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Tandem mass spectrometry combined with database
searching allows high throughput identification of pep-
tides in shotgun proteomics. However, validating data-
base search results, a problem with a lot of solutions
proposed, is still advancing in some aspects, such as the
sensitivity, specificity, and generalizability of the valida-
tion algorithms. Here a Bayesian nonparametric (BNP)
model for the validation of database search results was
developed that incorporates several popular techniques
in statistical learning, including the compression of fea-
ture space with a linear discriminant function, the flex-
ible nonparametric probability density function estima-
tion for the variable probability structure in complex
problem, and the Bayesian method to calculate the pos-
terior probability. Importantly the BNP model is compat-
ible with the popular target-decoy database search
strategy naturally. We tested the BNP model on stand-
ard proteins and real, complex sample data sets from
multiple MS platforms and compared it with Peptide-
Prophet, the cutoff-based method, and a simple non-
parametric method (proposed by us previously). The
performance of the BNP model was shown to be supe-
rior for all data sets searched on sensitivity and gener-
alizability. Some high quality matches that had been
filtered out by other methods were detected and as-
signed with high probability by the BNP model. Thus, the
BNP model could be able to validate the database
search results effectively and extract more information
from MS/MS data. Molecular & Cellular Proteomics 8:
547–557, 2009.

Proteomics has become one of the most active areas of life
science research in the postgenomics era. MS is an analytical
technique widely used in proteomics research and provides

information on protein identification, characterization, and
quantification (1). MS/MS can analyze protein mixtures in a
high throughput manner and provide sequence information
for peptides and proteins (2, 3). Currently MS/MS data are
usually processed by the so-called database search method
or de novo sequencing (4, 5). Automated database search
software, such as SEQUEST (6), Mascot (7), Phenyx (8), and
X!Tandem (9), can assign mass spectra to peptides from a
protein sequence database quickly and provide scores to
measure the quality of these matches. Generally the search
engines select the best matches according to their scoring
models but do not guarantee the accuracy of the matches.
Consequently validation of database search results has been
the focus of much attention (10–13). Recently the challenge of
simultaneously improving the specificity and the sensitivity of
the quality of database search results was addressed by
Domon and Aebersold (11). Nesvizhskii et al. (12) also ad-
dressed this issue in their review on MS/MS data processing.

The research on the database search result validation
focused on finding the new features to distinguish the cor-
rect and incorrect matches; improving the sensitivity, spec-
ificity, and generalizability is the problem of main concern.
As a robust search engine, SEQUEST is commonly used in
many researches, and many algorithms, scoring models,
and statistical models have been developed to validate
SEQUEST database search results (14–17). Among them,
the target-decoy database search method is more favored
in the practice data processing because it is simple to apply
and is robust to the effects of database size, sample quality,
experimental conditions, and instrument type (12, 18, 19).
Nowadays probability frameworks, which can incorporate
the decoy database searching and the multiple result
validation features, are touched upon (20, 21), but more
comprehensive discussions are needed, such as the esti-
mation of false discovery rate (FDR)1 of the data set asFrom the ‡State Key Laboratory of Proteomics, Beijing Proteome

Research Center, Beijing Institute of Radiation Medicine, Beijing
102206, China, §School of Mechanical Engineering and Automatiza-
tion, National University of Defense Technology, Changsha 410073,
China, and **Institutes of Biomedical Sciences, Fudan University,
Shanghai 200032, China

Received, November 26, 2007, and in revised form, November 11,
2008

Published, MCP Papers in Press, November 12, 2008, DOI
10.1074/mcp.M700558-MCP200

1 The abbreviations used are: FDR, false discovery rate; LDF, linear
discriminant function; GDF, Gaussian density function; PDF, probability
density function; EM, expectation-maximization; Err, estimated error
rate; BNP, Bayesian nonparametric; FPR, false-positive rate; PScore,
probability score; PLen, peptide length; PNum, number of peaks in the
MS/MS spectrum; VEMS, Virtual Expert Mass Spectrometrist; MPF,
mobile proton factor; HPM, hypergeometric probability model.

Research

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Molecular & Cellular Proteomics 8.3 547
This paper is available on line at http://www.mcponline.org



a whole and the correct probability assignment for each
match (19).

In this study, we propose a Bayesian nonparametric (BNP)
model to incorporate a probability framework into the ran-
domized database searching method. A similar idea was also
proposed by Nesvizhskii et al. (12). The BNP model integrates
an extended set of features to validate database search re-
sults; these features were selected from the literature and
cover many characters of the spectrum, including SEQUEST
scores, empirical parameters, peptide fragmentation knowl-
edge, and chemical or physical properties of peptides. To
compress the feature space and reduce the computational
burden, an LDF was constructed based on the “typical la-
beled data set” from decoy database matches. Then a set of
component Gaussian density functions (GDFs) was used to fit
the LDF score distribution of random matches; the LDF score
distribution of correct matches was fitted with GDFs esti-
mated from the normal database matches, which were based
on observations of correct and random results. In the latter
step, the contribution of the incorrect matches remained un-
changed. Thus, we call our approach “restricted nonparamet-
ric probability density function (PDF) estimation.” Finally the
correct probability of each assignment was calculated using a
Bayesian formula, and the error rates for different cutoff val-
ues of the probability score were estimated. This method can
also estimate the total number of correct matches and the
false negative rate of the filtered data set.

The basic idea behind the BNP model is that, based on the
decoy database matches, a degraded filtering model can be
used to initialize an iterative process to refine the model and
improve the sensitivity. The principle underlying our model is
that what constitutes a high quality spectrum can be learned
from the analyzed data itself (22). In this way, the BNP
model automatically develops a statistical classifier for each
data set. By using a nonparametric approach, our model
can flexibly adapt to variable score distributions, which are
a frequent occurrence in database search result validation
in proteomics. Based on randomized database searching,
the model is sufficiently robust to analyze data sets derived
from different samples, experimental conditions, and mass
spectrometry platforms.

The BNP model was evaluated using three MS/MS spectra
data sets from standard proteins, and the results indicate that
our model performs well for peptide identification validation.
We also demonstrate that the new model is suited to different
MS instruments and databases, and it identifies more confi-
dent peptides than three other commonly used algorithms.
Furthermore we applied the BNP model to data sets derived
from real, complex samples analyzed by LCQ, LTQ, and
LTQ/FT mass spectrometers and obtained results consistent
with those from control data sets. When the confidence level
is fixed, the BNP model can increase the number of confirmed
identified peptides, including those with ambiguous mass
difference. Importantly the calculated probability detects

some high quality matches that other algorithms may filter
out. In summary, the BNP model provides a tool with the
potential to extract more information from MS/MS data.

EXPERIMENTAL PROCEDURES

Experimental Data Sets

To conduct a comprehensive evaluation of the Bayesian nonpara-
metric model, we applied our method to three control sample data
sets (named D1–D3) and five complex sample data sets (named
D4–D8) and compared the results with those generated by three other
methods. All the data sets were from different samples analyzed with
different mass spectrometers in different laboratories. These data
sets included most variable factors that have been shown to signifi-
cantly impact the generalizability of the different database search
result validation models. In the complex data sets, D4–D6 have been
used in our previous work (23); D7 and D8 were added to prove that
the BNP model was not overfitting.

Control Sample Data Sets—Three control data sets from the LCQ,
LTQ, and LTQ/FT instruments were used to investigate the FDR and
estimate error rates as well as some other parameters of the BNP
model. 1) The LCQ control data set (D1), published by the BIATECH
Institute (Bothell, WA) (24), was generated by analyzing a standard
mixture of 23 peptides and 12 proteins using an LCQ Deca XPPLUS

platform (Thermo Finnigan, San Jose, CA). Additional details about
this data set can be found in Purvine et al. (24). 2) The LTQ control
data set (D2), published by Proteomics Standards Research Group
(sPRG), was derived from six LC-MS/MS runs on the LTQ (Thermo
Finnigan) platform. The sample was designed to contain 49 purified
human proteins, but �200 proteins have been shown to be present in
the sample as announced by the research poster of sPRG 2006. 3)
The LTQ/FT control data set (D3), published by the Institute for
Systems Biology (25), was generated by analyzing the peptides in a
tryptic digest of a mixture of 18 proteins, the “ISB standard protein
mix,” on the LTQ/FT platform (raw data of Mixture 4).

Complex Sample Data Sets—We applied our model to three bio-
logical sample data sets analyzed by the LCQ, LTQ, and LTQ/FT
mass spectrometers. 1) The LCQ-shotgun data set (D4) was gener-
ated from the K562 cell line sample and was downloaded from the
Open Proteomics Database. This data set had been used by Resing
et al. (26) to illustrate the use of multisource information to improve
reproducibility and sensitivity in identifying human proteins by shot-
gun proteomics. 2) The LTQ-shotgun data set (D5) was generated
from MS/MS analyses of a human liver tissue sample (27). Peptides
generated by tryptic digestion were analyzed by reversed-phase LC-
MS/MS using a Thermo Finnigan linear ion trap mass spectrometer
(LTQ) with an ESI source. 3) The LTQ/FT-shotgun data set (D6), was
also generated from the human liver tissue sample. Strong cation
exchange chromatography was performed on the treated protein
mixtures, and each of 43 fractions collected was analyzed by the
LTQ/FT platform. This data set was produced by the Beijing Proteome
Research Center and was described previously (23). 4) The LTQ-
shotgun data set (D7) was generated from yeast proteins analyzed by
nano-LC-MS/MS using a nanoflow HPLC system connected to a
linear ion trap mass spectrometer (LTQ) (28), and the raw data were
downloaded from the PeptideAtlas (PAe000324). 5) The LTQ/FT-
shotgun data set (D8)2 was produced by the Beijing Proteome Re-
search Center by 10 reduplicated MS/MS analyses on yeast samples.

2 K. Liu, J. Zhang, J. Wang, L. Zhao, X. Peng, W. Jia, W. Ying, Y.
Zhu, H. Xie, F. He, and X. Qian, Anal.Chem., in press.
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Protein Sequence Database

All data searching was performed using SEQUEST against the
modified randomized sequence database by BioWorks 3.2 (29). For
control data sets the standard sequences, which included the purified
proteins and peptides as well as possible contaminants provided with
the data sets, were combined with the protein sequences from Meth-
anosarcina acetivorans C2A (4520 sequences in total; downloaded
from the National Center for Biotechnology Information (NCBI)) to
construct the target database. The human International Protein Index
(IPI) version 3.19 database, containing 60,397 protein sequences,
was the searched database of complex data sets D4, D5, and D6. The
Saccharomyces cerevisiae ORF protein sequence (download from the
Saccharomyces Genome Database (SGD) at Stanford University) was
used as the searched database for D7 and D8. Simultaneously the
random permutation amino acid sequence of digested peptide
(RSDP) method (30) was proposed to construct a randomized data-
base for each normal data set, and then the normal and randomized
data sets were combined and used for database search.

Database Searching

The raw files were searched against the combined database using a
local Turbo SEQUEST v.27 server using the same database search

parameters for all data sets. The SEQUEST parameters were as follows.
The monoisotopic mass was used for both peptide and fragment ions
with fixed modification (Carbamidomethyl, �57 Da) on Cys and variable
modification (oxidation, �16Da) on Met. The mass tolerance for precur-
sors of all data sets was 3.0 Da, and the fragment ion mass tolerance
was 1.0 Da for D7 and D8 and 0.6 Da for the others. Tryptic cleavage at
only Lys or Arg was selected, and up to two missed cleavage sites were
allowed. Only b and y fragment ions were taken into account. The
peptide mass ranged from 400 to 5000 Da when creating *.dta files, and
the threshold of the total ion intensity for the LTQ and the LCQ was 100
and 10,000, respectively.

BNP Model Work Flow

The work flow of the BNP model is shown in Fig. 1 and contains
three main steps. After MS/MS spectra were searched against the
combined database, the first step begins with the construction of two
typical labeled subsets. The first subset includes all decoy matches,
which were taken as negatives and designated y � 0. The second
subset consisted of matches validated (positives) by the cutoff-based
method with FDREst � 0.01 and designated y � 1. Based on these
subsets, the coefficients of the LDF score (Equation 1) could be

FIG. 1. Work flow for constructing and applying the BNP model. This procedure can be divided into three essential steps. 1, an LDF is
conducted on two typical labeled subsets, and the LDF score is calculated for each match. 2, the BNP model is constructed, and a probability
is computed for every assignment. 3, the PScore cutoff value is determined for a given FDR.
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estimated by multivariate linear regression. We were then able to
calculate the LDF score of all matches.

In the second step, the LDF score distribution of decoy matches was
fitted by a nonparametric PDF with the maximum likelihood parameter
estimation. By restricting the decoy matches as a constant part and
applying the expectation-maximization (EM) algorithm, the LDF score
PDF of correct matches can be estimated from the normal database
matches, which consisted of the combined observations of correct and
incorrect assignments. Consequently the correct probability of each
assignment can be calculated using the Bayesian formula and the
conditional distributions of correct and incorrect matches.

At the last step, we were able to make a decision according to the
cost function, which is presented here as the FDR; the FDR can be
replaced by estimated error rates in the probability framework. The
percentages of correct and incorrect matches were also estimated at
this step. Therefore, we can calculate the total number of correct as-
signments and provide the model specificity at each probability score
(PScore) cutoff value. When applied to large data sets, the BNP model
can reduce the computational burden by randomly resampling 30,000
observations of the whole data set for the model-building process.

Features Involved in the BNP Model and LDF

Many parameters (referred to as “features” in this study) have been
used to validate SEQUEST database search results; these include 1)
database search scores, including Xcorr, �Cn, Sp, RSp, and Ions; 2)
physical and chemical properties of the peptide and the basic prop-
erties of the experimental MS/MS spectra, such as peptide length
(PLen), predicted peptide chromatographic retention time (tRT), pep-
tide molecular weight, and number of peaks in the MS/MS spectrum
(PNum); and 3) the empirical parameters used in previous studies,
such as RScore (17), Cont (16), and SimScore (31). We used a total
of 28 features to improve the discriminant power of the BNP model
because a large amount of information was being extracted from
the MS data; these are listed, along with the corresponding trans-
formations, in Table I, and additional details are briefly summarized
in supplemental File S1. Table I lists the transformation of these
features to reduce the variance and improve their discriminant
power (32).

Therefore, the LDF score can be defined as

LDF score � a1 � Xcorr � a2 � �Cn � a3 � Ch_Seq_Idx

� a4 � Ch_MS_Idx � a5 � Sp � a6 � RSp � a7 � dm

� a8 � Ions � a9 � �M � H�� � a10 � TIC

� a11 � PNum � a12 � ScanNum � a13 � tRT � a14

� Max_Tag_Len � a15 � Cont � a16 � SimScore � a17

� Fdm_Avg � a18 � Fdm_std � a19 � HPM � a20 � iIons

� a21 � nIons � a22 � XIII � a23 � MPF � a24 � Pts � a25

� VEMS � a26 � RScore � a0 (Eq. 1)

where a0–a26 are the coefficients that can be derived by regression
from the “typical labeled data sets.” We constructed the LDF model
for each charge state (Ch) individually and used peptide length PLen
�6 as a prefilter in applying the model.

BNP Model and EM Algorithm

Based on the theory that the random matches and the correct
matches can be grouped into subclasses and that the LDF score of

each subclass should have a simple distribution (e.g. normal distri-
bution; some detailed discussion can be found in the supplemental
File S1), we used the Gaussian component distributions to simulate
the mixture distribution of the observations. The format of the hypoth-
esis mixture PDF is

p�x� � Ppos f�x� � Pnegg�x� (Eq. 2)

where

TABLE I
Features used in the BNP model

Three main classes and 28 features in total are introduced into the
BNP model to measure the characteristics of MS/MS spectra and
database search assignment.

Feature class
and feature Notea/Ref. Transformb

Database search
scores

Xcorr 1/6 —
�Cn 2/6 —
Sp 3/6 Log
RSp 3/6 Reciprocal
Ions 4/32 Absolute

MS/MS
spectrum or
peptide
properties

dm 5/26 Absolute
(M � H)� The molecular weight of

peptide/42
/100

TIC The total ion current of MS/MS
spectrum/42

Log

PLen Peptide length/42 —
PNum Peak number in the MS/MS

spectrum/43
Log

tRT Predicted retention time/44 —
ScanNum MS/MS spectrum scan

number/1000
/1000

Ch Charge state/45 —
Ch_MS_Idx 6/46 —
Ch_Seq_Idx 6/47 —

Empirical
parameters

Max_Tag_Len 7/48 —
Cont 7/16 —
Pts 7/49 —
Fdm_Avg Average mass error of

matched fragment ions
—

Fdm_std Standard deviation of mass
error of matched fragment
ions

—

HPM 8/50 —
iIons 9/42 —
nIons 9/16 —
XIII 9/51 —
MPF 10/45 —
SimScore 11/31 —
VEMS 12/52 —
RScore 13/17 —

a The number denotes the order of description in the supplemental
file S1.

b Some transformations, e.g. log, are implemented on the features
where indicated, and — means no transformation has been done to
the corresponding feature.
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and

g�x� � �
j � 1

m

Pj
neg

��j��1

�2��d/ 2 e�
1
2� x � �j�T �j

�1� x � �j� (Eq. 4)

and the �j, j � 1, 2, . . . m, and �i, i � 1, 2, . . . n, are means of the
component Gaussian distributions. �j, j � 1, 2, . . . m, and �i, i � 1,
2, . . . , n, are their covariance matrices. These parameters satisfy
�j � 1

m Pj
neg � 1 and �i � 1

n Pi
pos � 1; Ppos � 0, Pneg � 0; Pi

pos � 0, Pj
neg

� 0, and Ppos � Pneg � 1.
First the negative component contributing to random matches can

be estimated from the decoy matches by the fully nonparametric
probability density function estimate procedure proposed by Archam-
beau and Verleysen (33) and Duda et al. (34) that was implemented by
the maximum likelihood estimation with the EM algorithm. Then the
positive component contributing to correct matches can be estimated
from the mixture observations of the normal database matches by a
restricted fully nonparametric probability density function estimate.
This iterative EM procedure can be read as described previously (23)
with keeping Pj

neg, j � 1, 2, . . . , n, unchanged when updating the
parameters in the M-step. Here x is the LDF score, a scalar.

By trial and error, we found that five component GDFs can provide an
accurate PDF fitting. We initialized the parameters in the EM procedure
by partitioning the observations into five intervals on the LDF score axis
and keeping the number of observations in each interval equal.

After estimation of the conditional PDF, the correct probability of a
match with LDF score x can be given as follows.

pcorrect�x� �
Ppos f�x�

Ppos f�x� � Pneg g�x�
(Eq. 5)

The estimated number of correct matches is Npos � KPpos and the
number of incorrect matches is Nneg � KPneg where K is the total
number of observations. The FDR and false negative rate (FNR) under
different LDF score cutoff values can be estimated by the conditional
distribution and the prior probability as follows.

FDR�x� �

Pneg�
x

�	

g�t�dt

Ppos�
x

�	

f�t�dt � Pneg�
x

�	

g�t�dt

(Eq. 6)

FNR�x� � 1 � �
x

�	

ppos�t�dt (Eq. 7)

Assuming the expected FDR is �, we can determine the filtration
threshold of the LDF score x� according to Equation 6. At the same
time, the estimated sensitivity and discriminating power can be esti-
mated as follows.

Sen� � 1 � FNR�x�� (Eq. 8)

Spec� � 1 � FDR�x�� (Eq. 9)

Finally we can calculate the estimated error rate (Err) under different
PScore thresholds based on the correct probability of every identified
peptide using

Errest � �
Pi � P�

�1 � Pi�/�
Pi�Pi � P���� (Eq. 10)

where �{Pi�Pi � P�}� denotes the number of the elements in aggregate
{Pi�Pi � P�}. In practice, we found that ErrEst was close to the actual
FPR. So in the following sections, ErrEst was used as the estimation of
FDR for the BNP model.

RESULTS

Estimation of the FDR—The control data sets (D1–D3) were
used to verify the accuracy of the estimated FDR of the BNP
model. When the PScore cutoff is small, the FDR (Err) estimated
by the BNP model is larger than the actual FPR. For high quality
filtration, Err is close to the actual FPR (Fig. 2). Table II compares
the performance of the BNP model (M3), the cutoff-based
method (M1), PeptideProphet (M2; contained in the Trans-Pro-
teomic Pipeline version 4.0.1), and our previously published
nonparametric model (M4) (23) under two typical FDRs. In the
cutoff-based method, an exhaustive search procedure was
used to identify the optimal threshold value of the Xcorr/�Cn
pair by maximizing the number of validated normal database
matches and keeping the estimated FDR estimated lower than
the expected FDR. PeptideProphet provides an estimated error
rate for different probability score cutoffs. For all three data sets,
the sensitivity of the BNP model surpassed that of the three
other filtered methods when the estimated errors/FDRs were
the same. The traditional cutoff method produced high quality
results with quite a low actual FPR at a cost of the loss of some
sensitivity. Thus, the total correct numbers validated by the cutoff
method were much lower than those validated by the BNP model.

FIG. 2. Accuracy of the FDR estimated by the BNP model. The
solid lines are the actual FPRs for different PScore cutoff values, and
the dashed lines are the estimated FDR calculated by BNP model
under the same criterion. The FDR (Err) estimated by the BNP model
is larger than the actual FPR for lower PScore values, and for the
filtered results with high quality (larger PScore), Err is close to the
actual FPR.
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Although we used a relatively large parent ion mass toler-
ance setting (3.0 Da) for the FT/LTQ database search, the
actual mass accuracy of the FT mass spectrometer is in the
range of a few ppm. Mass accuracy filtering was proposed for
this high accuracy data (35, 36). As the statistical mass error
for D3 ranged from �2 to 6 ppm (23), validated results with a
mass error larger than 10 ppm were taken as false positives
and were excluded from the output lists of all filter methods.
The peptide assignment lists of three control data sets are
provide in Supplemental Tables S1_LCQ, S1_LTQ, and
S1_FT, and the corresponding filter criteria can be found in
supplemental File S2.

Searching a Larger Database—It is generally acknowl-
edged that search algorithms lose sensitivity as the search
space is increased because more peptides are queried (37).
Larger databases increase the number of candidate pep-
tides for each MS/MS spectrum, and the probability of
randomized matches increases as well. We constructed a
large combined database containing 13,936 protein se-
quences from four different Archaea species (M. acetivorans
C2A, Archaeoglobus fulgidus DSM 4304, Methanosarcina
barkeri strain fusaro chromosome 1, and Methanosarcina
mazei Go1; all downloaded from NCBI) and repeated the
database search to test the performance of the BNP model
on different searched databases. As the search space was
expanded, fewer matches were identified. When the esti-
mated FDR was set at 0.05 and 0.01, the BNP model
confirmed 804 and 708 matches, respectively (supplemen-
tal Table S1_LCQ). The actual FPR was 2.86 and 0.71%,
and the sensitivity was 91.24 and 82.13%, respectively.
These values are nearly identical to those observed when
searching a smaller database. The results indicate that the
BNP model is reliable and accurate on different searched
databases.

Among the validated matches of the large and small data-
base search results, 778 matches were the same. Only 15 of
the 40 matches validated by large database searching alone
were from the control sequences. On the other hand, 43
MS/MS spectra matched with the control sequence were
confirmed only in the small database search. These
matches may possibly be false positives, the MS/MS spec-
tra of which would be matched with a more appropriate
peptide in a different database. These observations indicate
that not all matches assigned to control sequences are
correct because some spectra matched with different pep-
tides in the large and small search spaces, and some were
randomly matched with control peptides. Thus, we used
four empirical rules to refine these possible correct matches
for sensitivity calculation: 1) Rsp 	 50, 2) PLen � 6; 3)
PNum � 20, and 4) Max_Tag_Len � 4.

Quality of the Results Confirmed by the BNP Model—We
also validated the confirmed matches identified by the BNP
model (M3) in the real, complex sample data sets using the
empirical rules (Table III). These empirical rules came from
different sources in the literature (16, 26, 38). In Table V, MTL
is the abbreviation for Max_Tag_Len, and other parameters
are introduced under “Features Involved in the BNP Model
and LDF.” Most of the matches confirmed by the BNP model
are of high quality in view of these empirical rules, and the
quality of the results improves as the accuracy of the data
increases. As a comparison, we calculated these percentages
for results obtained with the cutoff-based method (M1; without
the rule of Rsp 	 50). In some cases, the cutoff-based method
seemed to generate slightly better results, but the difference
was negligible, especially on the LTQ/FT data set (D6).

Comparison among Different Methods on Complex Data
Sets—We compared the performance of the BNP model (M3)
with the cutoff method and PeptideProphet on complex data

TABLE II
Performance of the BNP model on three control data sets

Data seta

and methodb

Expected FDR � 5% Expected FDR � 1%

Actual FPR Total/correct Sensitivity Actual FPR Total/correct Sensitivity

% % % %

D1
M1 2.23 719/703 78.29 0.53 567/564 62.81
M2 2.59 733/714 79.51 0.89 674/668 74.39
M3 2.20 820/802 89.31 0.40 758/755 84.08
M4 2.72 810/788 87.75 1.39 722/712 79.29

D2
M1 1.92 5,875/5,762 68.20 0.36 4,964/4,946 58.54
M2 2.17 6,775/6,628 78.45 0.51 5,895/5,865 69.42
M3 3.16 7,426/7,191 85.11 1.04 6,754/6,684 79.11
M4 1.91 7,001/6,867 81.28 0.55 6,333/6,298 74.54

D3
M1 0.13 10,284/10,271 74.80 0.03 9,182/9,179 83.70
M2 0.42 11,477/11,429 93.14 0.17 10,699/10,681 87.04
M3 0.50 11,983/11,923 97.16 0.09 11,388/11,378 92.72
M4 0.32 10,885/10,850 88.42 0.16 10,117/10,101 82.32

a D1, LCQ control data set; D2, LTQ control data set; D3, LTQ/FT control data set. For details see “Experimental Data Sets.”
b M1, cutoff-based method; M2, PeptideProphet; M3, BNP model; M4, nonparametric model.
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sets (D4–D8; Table IV). The BNP model confirmed about
14–39% more results, both total and unique peptides, than
the cutoff-based method. PeptideProphet appeared to be
influenced by data quantity and quality. For complex data sets
D5 and D7 containing more than 106 matches we had to
separate the *.pep.xml files (60 files in total) into several runs
because PeptideProphet requires too much memory, gener-
ates too large (greater than 4 gigabytes) a temporary file to be
accommodated by Windows, and requires an unacceptable
amount of time to complete the modeling. While conducting
the search on complex data set D6 (data from 46 LC runs in
total), the MS/MS data quality of some LC runs was so poor
that PeptideProphet was not able to finish the modeling and
validated very few peptides (only 18,446 correct with 1%
FDR). Therefore, we used the results of D6 from an earlier
version (PeptideProphet 1.9) that were superior to those de-
rived using Trans-Proteomic Pipeline version 4.0.1.

The list of peptide assignments of real, complex sample
data sets by M1, M2, M3, and M4 and the corresponding
proteins are provided in supplemental Tables S2_D4, S2_D5,
S2_D6, and S3.

The Venn diagram in Fig. 3 shows the classification of
confirmed peptides using these four methods. The peptides
confirmed by the BNP model represented more than 92% of
the merged results of the cutoff-based method and Peptide-
Prophet (M1 � M2) and represented more than 91% of the
nonparametric model; the BNP model confirmed many ad-
ditional results, indicating that the sensitivity of the BNP
model is much higher than that of the other two methods. By
manually checking the records that were discarded by the

BNP model but confirmed by the other two methods, we
found that some records had relative large Xcorr and �Cn;
careful inspection of these records showed that some other
feature scores, such as Ions, iIons, Cont, and nIons were
small, indicating that they were potential incorrect matches.

Conversion to Protein Identifications—In analyzing complex
samples, the most important criterion is the number of pro-
teins identified with confidence as output. The number of
unique protein counts and high confidence protein identifica-
tions (more than two or three peptide hits) for an FDR of 1 and
5% in each experimental data set are shown in Table V. The
minimal protein lists were assembled according to the parsi-
mony principle applied by the DBParser algorithm (39), and an
in-house software written in C�� was developed to support
our file format. It appears that the percentages of proteins with
two or three peptide hits provided by the four methods are
close. However, the BNP model can generate a large protein list
with a greater number of high confidence proteins. It is interest-
ing that the percentage of high confidence proteins cannot be
improved by improving the confidence level of resulting
matches if only one method (M1, M2, M3, or M4) is used.

DISCUSSION

Proteomics research has generated vast amounts of
MS/MS data. SEQUEST is a robust algorithm that is appro-
priate for processing low accuracy ion trap MS/MS data.
Using external tools to separate correct from incorrect
SEQUEST database search results has been the focus of
much attention. We developed BNP to filter the false-positive
matches in shotgun proteomics database searching. This

TABLE III
Validating the quality of confirmed matches on the real sample data sets

Empirical rulea

and methodb

Data setc

Expected FDR � 5% Expected FDR � 1%

D4 D5 D6 D7 D8 D4 D5 D6 D7 D8

MIT � 4 (%)
M1 93.21 98.94 99.55 98.81 99.97 94.51 99.55 99.85 99.36 99.99
M3 92.12 96.06 99.45 97.70 99.86 93.62 97.84 99.79 98.70 99.94

Ions � 0.2 (%)
M1 99.59 99.97 100.00 99.95 99.92 99.77 100.00 100.00 99.98 99.99
M3 99.60 99.94 99.26 99.92 99.92 99.70 99.96 99.56 99.96 99.98

RSp � 10 (%)
M1 96.88 91.96 90.33 89.88 98.45 98.99 96.05 95.50 94.67 99.74
M3 93.68 89.90 99.01 87.52 97.76 96.47 93.55 99.66 92.61 99.86

Cont � 0.2 (%)
M1 84.06 94.93 98.43 91.63 99.84 85.34 96.17 99.13 92.68 99.93
M3 84.62 95.16 99.15 90.70 99.64 85.43 95.96 99.54 91.75 99.76

iIons � 0.25 (%)
M1 97.71 93.71 96.23 98.77 95.83 98.41 95.21 97.85 99.15 95.81
M3 97.54 90.57 98.10 98.29 95.76 98.13 93.25 98.60 98.85 95.94

nIons � 0.2 (%)
M1 96.88 98.96 99.90 99.88 100.00 97.61 99.47 99.98 99.94 100.00
M3 96.07 95.29 99.94 99.83 99.99 96.97 97.16 99.97 99.88 100.00

a MTL, Max_Tag_Len; other parameters are described under “Features Involved in the BNP Model and LDF.”
b M1, cutoff-based method; M3, BNP model.
c For details of the complex data sets D4–D8 see “Experimental Data Sets.” D4, LCQ real sample data set; D5, LTQ real sample data set;

D6, LTQ/FT real sample data set.
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strategy is based on a randomized database method and
nonparametric density distribution functions. By applying this
model to control protein data sets and complex data sets
from real samples, we demonstrate that the BNP model has
greater power to discriminate between correct and incorrect
assignments and can effectively control the false-positive ra-
tio of peptide identifications. Furthermore the BNP model can

greatly increase the number of confirmed peptides and pro-
teins, and it is suited for use with several MS platforms.

BNP Model Versus PeptideProphet—Recently Choi et al.
(21) presented a variable component mixture model and a
semiparametric mixture model to remove the restrictive
parametric assumptions in the mixture modeling approach
of PeptideProphet. The most recent version of Peptide-

FIG. 3. Overlap of peptides identified by the three methods. M1 denotes the cutoff-based method without the rule RSp 	 50, M2
denotes PeptideProphet, and M3 denotes the BNP model. Taking 0.01 as the FDR, the peptides identified by the BNP model covered more
than 92% of the results of the cutoff-based method and PeptideProphet. The BNP model can also confirm significantly more results.

TABLE IV
Comparison of three filtering methods on large data sets

Data seta and methodb
Expected FDR � 5% Expected FDR � 1%

Confirmed matches Non-redundant peptides Confirmed matches Non-redundant peptides

D4
M1 13,632 5,378 11,512 4,555
M2 13,776 5,769 11,928 4,878
M3 18,151 6,942 15,897 5,941
M4 16,276 6,101 13,543 5,120

D5
M1 45,153 10,767 36,855 8,851
M2 57,009 13,593 47,304 10,737
M3 60,565 13,888 52,145 11,479
M4 53,561 12,048 44,602 9,940

D6
M1 40,746 5,540 34,185 4,458
M2 31,328 4,477 26,964 3,899
M3c 52,181 7,562 46,923 6,224
M4 45,470 6,049 40,047 5,249

D7
M1 99,952 9,010 80,222 6,313
M2 111,075 11,314 95,390 7,865
M3 123,499 12,177 104,598 8,131
M4 113,140 9,403 92,951 6,761

D8
M1 32,230 1,522 28,251 1,047
M2 16,486 897 12,430 648
M3d 36,709 2,099 33,217 1,436
M4 34,912 1,651 33,060 1,297

a For details of the complex data sets D4–D8 see “Experimental Data Sets.”
b M1, cutoff-based method; M2, PeptideProphet; M3, BNP model; M4, nonparametric model.
c The PeptideProphet results for D6 were generated using version 1.9.
d The decoy hits were not used to pin down the negative distribution in the D8 processing because there were too few decoy hits in the

database search result of D8 to meet the need of the modeling process of PeptideProphet.

BNP, a Model for Peptide Identification Validation

554 Molecular & Cellular Proteomics 8.3



Prophet provides an option to use nonparametric modeling
with target-decoy database searches. The process works
well on D3, which was the test data set in Ref. 19. The
number of validated peptides in D1 increased (964 for 5%
FDR and 798 for 1% FDR), but the actual FPR increased as
well (10.06 and 3.26% respectively); the numbers of identi-
fied peptides (7080 for 5% FDR and 6072 for 1% FDR) as

well as the actual FPRs (5.25 and 1.15%, respectively) do
not improve on the LTQ control data set.

BNP Model Versus Nonparametric Model—Both the BNP
model and our previously published nonparametric model (23)
are based on the target-decoy database search strategy. The
nonparametric model, using the nonparametric density esti-
mation technique, aims to estimate the multivariate PDF of the
database search scores directly and takes the contour lines
as the candidate discriminant functions to filter out false-
positive results. Based on the hypothesis that what consti-
tutes a high quality match can be learned from the treated
data itself (22), the BNP model was able to model the prob-
ability structure from the target-decoy search results and then
automatically classify the results. The nonparametric PDF
estimation in the BNP model provided a flexible framework for
the probability structure.

The primary parameters in the nonparametric model are
three commonly used database scores: Xcorr, �Cn, and Sim-
Score; incorporation of an additional feature dictates an ad-
ditional dimension of the feature space, and the complexity of
the model increases accordingly. The BNP model incorpo-
rates 28 features into a linear discriminant function and per-
mits convenient incorporation of more features as required.
Furthermore the BNP model can provide a correct probability
of each assignment that facilitates subsequent processes,
such as application of the EBP (Empirical Bayes Protein iden-
tifier) model for protein inference (40).

Extension of the BNP Model to a Higher Dimension—In this
study all 28 features were integrated by an LDF. This process
reduced the computational complexity but may result in the
loss of some information contained in the raw features. From
the view of principal component analysis, only the first main
principal component was used by the LDF model. It is possi-
ble to use more principal components and extend the BNP
model to a higher dimension space. The model building pro-
cedure will not require modification, but new techniques will
be needed to compress the feature space. Partial least
squares regression (41) can utilize the target classification

TABLE V
Comparison among the three methods on the protein level

Data seta
and methodb

Expected FDR � 5% Expected FDR � 1%

Protein
numberc

Proteins with
at least 2/3
peptide hits

Protein
number

Proteins with
at least 2/3
peptide hits

% %

D4
M1 1,894 51.9/35.7 1,630 54.0/36.0
M2 2,237 47.7/30.9 1,761 54.2/35.7
M3 2,362 50.8/35.1 1,916 55.9/39.3
M4 2,025 53.1/37.5 1,704 56.4/38.9

D5
M1 3,363 54.6/37.6 2,733 58.3/39.3
M2 4,573 49.1/33.4 3,175 59.1/41.5
M3 4,412 51.2/35.4 3,272 59.0/42.2
M4 3,511 57.1/40.7 2,810 61.6/42.8

D6
M1 2,723 42.0/23.0 2,193 42.5/22.8
M2 2,150 44.4/24.1 1,938 42.8/22.6
M3 3,714 41.1/22.5 2,861 45.2/25.9
M4 2,844 44.2/25.1 2,466 45.2/25.0

D7
M1 2,295 49.6/33.2 1,273 58.6/45.7
M2 3,071 55.0/35.1 1,815 51.8/38.5
M3 3,124 56.3/35.5 1,797 52.1/38.7
M4 2,242 51.4/34.1 1,240 61.1/48.1

D8
M1 518 33.4/23.4 246 49.6/39.4
M2 224 50.4/41.1 161 57.1/44.1
M3 895 27.4/15.6 418 37.8/27.3
M4 565 31.7/21.9 305 47.9/36.4

a For details of the complex data sets D4–D8 see “Experimental
Data Sets.”

b M1, cutoff-based method; M2, PeptideProphet; M3, BNP model;
M4, nonparametric model.

c The minimal protein lists including “protein group.”

TABLE VI
Examples of high quality matches detected by the BNP model

PScore Rank Peptide sequencea Xcorr �Cn

1 1 GVVDSEDIPLNLSR 4.7929 0
1 GVVDSEDLPLNISR 4.7929

0.981 1 SETAPAAPAAAPPAEK 3.5665 0.0286
2 SETAPAAPAAPAPAEK 3.5016

0.973 1 IEDLSQEAQLAAAEK 5.4036
2 IEDLSEQAQLAAAEK 5.3374

0.992 1 AQIHDLVLVGGSTR 4.5778 0
2 AKIHDIVLVGGSTR 4.5778

1 1 NPQQHLNAQPQVTMQQPAVHVQGQEPLTASMLASAPPQEQK 6.1680 0.0282
2 NPQQHLNAQPQVTMQQPAVHVQGQEPLTASMLASAPPQEEK 5.9939

1 1 RMEELHNQEVQK 3.7482 0.0271
2 PEIKLESLKEDIK 3.3659

a Indistinguishable amino acids and amino acid combinations are indicated in bold.
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information and complete the principal component analysis
and regression at the same time; this is a useful tool to use the
typical labeled data set to compress the dimension of the
feature space. But when more principal components are
taken, the initial procedure of the EM algorithm will have to
be adjusted, and more computational time will be required.

Why Did the BNP Model Validate More Matches?—The
BNP model is able to identify more high confident proteins
(with at least two peptide hits) from an MS/MS data set under
the same estimated FDR compared with PeptideProphet and
the cutoff-based method. Within 1% peptide FDR in the D4
data set, more than 90% of the proteins with two or more
peptide hits that were identified using PeptideProphet and the
cutoff-based method were also identified by the BNP model.

Confirming a higher number of confident peptides is the
greatest strength of the BNP model; thus, the BNP model
could offer a larger high confidence protein list under the
established peptide identification FDR, and it can provide
more information for downstream biological analysis. The ca-
pacity of the BNP model to confirm more peptides is due to its
ability to detect high quality matches that other algorithms
might filter out based on only a few features of these matches.
There are some conditions that would result in high quality
assignments being filtered out by other methods. The masses
of some amino acid pairs (e.g. Lys/Gln and Leu/Ile) as well as
several amino acid combinations (Table VI) are indistinguish-
able when the resolution of the instrument is low. Those may
cause the �Cn score to be small and, in some cases, as low
as zero. There are also some conditions for which the theo-
retical spectra of rank 1 and rank 2 identified peptides are
similar in SEQUEST outputs, which would also make the �Cn
score smaller than the commonly acceptable value of other
methods.

We investigated the LCQ complex data set and found 118
undistinguished assignment cases whose �Cn was less than
0.05. Some examples are listed in Table VI. The BNP model
assigned high confidence probabilities (PScore) for those
matches filtered by both PeptideProphet and the cutoff-
based method. Practically we might not be able to confirm
which was the true hit when we do not know the existing
proteins at all. To some extent, the BNP model may provide a
more objective judgment. In its present form the BNP model
cannot accommodate the similarity of theoretical spectra sys-
tematically, and introduction of a new parameter to measure
this characteristic would improve the performance of the
model in the future. The BNP model algorithm tool as well as
other scripts used for the SEQUEST search process will be
made publicly available.
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