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Renal cell carcinoma (RCC) accounts for 11,000 deaths
per year in the United States. When detected early, gen-
erally serendipitously by imaging conducted for other rea-
sons, long term survival is generally excellent. When de-
tected with symptoms, prognosis is poor. Under these
circumstances, a screening biomarker has the potential for
substantial public health benefit. The purpose of this study
was to evaluate the utility of urine metabolomics analysis
for metabolomic profiling, identification of biomarkers, and
ultimately for devising a urine screening test for RCC. Fifty
urine samples were obtained from RCC and control pa-
tients from two institutions, and in a separate study, urine
samples were taken from 13 normal individuals. Hydrophilic
interaction chromatography-mass spectrometry was per-
formed to identify small molecule metabolites present in
each sample. Cluster analysis, principal components anal-
ysis, linear discriminant analysis, differential analysis, and
variance component analysis were used to analyze the
data. Previous work is extended to confirm the effective-
ness of urine metabolomics analysis using a larger and
more diverse patient cohort. It is now shown that the utility
of this technique is dependent on the site of urine collection
and that there exist substantial sources of variation of the
urinary metabolomic profile, although group variation is suf-
ficient to yield viable biomarkers. Surprisingly there is a
small degree of variation in the urinary metabolomic profile
in normal patients due to time since the last meal, and there
is little difference in the urinary metabolomic profile in a
cohort of pre- and postnephrectomy (partial or radical) re-
nal cell carcinoma patients, suggesting that metabolic
changes associated with RCC persist after removal of the
primary tumor. After further investigations relating to the
discovery and identity of individual biomarkers and attenu-
ation of residual sources of variation, our work shows that
urine metabolomics analysis has potential to lead to a di-
agnostic assay for RCC. Molecular & Cellular Proteomics
8:558–570, 2009.

The study of all endogenously produced metabolites,
known as metabolomics (or metabonomics), is the youngest
of the omics sciences. It is becoming increasingly clear that,
of all of the omics techniques, metabolomics has the greatest
potential for biomarker discovery because this technique de-
fines the signature of the actual processes that are occurring
within the body rather than examining compounds (such as
untranscribed DNA or pre- or post-translationally modified
proteins) that may be superfluous to these processes (1). In
addition, there is a relatively small number of metabolites to
examine (with the notable exception of plants, which produce
a plethora of secondary metabolites) as compared with
genes, transcripts, and proteins in their respective omics
fields, and therefore the data germane to metabolomics are
more easily handled and analyzed. Proponents of metabolo-
mics provide convincing justification that this technique offers
more immediate translational benefit than the other omics
fields (1, 2).

The use of metabolomics through examination of patient
urine is in theory an ideal means to study diseases of the
urinary tract given that low molecular weight compounds
(such as small molecule metabolites) are freely filtered into the
urine. In addition, obtaining this biofluid can be done quickly,
easily, and in a non-invasive manner in the clinic. Thus, urine
metabolomics has potential utility in metabolic profiling as
well as for biomarker discovery for cancers of the urinary tract
(3). Once urinary biomarkers are discovered and validated,
they could conceivably be used for prognosis as well as to
predict response to targeted therapies as obtaining urine is
always more feasible than gaining access to tumor tissue.

There have been several studies looking at single com-
pounds in the urine as markers of non-malignant renal dis-
ease. These compounds include N-acetyl-�-D-glucosamini-
dase, neutrophil gelatinase-associated lipocalin, human
kidney injury molecule-1, and interleukin-18 for kidney injury
(4, 5); one of the same molecules, human kidney injury mol-
ecule-1, has also been proposed as a marker for RCC1 (6).
The metabolite glucose, when present in urine, has been
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utilized for centuries as a biomarker of diabetes. Studies in our
laboratory have focused on examining the entire metabolome
to determine whether a pattern of such metabolites in the
urine (including known as well as unknown) can result in the
diagnosis of RCC. Our pilot study, using relatively few sam-
ples, showed that these two groups can be clearly differenti-
ated, demonstrating for the first time that this disease is
amenable to such a technique (3).

Although, based on this and our previous work, urine
metabolomics appears to be a powerful technique for evalu-
ation of RCC, there exist challenges associated with this
technique that will need to be addressed prior to its general
clinical applicability. In the current study, we identified some
of these issues and confirmed our pilot study on the utility of
urine metabolomics in RCC. Two sets of urine samples from
patients with clear cell RCC and control patients were ob-
tained from two separate institutions. A separate set of urines
was obtained from a normal group of individuals to determine
the influence of mealtimes on changes of metabolomic pro-
files. Statistical analysis of mass spectrometric data confirms
that cancer and control patients can be segregated using a
larger cohort of samples; however, the urinary metabolic pro-
file is dependent on institutional site of sample collection.
Additionally when sources of variation in the data sets were
evaluated, it was found that only a small portion of measured
urinary metabolites mainly contribute to the disease variability
between cancer and control groups; these are the metabolites
to target for future identification and biomarker discovery.
Surprisingly urine samples collected from patients several
months postnephrectomy were not separable from urine sam-
ples of prenephrectomy patients, suggesting that metabolic
abnormalities of the disease were not altered in the short term
by removal of the tumor. In addition, there was little variation
in the urinary metabolome due to the time since the last meal,
suggesting that fasting samples are not necessary for this
type of analysis. These data confirm the utility of urine
metabolomics analysis for RCC and inject a note of caution
about issues that complicate interpretation of the data and
that will need to be worked out before the technique is clini-
cally useful.

EXPERIMENTAL PROCEDURES

Sample Procurement

After approval by the appropriate Institutional Review Boards, ran-
dom (in the case of control) or fasting preoperative or 2–3-month
postoperative (in the case of experimental) urine samples from clear
cell RCC patients of various ages and genders and at various stages
and grades were obtained from the urology clinics at the University of
California, Davis (CA) Medical Center or the University of Texas Health
Science Center at San Antonio (TX). Control patients from the Uni-
versity of California, Davis data set were patients seen in the urology
clinic but who did not have known kidney cancer or renal insuffi-
ciency. At TX, two samples were obtained from RCC patients: sam-
ples prior to nephrectomy (treated as preoperative cases) and after
nephrectomy in the same patients (treated as postoperative controls).
All experimental urine samples were obtained prior to chemotherapy,

radiation, or (in the case of all University of California, Davis and
preoperative TX samples) nephrectomy. In a separate study, urines
were taken from a cohort of 13 normal female individuals at different
times of the day and at variable times after meals. In all collection
procedures, voided urine was collected in a urine specimen container
and frozen at �80 °C within 2–6 h of collection. All urines were kept
on ice until frozen.

Hydrophilic Interaction Chromatography (HILIC)-MS Analysis

HILIC-MS analysis was performed as described previously (3).
Briefly neat urine was mixed with an equal volume of acetonitrile at
room temperature. All samples were spun for 5 min at 13,000 rpm
prior to injection for particulate matter removal. Liquid chromatogra-
phy was performed using acetonitrile (LC-MS grade, J. T. Baker Inc.)
(A) and 13 mM ammonium acetate buffer (pH 9.1 for HILIC, adjusted
by ammonium hydroxide) (B) as the mobile phase at flow rates of 0.5
ml/min at 40 °C. Ammonium acetate (extra pure, EMD Biosciences),
ammonium hydroxide solution, and acetic acid (glacial, J. T. Baker
Inc.) were purchased from VWR. Water was used purified by a Milli-Q
Gradient A 10 system (Millipore).

HILIC separations were performed with a Survey or HPLC module
(Thermo Fisher) and an Aphera NH2 polymer (150 � 2 mm, 5-�m
particle size; Astec, Whippany, NJ). After a 5-min isocratic run at 20%
B, a gradient to 35% B was concluded at 20 min, and then a gradient
to 90% B was completed at 30 min. The injection volume was set to
3 �l. HPLC columns were connected to the electrospray interface of
the Finnigan LTQ (Thermo Fisher) linear ion trap mass spectrometer
without splitting. Nitrogen sheath gas pressure was set to 7 bars at a
flow rate of 2–3 liters/min. Spray voltage was set to 5 kV. The tem-
perature of the heated transfer capillary was maintained at 350 °C.
Full-scan mass spectra were acquired from 80 to 800 daltons and unit
mass resolution in both modes, positive and negative.

Raw Data Processing and Deisotoping

The peak finding in individual chromatograms and subsequent
peak alignment across all chromatograms was performed using
MarkerView 1.1 software (Applied Biosystems, Foster City, CA). Prior
to data processing the files containing the Thermo LTQ chromato-
graphic data were converted from the original Xcalibur (*.raw) format
into netCDF (*.cdf) format using the XConverter program (Thermo
Fisher) to ensure format compatibility with MarkerView 1.1. Peak
finding options were set as follows: subtraction offset, 10 scans;
subtraction multiplication factor, 1.3; noise threshold, 3; minimum
spectral peak width, 0.5 amu, minimum retention time peak width,
two scans; and maximum retention time width, 1000 scans. Peak
alignment options were set as follows: retention time tolerance, 0.5
min; mass tolerance, 0.8 min; and maximum number of peaks, 5000.
If peaks were found in fewer than five of the samples (10% of all
samples), this feature was automatically discarded using a filter set-
ting of MarkerView. Peak area integration was performed using raw
data. No data normalization was implemented.

The data that constitute retention time, mass, and peak areas of
detected and aligned peaks were exported from MarkerView into
comma-separated variable (*.csv) format. Overall the software de-
tected 1929 aligned spectral features in a cancer versus control data
set and 2593 aligned features in a control data set. First isotopic
peaks (�1 amu), sodium (�22 amu), ammonium (�17 amu), and
potassium (�38 amu) adducts were detected using a MatLab (Mat-
Works, Natick, MA) script that detects and marks mass differences
listed above within a �0.05 min retention time window and a �0.25
amu mass window (supplemental Fig. 1). The marked ions were
curated manually, and a higher mass counterpart corresponding to an
isotopic peak or adduct was removed resulting in a reduction from
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1929 to 1766 features in the cancer versus controls data set and from
2593 to 2333 features in the normal patient data set. The resulting
data were directed for statistical analysis.

Statistical Analysis

Statistical analysis was programmed with the R 2.6.2 language and
environment (The R Foundation for Statistical Computing, Auckland
University, Auckland, New Zealand) and SAS 9.1 (SAS Institute Inc.,
Cary, NC). We observed that the overall intensity of the metabolomic
spectrum was slightly higher in the RCC samples than the control
samples. Hence sample mean normalization was undertaken to facil-
itate comparison between the two disease groups before transforma-
tion and analysis. Statistical analysis methods that we had planned to
apply in this study, such as dimension reduction, clustering, and
differential analysis, are based on the assumption that variability of
measurements does not depend on the measurement levels. How-
ever, as for other high throughput data, the variance in our data
tended to rise with the intensity. Hence we applied log (base 2)
transformation to the metabolite peak intensities prior to analysis in all
models to stabilize the variance.

Identifying the Groups of Like Samples—Hierarchical cluster anal-
ysis was performed to join together or split off individual samples
based upon a measure of their similarity/dissimilarity. The process
starts with each sample in a separate cluster and then combines the
clusters sequentially, reducing the number of clusters at each step
until there is just a single cluster. At each stage, distances between
clusters were computed by Ward’s linkage algorithm (7). This method
uses an analysis of variance approach and minimizes the sum of
squares of any two clusters that can be formed at each step. To assess
the uncertainty in hierarchical cluster analysis, clustering was performed
on 1000 bootstrap replicates, and consensus dendrograms were con-
structed using the R package pvclust (8). The measures of stability for
each node were calculated using both normal bootstrap resampling
(bootstrap probability p value) and multiscale bootstrap resampling
(approximately unbiased (AU) p value). The dendrograms were exam-
ined for separation or clusters relating to the two groups of disease,
RCC and control or pre- and postoperative nephrectomy, and variation
related to site differences between CA and TX urine samples.

Principal Component Analysis and Linear Discriminant Analysis—
Principal component analysis (PCA) was initially applied for dimension
reduction. The goal of the PCA was to reduce 1766 intensity meas-
urements to a small number of principal components that explain
most of the variation in the data (9). Then linear discriminant analysis
(LDA) (10) was performed on the first k principal components to derive
a linear classifier. We estimated misclassification errors using Bayes’
rule for each choice of k. The prior probability was set to be equal for
all groups. The group membership (disease status) was determined
based on the posterior probability of assigning a subject to a group.
Error of classification was estimated by the proportion of subjects that
were misclassified. The leave-one-out cross-validation method was
used to evaluate the accuracy of the metabolic profile that predicts
the group membership of a sample on the basis of the classifiers. The
procedure is based on repeatedly withholding one patient at a time,
and the complementary training set is used for the prediction error
estimation. The validation method includes the construction of prin-
cipal components based on all metabolites prior to the class sepa-
ration step by LDA for every training set. The prediction error is
calculated by the rate of misclassified samples when predicting for
each sample using the training set. This procedure is repeated, leav-
ing out each patient at a time until all patients have been classified
and then averaging the prediction error rates over all the possible
training sets.

Differential Analysis—Differential analysis was performed to identify
metabolites whose expression differentiates the RCC case from nor-

mal using a t test or paired t test. Multiple tests were controlled by the
false discovery rate (FDR), the expected proportion of false positives
among the tests declared significant (false plus true) (11). An FDR-
adjusted p value �0.05 was considered as significant. Based on the
distribution of p values in t tests, a mixture model approach was used
to estimate the posterior probability that a metabolite is a true positive
by fitting the log likelihood function of a mixture model (12). Briefly a
mixture model assumes that for each of k metabolites a null hypoth-
esis of no difference in intensity level between cases, H0i: �i � 0, i �
1,… k (�i � difference in mean intensity level between two groups for
the ith metabolite), is tested for all k metabolites with a valid test
statistic, thus generating k p values. Under the composite null hy-
pothesis that no metabolite levels are different (i.e. H0i: �i � 0 for all
i � 1, …, k), the k p values are expected to follow a uniform distribu-
tion ranging from 0 to 1. For the m (m � k) metabolites for which the
alternative hypothesis that at least one metabolite has significantly
different intensity levels is true, the k p values are expected to follow
a non-uniform distribution that tends to go higher near 0 than around
1. A mixture of uniform and non-uniform distributions models the
distribution of p values. The parameter values in the mixture model
were estimated using maximum likelihood techniques combined with
a bootstrap procedure. The fitted mixture model was used to estimate
the posterior probability that a metabolite is differentially expressed
between the two groups. The posterior probability is the Bayesian
probability that a metabolite with a given frequentist p value or smaller
is truly different between the two groups being studied. In addition
to the FDR-adjusted p values, the posterior probabilities were used
to prioritize most promising metabolites in order of significance
quantitatively.

Evaluation of Relative Magnitudes of Different Sources of Varia-
tion—A metabolomics experiment has many different sources of var-
iation that can be attributed to disease cause and other factors.
Variation results from urine sample heterogeneity, sex, age, disease
progress stage, and other factors. We performed variance compo-
nent analysis to examine the relative contributions of various factors
in a metabolomics experiment (13). The relative magnitudes of differ-
ent sources of variation were estimated using a linear mixed model in
the PROC MIXED procedure of SAS 9.1 using the REML option. The
peak intensity levels of each metabolite, Yi, were modeled as follows:
Yi � �i � Groupi � Sexi � Agei � Grade(Group)i � �i where Group �
N(0, �G

2 ) is the effect of disease group variation among measurement
units, Sex � N(0, �S

2) is the effect of sex variation among measure-
ment units, Age � N(0, �S

2) is the effect of age variation among
measurement units, Grade(Group) � N(0, �2

Grade) is the effect of
tumor grade variation nested within disease group, and �i � N(0, �R

2)
is the residual error, i.e. variation caused by factors other than the
variables included in the model. Disease group effect could be con-
founded by variation caused by factors other than the sex, age, and
tumor grade. For each metabolite, variance components were esti-
mated. The total variance was assumed to be the sum of five com-
ponents: VARTot � VARGroup � VARSex � VARAge � VARGrade(Group) �
VARResidual. The relative proportion of each source of variation was
calculated as a ratio of the variance estimate to the sum of all variance
estimates. For example, pGroup � VARGroup/VARTot calculates the
proportion of disease group variation, and pGroup � VARResidual/
VARTot calculates the proportion of variation due to unaccounted
variation (residual error).

RESULTS

Recent advances in column technology such as HILIC cou-
pled to electrospray mass spectrometry allow the detection of
highly polar compounds that appear in urine (3, 14). All urines
were analyzed by the HILIC-MS technique because of the
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three techniques examined previously (gas chromatography-
TOF-MS, reverse phase LC-MS, and HILIC-MS; see Ref. 3)
HILIC-MS yielded the best separation in this study. As in the
previous study, we did not attempt to identify all of the de-
tected peaks but rather focused on evaluation of the use of
the mass spectrometric and peak processing techniques for
the development of diagnostic tests for RCC. The hypothesis
was that a large group of potential biomarkers was more likely
to evolve patterns for disease recognition than any single
compound; once discovered as a potential biomarker, such
metabolites can be chemically identified in later studies.

Variability in the Measurements of Metabolite Peak Intensity
Levels in Normal Subjects—To determine the sources of var-
iability in metabolomics analysis in normal subjects to answer
the question as to whether fasting, age, body mass index
(BMI), medication, or menopausal state affects the urinary
metabolome, we recruited 13 healthy female subjects with
varied characteristics. The participants were aged 23–76
years (46.31 � 12.76 years). BMI was 26.52 � 7.13 kg/m2 and
individual BMI varied from 17.6 to 38.6 kg/m2. Of the 13
participants who were included in the study, six (46%) were
premenopausal, four (31%) were perimenopausal (i.e. had
early symptoms of menopause), and three (23%) were post-
menopausal. Subjects were more likely to take medication(s)
in the morning hours after the fasting urine sample was ob-
tained. Eleven participants had taken medication in the morn-
ings, and four had taken medication in the afternoons. We
utilized several urine samples from each subject: a.m. (fast-
ing), p.m. (30 min to 1 h after a meal), both in the same day,
and a random sample (10 min to �8 h after a meal) on a
separate day. When separated by HILIC-MS and the signifi-
cant features were analyzed as described under “Experimen-

tal Procedures,” 2333 metabolites were discovered. Fig. 1
shows the distributions of magnitudes of peak intensity levels
of all measured metabolites in each sample from each
subject.

To analyze the overall levels of all urinary metabolites within
and between these normal subjects, box plot analysis of
metabolite levels of identified metabolites (i.e. chromato-
graphic peak areas) was performed. It can be seen from this
analysis that all samples showed a similar range of metabolite
levels (Fig. 1). However, metabolite levels for some subjects
were more tightly grouped than for others. For example, the
distribution of metabolite expression values for each urine
sample of subject 10 tended to be similar, whereas those for
subject 7 were more divergent. For subject 10, the values
from the a.m. urine sample correlated with the values from the
p.m. urine sample (r � 0.987) approximately as well as with
the values from the random urine sample (r � 0.979) as judged
by the Pearson correlation coefficient. For subject 7, the cor-
relation between the a.m. and p.m. urine samples (r � 0.912)
was smaller than that between the a.m. and random urine
sample (r � 0.929). The intrasubject urine sample correlations
varied from r � 0.910 to r � 0.987, whereas the intersubject
urine sample correlations ranged from r � 0.785 to r � 0.977,
suggesting that intrasubject variability is smaller than inter-
subject variability.

The Effect of Mealtimes on Metabolomic Variance in Normal
Subjects—To determine the influence of meals and mealtimes
on changes of urinary metabolite profiles, we compared the
intensity levels for individual metabolites between the a.m.
samples and random samples and p.m. samples using the
paired t test. Among 2333 metabolites, 16 (0.68%) metabo-
lites showed significant differences between the a.m. and

FIG. 1. Comparison of distribution of
metabolite levels within patients and
between patients. Box plots represent
the distribution of metabolite peak inten-
sity measurements (on log2 scale) from
intrapatient urine samples (in order of
a.m. (fasting), p.m., and random) across
all subjects. The box is drawn from the
25th to 75th percentiles in the distribu-
tion of intensities. The median, or 50th
percentile, is drawn as a black horizontal
line inside the box. The mean is repre-
sented by the blue horizontal line inside
the box. The whiskers (lines extending
from the box) describe the spread of the
data within the 10th and 90th percen-
tiles. The dots display any points beyond
the 10th and 90th percentiles.
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random samples (see Fig. 2a, red lines). There were 104
(4.45%) metabolites whose expression was differentially ex-
pressed between the a.m. samples and p.m. samples (Fig.
2b). However, after adjustment for FDR, none of those signif-
icant metabolites were declared as significant at FDR-ad-
justed p value �0.05. It appears that more variation of me-
tabolites was seen in the p.m. (obtained postmeal) urines as
compared with the random urines taken irrespective of meals
taken on a subsequent day, suggesting that changes in urine
metabolite analysis are more pronounced in urines after a
meal as compared with urines randomly collected and fasting
urines. For the majority of the metabolites, the effects of meals
on metabolomic variance were minimal. For these reasons,
we did not control for fasting or time after meal status in
subsequent analyses.

Investigation of RCC Group- and Study Site-related Varia-
tions by Cluster Analysis—In the next set of experiments,
urine samples from 11 patients with clear cell RCC (various
stages and grades) and 15 non-RCC control patients were

obtained from the urology clinic at CA, and 12 prenephrec-
tomy clear cell RCC and 12 postnephrectomy (seven partial
and five radical) were obtained from urology clinics at TX. Pre-
and postoperative urines were from the same patients ob-
tained at clinic visits from 1 to 5 months after surgery, and
fasting status was not controlled due to the observation de-
scribed above under “The Effect of Mealtimes on Metabolo-
mic Variance in Normal Subjects” using normal subjects. Un-
supervised hierarchical cluster analysis was first performed to
investigate whether the urine samples from RCC and control
patients separated according to disease status and/or study
site. The dendrograms showed separation between RCCs
and controls and samples obtained from the CA and TX
collection sites (Fig. 3).

There was distinct separation of the CA control urine sam-
ple cluster from both the CA RCC and the TX RCC urine
clusters (both preoperative and postoperative). Separation of
the preoperative TX RCC and postoperative TX RCC urine
sample groups appeared to be less distinct and formed a

FIG. 2. Comparisons of metabolo-
mic spectra between varied times of
day of urine collection. A first morning
fasting sample (a.m.), a 30-min to 1-h
postmeal sample (p.m.) on the same
day, and a random sample taken irre-
spective of meals taken on a subsequent
day (random) were obtained from normal
subjects, and metabolites were analyzed
by HILIC-MS. The standardized mean
difference in intensity level for each of
the metabolites (x axis) is shown on y
axis. The red line represents the metab-
olites whose levels are significantly dif-
ferent between the two urine collection
times.
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tighter cluster although the (preoperative) CA RCC cluster
clearly separated from the preoperative TX RCC cluster. Thus,
urine sample metabolomic features segregate in part due to
locale of collection, and 1–5-month postoperative samples
demonstrate features similar to those of the preoperative
samples collected from the same collection site.

Identifying Differential Metabolites Associated with Disease
Status and Surgery Status—To identify metabolites that influ-
ence the differences between disease group and surgical
status the most, we next compared the intensity levels for
individual metabolites between the control group and RCC
case group in the CA data set. Among 1766 metabolites, 455
metabolites showed statistically significant differences be-
tween the two disease groups (supplemental Table 1). How-
ever, after adjustment for FDR, 212 metabolites were signifi-
cantly differentially expressed between the two groups at
FDR-adjusted p value �0.05. For the TX data set, there were
only five metabolites whose intensity level altered after sur-
gery. Among these five metabolites, none was declared as
significant at FDR-adjusted p value �0.05. To prioritize the

most promising metabolites as metabolomic profile biomark-
ers, we applied a mixture model approach to estimate the
posterior probability of a metabolite being a true positive by
fitting the log likelihood function of a mixture model on the
distribution of resulting t test p values. The mixture models
estimated that 212 metabolites had posterior probabilities
greater than 92% that a metabolite is truly expressed differ-
entially between the control and RCC groups in the CA data
set. These metabolites will be chemically identified in future
studies.

Principal Component Analysis of HILIC-MS Urinary Metabo-
lomic Profiles—To discern the presence of inherent similari-
ties in spectral profiles, we initially performed PCA of all
HILIC-MS spectra obtained from each sample. Because the
cluster analysis showed that the urinary metabolite profile is
dependent on institutional site of sample collection, we kept
CA samples separate from TX samples for the remainder of
the analyses. A representative spectrum of all the urine sam-
ples from CA is mapped in the space spanned by the first
three principal components PC1 versus PC2 versus PC3 (Fig.
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FIG. 4. Three-dimensional PC scores plots derived from the LC-HILIC spectra of urine samples show differences between cancer
and control urine metabolomic profiles. PCA plots are derived from spectral data with percentage of variance captured by each PC for CA
samples (a–c) and TX samples (d–f). op, operative.
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4a). 40% of the total variance in the data was captured by the
first three components. The score plot of PC1 versus PC2
shows separation between RCC (red circle) and control (or-
ange triangle) samples as expected based on the cluster
analysis (Fig. 4b). The score plot of PC3 against PC1 and PC2
illustrates that PC3 did not help in separating samples ac-
cording to disease status (Fig. 4c). It is clearly shown that PC1
and PC2 together (30% of variance) captured most of the
variations between the controls and RCC cases. This obser-
vation is consistent with cluster analysis shown above and
using samples distinct from our pilot study (3) and confirms
the utility of urine metabolomics analysis in segregating RCC
from control patients. The PCA score plots of the PCs showed
no separation between the preoperative and postoperative TX
samples (Fig. 4, d–f) consistent with the cluster analysis
shown above where the preoperative and postoperative sam-
ples formed a large single cluster rather than two smaller
clusters. Thus, urine metabolite profiles (i) can separate RCC
from urology clinic control patients and (ii) are not separable in
urine samples taken before and soon after removal of the
primary tumor.

To determine which regions of the spectra are causing
separation between the two groups, we examined the load-
ings of PC1 and PC2 and found that highly differentiated
peaks between the two groups (t test p value �0.05 and
posterior probability �0.85) appeared to have heavy loadings,
suggesting that those peaks were the most influential for the
disease group separation in the CA samples (data not shown).
Thus, the peaks with heavy loadings play a major role in
classification of RCC versus control. The investigation of the
higher order PCs revealed no additional separation between

the groups; thus, the first two to four components (30–50% of
variation) appeared to yield sufficient discriminatory power for
the present study. For the TX samples, the first 20 compo-
nents (99.46% of total variation) were needed for good sep-
aration between the pre- and postoperative samples.

Prediction of Group Membership by Linear Discriminant
Analysis—To determine the classification rule and derive the
best classifier that can separate urine samples into a number
of groups, we utilized the supervised discriminant method,
LDA. The LDA was carried out to derive a linear classifier
using the first k principal component scores as new features
that describe samples. Table I summarizes the prediction
results for each choice of k, the number of PC scores to LDA.
The predictive performance varied by the choice of k. The
score plot of the first discriminant and the posterior probabil-
ities of correctly assigning samples to the true group (k � 4)
are shown graphically according to cancer status and site of
collection (Fig. 5).

The predictive performance of the linear discriminant model
was validated by the leave-one-out cross-validation method.
Table II shows the average percentage obtained from 26 and
24 linear discriminant models for the CA and TX samples,
respectively. The cross-validated prediction results show that
for four-component models the differences between the con-
trol and RCC samples can be predicted accurately in 89.8%
of RCC cases for the CA data set. The overall rate of correct
classification was 88.31% within the CA set. In the case of TX
samples, a poor classification was attained as expected due
to the lack of separation between the pre- and postoperative
samples as shown in clustering as well as PCAs shown earlier.
The differences between the preoperative and postoperative

TABLE I
Summary of prediction of group membership using LDA for each choice of k, the number of PC scores

k, the number of the first principal components used in linear discriminant analysis. Percentage of total variation, the percentage of total
variance in data that is explained by the first k principal components.

k
Percentage of
total variation

Overall percentage
of correct predicted

classifications

Percentage of correctly
classified RCCsa

Percentage of
misclassified RCCsb

CA, n � 26 (prediction of RCC)
2 30 88.46 90.91 13.33
3 40 88.46 81.82 6.67
4 50 88.46 90.91 13.33
5 57 88.46 90.91 13.33
6 63 100 100 0

TX, n � 24 (prediction of preop)
2 43.4 54.17 66.67 58.33
3 55.2 66.67 58.33 25
4 62.9 66.67 50 16.67
5 68.85 58.33 58.33 41.67
10 88.2 58.33 58.33 41.67
15 96.08 79.17 75 16.67
20 99.46 95.83 91.67 0
21 99.75 100 100 0

a Percentage of correctly classified RCCs is the percentage of RCC (preoperative (preop)) samples correctly classified as RCC (preoperative).
b Percentage of misclassified RCCs is the percentage of controls (postoperative) misclassified as RCC (preoperative).
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samples are predicted accurately in 56.19% of preoperative
samples. For most of the TX samples, the posterior probabil-
ities of correctly classifying samples to their true group mem-
bership ranged around 50% (Fig. 5d).

Estimation of Variance Components in Urology Clinic Pa-
tients—Variations in metabolomics data can arise from sev-
eral sources that are attributed to both biological and techni-
cal causes. Biological variations result from heterogeneity
among samples due to disease status, sex, age, race, gene-
environment interactions, and other factors that are real and
of interest to investigators. Technical variations reflect
changes in experimental conditions during data processing,
which can significantly impact the quality of data and intro-
duce bias to results. Hence variance component analysis was
next performed to assess the relative contributions of various
factors in our metabolomics experiment. We estimated the
relative magnitudes of sources of variation using the 26 sam-
ples collected at the University of California, Davis and the 24
samples collected at the University of Texas at San Antonio
separately because the two data sets had different sources of
group variation. The group variation in the CA data set re-
sulted from the presence/absence of disease, whereas the

group variation in the TX data set was due to the removal of
the primary tumor.

For each metabolite within the CA data set, intensity levels
were modeled as follows: Yi � �i � Groupi � Sexi � Agei �

Grade(Group)i � �i where Group � N(0, �G
2 ) is the effect of

disease group variation among measurement units, Sex �

N(0, �S
2) is the effect of sex variation among measurement

units, Age � N(0, �A
2) is the effect of age variation among

measurement units, Grade(Group) � N(0, �2
Grade) is the effect

of tumor grade variation nested within the disease group, and
�i � N(0, �R

2) is the residual error, which is the portion of total
variance that cannot explained by the factors included in the
model. The model was fit separately on the peak intensity
level measurements of each of the metabolites. All factors
were treated as random, and variance components were es-
timated. The distributions of relative magnitudes of different
sources of variation showed that most of the metabolites had
small biological variance, indicating little variability of meas-
ured intensity levels between the different groups (Fig. 6a). A
small portion of the metabolites showed large variation be-
tween the two different disease groups: 112 metabolites (6%)
(metabolites at the upper tail in Fig. 6a, Group) had relative

FIG. 5. Prediction of group member-
ship using LDA for the choice of k � 4.
LDA analysis was performed on all sam-
ples for CA samples (a and b) and TX
samples (c and d). The posterior proba-
bilities for the groups are shown on the y
axis. The absolute posterior probability is
the probability of assigning a sample to
each group. op, operative.
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proportions of disease group variation greater than 0.5, sug-
gesting that for those metabolites the disease group was the
major contribution to variation in the data; these metabolites
are most likely to result in viable biomarkers for RCC. Hence
we focused our attention on these metabolites, which partic-
ularly likely play a major role in classification. We performed
PCA and LDA for only those 112 metabolites and assessed
the predictive performance as described above. The 112 me-
tabolites yielded a similar overall rate of correct classification
compared with that of using the entire 1766 metabolites,
suggesting that the metabolites with greater disease variation
are potent factors in the classification. For the majority of the
metabolites, the greatest source of variation was residual
error such that these metabolites will not be useful as biomar-
kers. Table III summarizes the descriptive statistics of each
variance component.

For the TX data set, intensity levels for each metabolite
were modeled as follows: Yi � �i � Surgeryi � Sexi � Agei �

Gradei � �i where Surgery � N(0, �2
Sy) is the effect of surgery

status variation among measurement units, Sex � N(0, �A
2) is

the effect of sex variation among measurement units, Age �

N(0, �A
2) is the effect of age variation among measurement

units, Grade � N(0, �2
Grade) is the effect of tumor grade

variation nested within the disease group, and �i � N(0, �R
2) is

the residual error. The model was fit separately on the peak
intensity level measurements of each of the metabolites. All
factors were treated as random, and variance components
were estimated. The distributions of relative magnitudes of
different sources of variation for the TX data set were similar
to that for the CA data set (Fig. 6b). The results indicated that
most of the metabolites had very small biological variance;

specifically of interest is that less than 1% of variance was
caused by surgery status. For the majority of the metabolites,
the greatest source of variation was residual error. Table IV
summarizes descriptive statistics of each variance compo-
nent for the TX data set.

DISCUSSION

Although kidney cancer is the sixth leading cause of can-
cer deaths and represents 3% of cancer incidence, it is the
direct cause of death in �11,000 patients per year in the
United States. Not only is the disease notoriously chemo-
therapy-resistant, but it is often found incidentally such that
one-third of cases are metastatic at diagnosis. When de-
tected with symptoms, prognosis of RCC is poor (15); once
metastatic, RCC has a 5% 5-year survival (16). For these
reasons, novel, convenient, and non-invasive approaches
are needed for identifying RCC at an earlier stage prior to
metastasis.

The new science of metabolomics, in which the entire suite
of metabolites generated by an organism is examined, holds
promise for the development of diagnostic tests based on
metabolite profiling as well as for the discovery of individual
biomarkers (so-called “slow” and “fast-track” (3)). Given the
ease of its collection, urine is a logical biofluid to examine in
this regard; in light of the fact that RCC is a urothelial tumor,
this malignancy was chosen for an initial application of this
technology. In a pilot study using a limited number of sam-
ples, we have shown previously that urine metabolomics anal-
ysis has the capability of separating RCC from control pa-
tients (3). The present study extends that work, provides a
means of selecting potential urinary biomarkers, and identifies

TABLE II
Summary of classification percentages using PCA-linear discriminant models for each choice of k

Data are presented as mean � S.D. The percentages reported here are the average of the number of cross-validated PCA-linear discriminant
models. k, the number of the first principal components used in linear discriminant analysis. Percentage of total variation, the average
percentage of total variance in data that is explained by the first k principal components.

k
Percentage

of total
variation

Overall percentage
of correct predicted

classifications

Percentage of
correctly

classified RCCsa

Percentage of
misclassified

RCCsb

CA (control vs. RCC)
2 30.1 � 0.2 88.0 � 2.5 89.4 � 4.2 12.8 � 3.1
3 40.1 � 0.3 89.6 � 2.6 85.5 � 5.6 7.5 � 2.8
4 50.4 � 0.6 88.3 � 1.6 89.8 � 3.9 12.8 � 2.6
5 57.8 � 0.7 89.7 � 3.4 90.8 � 5.1 11.5 � 4.4
6 64.5 � 0.6 98.5 � 3.0 98.2 � 3.8 1.4 � 3.5

TX (preop vs. postop)
2 41.5 � 3.4 56.4 � 5.2 56.4 � 13.4 39.5 � 20.0
3 59.0 � 2.9 59.7 � 7.1 58.9 � 23.9 36.0 � 25.6
4 63.5 � 1.4 57.5 � 6.0 56.2 � 17.1 37.8 � 23.6
5 69.7 � 1.2 59.4 � 6.3 59.0 � 12.5 36.0 � 15.7
10 89.0 � 0.6 59.7 � 6.2 66.9 � 8.8 42.7 � 11.9
15 96.7 � 0.5 79.9 � 4.2 85.1 � 7.0 18.5 � 4.7
20 99.7 � 0.1 92.5 � 1.7 93.1 � 3.6 0 � 0
21 99.9 � 0.1 95.5 � 1.2 99.3 � 2.4 0 � 0

a Percentage of correctly classified RCCs is the percentage of RCC samples correctly classified as RCC (preoperative (preop)).
b Percentage of misclassified RCCs is the percentage of controls (postoperative (postop)) misclassified as RCC (preoperative).
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confounding issues that need to be considered in interpreting
data from such studies.

In addition to confirming our pilot study and demonstrating
that patients with RCC can be differentiated from control
patients by urine metabolomics analysis, it is shown that
institutional site of sample collection caused substantial var-
iability in metabolomics analysis. Despite attempts to bring
uniformity into the collection process and notwithstanding the
fact that all samples were analyzed (although not collected) in
the same laboratory by the same personnel, significant fea-
tures of samples collected at the University of California,

FIG. 6. Assessment of sources of
variation in metabolomic profiles. Box
plots of relative magnitudes of different
sources of variation are shown for CA
samples (a) and TX samples (b). The pro-
portions of different variance compo-
nents are shown on the y axis. The blue
line represents the mean. The box is
drawn from the 25th to 75th percentiles
in the distribution of proportions of each
variance component. The median, or
50th percentile, is drawn as a black hor-
izontal line inside the box. The mean is
represented by the blue horizontal line
inside the box. The whiskers (lines ex-
tending from the box) describe the
spread of the data within the 10th and
90th percentiles. The dots display any
points beyond the 10th and 90th
percentiles.

TABLE III
Proportions of different sources of variation: CA data set

CV, coefficient of variation; Min, minimum; Max, maximum.

Source
group

Tumor
grade

Sex Age Residual

Mean 11.27 6.51 4.05 0.02 78.15
S.D. 18.01 15.16 7.48 0.05 21.65
CV (%) 159.82 232.91 184.42 233.15 27.70
Median 0 0 0 0 84.38
Min 0 0 0 0 10.05
Max 79.50 85.72 45.95 0.36 100
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Davis did not intersect with those collected at the University of
Texas at San Antonio consistent with previous reports in other
cancers examined using proteomics (17). Thus, future inves-
tigations need to be directed at the source of variability cre-
ated by the use of more than one institution, a serious prob-
lem for generalizability of a screening test; until this is
determined, urine metabolomics studies should be confined
to a single collection site. Similar results have been observed
with other omics techniques (18).

We have also now addressed important issues regarding
the urine metabolome in normal subjects. Some investigators
have shown large intraindividual variability in both normal and
animal control populations looking at specific metabolites
(19), yet others have shown, at least in dogs, that intraindi-
vidual variability is relatively small (20). A surprising result of
our study is that there was minimal variation in urine metabo-
lomics analysis when examined relative to the time of the
patient’s last meal. For the majority of the metabolites, the
influence of meals on their metabolomic profiles was not
significant, and thus it can be concluded based on this pilot
study that it is probably not necessary to tightly control for
normal meals in urinary metabolomics analysis. However, we
have not studied the influence of diet composition on the urine
metabolome, an important area of focus for future studies, nor
have we studied the effects of mealtimes on the urine
metabolome in diseased patients. In any case, in our study of
RCC patients and urology clinic controls, a single urine sam-
ple was obtained from each patient. Between-individual cor-
relations within the same collection site ranged from 0.82 to
0.98; thus interindividual variability in these metabolomic pro-
files seems to be minimal. Intraindividual variation, as well as
inter- and intralaboratory variability, will need to be investi-
gated in future studies.

We have found that, although there is a high degree of
group variation in the urine metabolomics analyses (i.e. be-
tween RCC and control), it is apparent that there is substantial
residual variation as well. Those metabolites that strongly
contributed to the group variation (see Fig. 6) will be identified
in future studies as potential biomarkers, whereas the sources
of residual variation will need to be determined to maximize
the discriminatory potential of any future urine test. Sources of
residual variation may include dietary issues, medications,

length of time of urine storage, and handling, etc. In addition,
our choice of HILIC-MS instead of other types of separation
and molecular analysis (e.g. gas chromatography-MS or LC-
MS; see Ref. 3) may yield different outcomes for variance
component analysis and cluster analysis due to differences in
techniques.

Although it was hypothesized that postoperative samples
would serve as controls for preoperative samples from the
same patients, a surprising yet biologically and clinically sig-
nificant finding was that postoperative urine metabolomic
profiles did not segregate from preoperative samples from the
same institution. This suggests that metabolic changes per-
sist in patients at least several months after removal of the
primary tumor, a finding that may be explained by the exist-
ence of known paraneoplastic syndromes that accompany
RCC (16). In addition, our finding of close clustering of pre-
and postoperative samples from the University of Texas at
San Antonio serves as a control for reproducibility of collec-
tion parameters as well as analytical technique.

Our results demonstrate the feasibility of using metabolo-
mic profiles to identify metabolomic profiles and biomarkers
predictive of cancer. However, the current study has limita-
tions. We identified sources of experimental variations and
assessed their magnitude by variance component analysis.
The analysis identified factors that would contribute to the
success of future metabolomics studies. When designing a
metabolomics study, researchers should adhere to the prin-
ciples of study design: matching the experimental variables of
cases and controls to the fullest extent possible, selecting
clinically homogenous sample populations, and balancing a
design with respect to all factors that can confound results
among the comparison groups. Violation of these principles
will lead to biased results and can cause a loss in power. A
large sample size is necessary to achieve a good power to
demonstrate significance of findings, particularly with thou-
sands of metabolites to test, but the number of cancer sam-
ples available at a single clinic given the period of study is
limited. Therefore, as in the current study, collaborative efforts
on recruitment between several clinics may be necessary. In
this case, the success of metabolomics studies depends on
careful selection of sample populations and collaborative an-
alytical approaches. Moreover to ensure highly reproducible
metabolomics results, technical variation should be mini-
mized, in the planning of experiments, by controlling the qual-
ity of the urine samples and by efficient and uniform data
collection procedures.

CONCLUSION

We have addressed issues relating to urine sample collec-
tion and have confirmed the utility of urine metabolomics
analysis for differentiating kidney cancer from control pa-
tients. We have shown, using variance analysis, that potential
biomarkers are identifiable. However, there remain potential
sources of variability and confounding factors that need to be

TABLE IV
Proportions of different sources of variation: TX data set

CV, coefficient of variation; Min, minimum; Max, maximum.

Source
surgery

Tumor
grade

Sex Age Residual

Mean 1.04 5.79 6.14 0.06 86.97
S.D. 3.18 9.69 11.16 0.13 14.72
CV (%) 305.83 167.25 181.66 218.51 16.93
Median 0 0 0 0 91.86
Min 0 0 0 0 19.07
Max 33.94 57.92 61.12 1.46 100
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addressed when carrying out such studies and in searching
for biomarkers in the future.
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