reference

Language, communication 1p 1p36.23-p36.13 (18)

1p21.2 (28)

2q 2q31.1 (16)

2q33.1 (134)

3q 3q13.31-q26.1 (18)

5q 5q21.3-q23.1 (18)

5q12.3 (28)

5p 5p15.2-p13.1 (18)

6q 6q25.3 (28)

7q 7q21.2-q21.3 (135)

7q34-36.2 (17)

7q35 (18)

7q36.1 (84)

7q36.3 (28)

8q 8q23-q24 (136)

9q 9q34.2 (28)

10q 10q22.1-q23.22 (18)

10q22.3 (18)

10q22.3 (17)

10p 10p14-p15.3 (18)

11q 11q23.3-q24.1 (17)

11q23.3-q24.1 (18)

11q25 (28)

13q 13q22.1 (135)

15q 15q26.3 (18)

16q 16q24.1 (18)

16p 16p12-p13 (136)

17q 17q11.2 (137)

17q23.2-q25.1 (18)

18q 18q23 (28)

20p 20p11.22-q13.32 (18)

20p11.22-q13.32 (17)

22q 22q13.1 (28)

Social responsiveness 4q 4q34.1 (19)

10q 10q11.23-q26.3 (19)

11p 11p15.4-q22.1 (19)

17p 17p13.3-q23.2 (19)

Repetitive behavior/OCD 1q 1q42.2 (137)

7q 7q31 (138)

15q 15q11-q13 (139)

16p 16p13.3 (18)
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Phenotype Chromosome Locus Reference

17q 17q11.2 (140)

17q23.2-q25.1 (18)

Savant skills 15q 15q11-q13 (141)

Developmental regression 7q 7q36.1 (142)

10p 10p15.3 (28)

14q 14q32.2 (28)

21q 21q21.1 (142)

Rapid milestones 19p 19p13 (40)

Head circumference 7p 7p15.2 (143)
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