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Abstract
Concurrent event-related EEG-fMRI recordings pick up volume-conducted and hemodynamically
convoluted signals from latent neural sources that are spatially and temporally mixed across the brain,
i.e. the observed data in both modalities represent multiple, simultaneously active, regionally
overlapping neuronal mass responses. This mixing process decreases the sensitivity of voxel-by-
voxel prediction of hemodynamic activation by the EEG when multiple sources contribute to either
the predictor and/or the response variables. In order to address this problem, we used independent
component analysis (ICA) to recover maps from the fMRI and timecourses from the EEG, and
matched these components across the modalities by correlating their trial-to-trial modulation. The
analysis was implemented as a group-level ICA that extracts a single set of components from the
data and directly allows for population inferences about consistently expressed function-relevant
spatiotemporal responses. We illustrate the utility of this method by extracting a previously
undetected but relevant EEG-fMRI component from a concurrent auditory target detection
experiment.
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Introduction
Processing of simple stimuli and tasks produces spatially and temporally extensive event-
related neuronal responses in the brain. For example, auditory target detection induces
hemodynamic activation in about fourty cortical, subcortical and cerebellar regions (Kiehl, et
al., 2005), complementing the results from intracranial recordings (Baudena, et al., 1995;
Halgren, et al., 1995a; Halgren, et al., 1995b). These neuronal mass responses can be observed
across scales and modalities from single unit recordings, intracranial and scalp
electrophysiology, as well as metabolic and hemodynamic signals, but no single technique
provides a sufficient view of the full temporal, spatial and functional extent of these responses.
Visibility can be improved with techniques that integrate data across different neuroimaging
modalities (Debener, et al., 2006; Hopfinger, et al., 2005; Horwitz, et al., 2002; Makeig,
2002). In the case of concurrent EEG-fMRI recordings, one can complement the temporal
resolution provided by scalp potentials with the spatial precision of fMRI. This can be done
for example by finding correlations between single-trial modulation at a selected time latency
in the event-related EEG and activation in the fMRI volume employing mass univariate voxel-
by-voxel analysis (Benar, et al., 2007; Debener, et al., 2005b; Eichele, et al., 2005). Implicit
in this approach is the critical assumption that the scalp EEG data from a selected channel and
latency can predict the fMRI activation in single voxels (Friston, et al., 1995; Friston,
2005b). This is imposed by the sampling properties of the recordings, and the way fMRI time-
series data are commonly analyzed. While this assumption provides a workable solution to
‘integration-by-prediction’, it is not necessarily physiologically plausible for many of the
samples from both modalities. The reason for this is that a salient event can induce multiple,
simultaneously active, regionally overlapping, and functionally separable responses which add
to existing neuronal background activity, in other words, event-related processes are spatially
and temporally mixed across the brain. The scalp EEG samples a volume-conducted, spatially
degraded version of the responses, where the potential at any location and latency can be
considered a mixture of multiple independent timecourses that stem from large-scale
synchronous field potentials (Makeig, et al., 2004a; Onton, et al., 2006). Similarly, the
neurovascular transformation of the distributed neuronal activity into hemodynamic signals
(Lauritzen, et al., 2003; Logothetis, 2003) affords detection of blood oxygenation level
dependent responses (BOLD, Ogawa, et al., 1990) that are temporally degraded and spatially
mixed across the fMRI volume (Calhoun, et al., 2006a; McKeown, et al., 2003).

This physiological spatiotemporal mixing process creates situations in which prediction of
fMRI activity by EEG features has to contend with the fact that neither the predictor, nor the
response variables are any likely to represent a single source of variability. For example, the
point-to-point correlation between the two data mixtures fails when the trial-to-trial modulation
in the EEG receives different contributions from several function-relevant spatially separate
sources such that no single regional fMRI response represents the predicted signal. Also, this
applies to the case where the EEG feature captures a single source, but the fMRI activity at
corresponding locations is buried in the spread of other, unrelated sources, leading to
underestimation of the spatial extent of the response. Although denoising and inclusion of
parametric modulations into the stimulus paradigm (Eichele, et al., 2005), and temporal
unmixing of the EEG (Debener, et al., 2005b) solve parts of the problem and make way for
refined spatiotemporal mapping, there is still need for improvement of the analysis tools for
integration of concurrent recordings (cf. Debener, et al., 2006). One such improvement is to
unmix both modalities in parallel at the single-trial level, which follows naturally from the
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recent work (Calhoun, et al., 2006c; Debener, et al., 2005b; Eichele, et al., 2005) and the
reasoning laid out above.

Following the above arguments, we develop an analysis framework for group data that employs
Infomax independent component analysis (ICA, Bell, et al., 1995; Lee, et al., 1999; for an
overview see Stone, 2002) to recover a set of statistically independent maps from the fMRI
(sICA), and independent time-courses from the EEG (tICA) separately, and match these
components across modalities by correlating their trial-to-trial modulation. ICA was developed
to address linear mixing problems similar to the ‘cocktail party problem’ in which many people
are speaking at once and multiple microphones pick up different mixtures of the speakers’
voices (Bell, et al., 1995). The algorithm used here attempts to separate mixed signals into
maximally independent sources by maximization of information transfer between them. ICA
has general applicability to normally distributed two-dimensional mixtures, and regarding
psychophysiological data it has been used for decomposition of averaged ERPs (Makeig, et
al., 1997), single trial EEG (Makeig, et al., 2004b; Onton, et al., 2006), fMRI (Calhoun, et al.,
2006a) and EEG-fMRI (Calhoun, et al., 2006c; Debener, et al., 2005b; Feige, et al., 2005). ICA
can be used for EEG-fMRI integration assuming that the different recording modalities
faithfully sample features from the same set of sources, expressed in the covariation between
single trials (Debener, et al., 2005b) or subjects (Calhoun, et al., 2006c).

Unlike univariate methods such as the general linear model, ICA is not naturally suited to
generalize results from a group of subjects. There are two strategies to allow for matching of
independent components across individuals: one is to combine individual ICs across subjects
with clustering techniques (Esposito, et al., 2005; Onton, et al., 2006). Another approach is to
create aggregate data containing observations from all subjects, estimate a single set of ICs
and then back-reconstruct these in the individual data (Calhoun, et al., 2001; Schmithorst, et
al., 2004). We adopted the latter strategy for the group EEG temporal ICA analysis, because
it directly estimates components that are consistently expressed in the population and involves
the least amount of user interaction and is straightforward to combine with the existing
framework for group ICA of fMRI data (Calhoun, et al., 2001).

In summary, possible ways for EEG-fMRI integration include predicting both modalities, a
mass-univariate framework testing all voxel timeseries in the fMRI, as well as channels and
timepoints in the EEG employing a pre-defined model function as is commonly done in fMRI
timeseries analysis (however, to the best of our knowledge this has not yet been realized).
Another option is to predict the fMRI data with the measured EEG single trial amplitudes,
assuming that some EEG timepoints and channels represent functional processes in some
voxels without much overlap, representing a point-to-point correlation between mixtures
(Benar, et al., 2007; Eichele, et al., 2005). A third solution is to unmix the EEG and predict the
fMRI mixture with the modulation of a temporally independent component (Debener, et al.,
2005b; Feige, et al., 2005). The method developed here un-mixes both modalities separately,
and matches temporal ICs in the EEG with spatial ICs in the fMRI.

The utility of this method is demonstrated in previously published data that were collected in
an auditory oddball with varying degrees of target predictability. The parametric modulation
induced distinct EEG-correlated fMRI activation patterns at the latencies of the P2, N2, and
P3 (Eichele, et al., 2005; see also Jongsma, et al., 2006). We have re-analyzed these data with
the open search question whether systematic EEG-fMRI covariation was missed out in our
previous analysis and if it could be recovered by parallel ICA. A likely candidate for such a
miss is the auditory onset response and the subsequent low-level orienting/change detection
processes. Although being expressed in the N1-ERP (Naatanen, et al., 1987; Woods, 1995)
and in bilateral temporal fMRI activation (Kiehl, et al., 2005; Liebenthal, et al., 2003; Linden,
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et al., 1999) this process did not support a significant correlation between the modalities (cf.
Eichele, et al., 2005).

Methods
Subjects

Fifteen healthy, right-handed participants (21–28 years, 7f/8m) took part in the experiment
after providing informed consent.

Stimuli
Chords of 50 ms duration were presented in an eyes-closed condition via headphones with an
onset asynchrony of 2 seconds. Infrequent targets (500Hz) were presented at a probability of
0.25 among frequent standards (250Hz, P 0.75). Alternating sequences of six successive targets
were presented either with pseudorandom target-to-target interval (TTI) ranging from 4 to 22
s or with a regular 8 s TTI. Each of these 12-target sequences lasted on the average 96 s, and
were repeated 18 times (216 targets total). In order to avoid speeded response times to
predictable targets, participants were instructed to respond in the middle of the interval between
the target and the next standard stimulus. Participants were not informed about the presence
of regular patterns beforehand.

fMRI data acquisition (fig. 1, Bf)
Imaging was performed on a 1.5T scanner (Siemens, Germany). After scanning of anatomy
with a T1-weighted MPRAGE sequence, 300 BOLD sensitive echo planar images (EPI) were
collected. EPI volumes were aligned to the anterior-posterior comissura line and consisted of
18 axial slices with 5.5 mm thickness including 0.5 mm interslice gap, flip angle: 90°, excitation
time: 60 ms, field of view: 220×220 mm, matrix: 64×64 voxels. A sparse-sampling acquisition
protocol (Hall, et al., 1999) with 8 s repetition time and 2 s acquisition time was used. The
protocol makes use of the hemodynamic lag between stimulus onset and BOLD peak and
allowed for EEG-recording without interfering scanner noise and gradient artefacts during a
6s silent gap between successive volume acquisitions.

EEG data acquisition (fig. 1, Be)
EEGs were recorded continuously at 5 kHz with an amplifier placed inside the MR-scanner
(BrainProducts, Germany). Subjects were fitted with an elastic cap containing 30 Ag/AgCl
electrodes (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1 ,OZ, O2,
FC5, FC1, FC2, FC6, CP5, CP1, CP2, CP6, EOG, ECG) referenced to FCz, impedances were
kept below 5kΩ.

The analyses reported below were done in Matlab (www.mathworks.com) with the academic
freeware toolboxes EEGLAB (http://sccn.ucsd.edu/eeglab), GIFT
(http://icatb.sourceforge.org), SPM2 (http://www.fil.ion.ucl.ac.uk/spm), and customized
functions. A schematic overview of the analyses is provided in Figure 1.

EEG preprocessing (fig. 1, Te)
Continuous EEGs were downsampled offline to 500 Hz and filtered from 1–45 Hz (24 db/
octave). EEG epochs from −312 to 712 ms (512 points) around standard and target sound onsets
were recalculated to average reference and subjected to an individual tICA as implemented in
EEGLAB (Delorme, et al., 2004). This step was used to identify and remove pulse and eye
movement artefacts from the data (cf. Debener, et al., 2007; Jung, et al., 2000), retaining
minimally 20 out of 30 components. Single-trials were then wavelet-denoised (Quian Quiroga,
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et al., 2003), constraining the single trial EEGs to the time-frequency features relevant for the
evoked activity.

fMRI preprocessing (fig. 1, Tf)
All images were realigned to the first image in the time-series to correct for head movement
and then normalized to the Montreal Neurological Institute (MNI) reference space, and were
resliced to a voxel size of 3mm3 and smoothed with a 8mm FWHM gaussian kernel. Voxel
timecourses were high-pass filtered at 128 s with a 5th order Butterworth digital filter to remove
slow drift, normalized to unit variance, and the image volume for the analysis was constrained
to voxels with >50% probability of being grey matter. These pre-processing steps are optional,
and empirical choices for this particular data set, but are not principally necessary for sICA of
fMRI.

Group spatial ICA of fMRI data (sICA)
An exploratory single-subject spatial ICA was used for inspection of individual components
across subjects in our sample, and in order to derive the appropriate number of components to
be estimated in the group ICA step using minimum description length criteria (Li, et al.,
2006). The estimated dimensionality of the data across subjects averaged to 24, thus the data
from each participant was pre-whitened and reduced (in time) to 24 dimensions via principal
component analysis (PCA), retaining between 70–90% of the variance (fig. 1, Rf). Individual
principal components were then concatenated together in a single set (fig. 1, Gf) in which sICA
was performed. In addition to the resulting independent spatial maps, this analysis reconstructs
component timecourses by multiplying the dewhitening matrix from the first data reduction
by the corresponding partition of the unmixing matrix. These timecourses reflect the trial-to-
trial hemodynamic variability of the fMRI experiment and were used for assessment of
covariation between components in the two modalities (see tIC-sIC integration). For the fMRI
sIC component maps, mean and variance of the voxel weights were calculated, and the variance
across subjects was used as an estimate of the population variance. The weights were treated
as random variables and entered into voxel-wise one-sample t-tests against the null hypothesis
of zero magnitude. Results from these tests were considered significant at 1% false positive
discovery rate (FDR, Benjamini, et al., 1995) with a cluster extent threshold of at least 5 voxels.

Group temporal ICA of EEG data (tICA)
For estimation of the group tICA we adopt the rationale proposed by Calhoun (Calhoun, et al.,
2001). The analysis framework is divided into the underlying data generation and mixing
process, recording, pre-processing, reduction and component estimation, and is illustrated for
both modalities in Figure 1. We assume that the scalp EEG signal is a gaussian mixture
containing statistically independent non-gaussian source timeseries s(t) = [s1(t), s2(t), …,
si(t)]T indicated by si(t) at time t for the ith source. The sources have weights that specify the
contribution to each timepoint. The weights are multiplied by each source’s fixed topography.
Secondly, it is assumed that the N sources are linearly mixed so that a given timepoint contains
a weighted mixture of the sources. The linear combination of sources is represented by the
unknown mixing system A, and yields u(t) = [u1(t), u2(t), …, uN(t)]T, representing N ideal
samples of the signals un(t) at time t, for the ith source in the brain. The sampling of the electric
activity on the scalp with the EEG amplifier results in y(i) = [y1(i), y2(i), …, yK(i)]T where the
EEG is sampled at T timepoints indicated by i = 1, 2,…,T. A set of possible transformations
during preprocessing, such as downsampling and filtering determine the effective sampling
such that y(j) = [y1(j), y2(j), …, yK(j)]T. For each individual separately, the preprocessed single
trial data y(j) are pre-whitened and reduced via principal component analysis (fig. 1, Re

1
−1 1…

Re
M
−1) containing the major proportion of variance in the N uncorrelated timecourses of x(j)

= [x1(j), x2(j), …, xN(j)]T. Then, group data is generated by concatenating individual principal
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components in the aggregate data set Ge (fig. 1).The choice of twenty PCs was determined by
the dimensionality of the data after artefact removal (see above). TICA was performed in this
set, estimating the optimal inverse of the mixing matrix (fig.1, Ae-1) that led to the observed
scalp data and a single set of source timecourses (s). In order to acquire robust task-related
components in the data we ran 50 replications entering random subsamples of 100 standard
and 100 target epochs from each subject into the group ICA, estimating 20 components, as
determined by the remaining dimensionality of the data after individual ICA. Consistently task-
related components were identified by means of two criteria: firstly, replicability of the average
component timecourses across analyses (r > 0.90), and secondly, significant differences
between standard and target epochs in dependent sample t-tests across timepoints and channels.
For the five components (fig. 2) that met these criteria, the aggregate timecourses from all
replications were averaged together and used for a two-step back-reconstruction using multiple
regression.

tIC-sIC integration
The computation of an EEG-tICA on the one end, and an fMRI-sICA on the other end replaces
prediction of multiple voxel timeseries using multiple channel/timepoint measures by the
condensed result from the two separate decompositions: For the timecourses of the 24 spatially
independent components in the fMRI separately, data were modelled with a design that was
formed by convolving stimulus functions with a canonical hemodynamic response function.
The first stimulus function encoded an invariant evoked response to target stimuli. Five
additional functions encoded the detrended single trial weights of the EEG tIC’s to find fMRI
sIC’s with covarying timeseries. The EEG-tIC weight functions were decorrelated (Schmidt-
Gram orthogonalization) from the unspecific hemodynamic response to stimulus onsets per
se, ensuring specificity of the inferences from the electrophysiological predictors. The
predictors were entered into single-subject fixed-effects regression analyses; on group level,
random effects analyses were performed by entering the individual -weights from the
regression between each EEG-tIC and fMRI-sIC into one-sample t-tests. The covariation
between the trial-to-trial timecourses from the two modalities was considered significant at p
< 0.05.

Results
For brevity we focus only on the amplitude effects and fMRI correlates of the first extracted
component, which was not detected previously.

Component Backprojection
The first step was to estimate the individual topographies for the components by fitting the tIC
timecourses to the individual ERPs from all channels. The goodness-of-fit of this model to the
data is expressed in the F-statistic and the percentage-variance-explained (r2) for each channel.
Across subjects, weights from each component and each channel were entered into zero-mean
t-tests, providing random-effects statistics of the topographies (fig.2). The backprojection for
single subject averages attained fit statistics with r2 ranging from 0.10 (F1,506 = 11.28) to 0.99
(F > 103), averaging to 0.75 ± 0.15 (F1,506 = 541±623) across subjects and channels, indicating
an overall good prediction of the model with five tICs, considering that low r2-values were
found mainly in channels with polarity reversal. The t-tests of the component-weights for each
channel across subjects ranged from tdf14 = −7.55 to 7.04 for tIC1, IC2: tdf14 −4.22 to 5.41,
tIC3: tdf14−2.43 to 2.78, tIC4: tdf14 −5.70 to 6.25, tIC5: tdf14 −4.26 to 5.97 (all p < 0.05)
replicating the component amplitude topographies (fig. 2).

In the second step, tIC amplitudes in all single trials were estimated by forming a design matrix
containing predictors from all tIC timecourses concatenated across channels which was fitted
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to the raw spatiotemporal data of each trial, thus estimating five -weights with the
corresponding F-statistic and r2. Separately for the tICs, one-sample t-tests were conducted on
the -weights within-subject-across-trials and between-subjects-within-trials. Both types of
tests yield information regarding the goodness of the aggregate components in predicting
individual trials as opposed to representing average phenomena that are essentially not well
represented in single trials. Another purpose of this particular back-reconstruction was to
condense topography and timecourse of a component to a single value for each trial, to be used
later as a predictor for fMRI activity. This is an appropriate data reduction since the underlying
sources are assumed to be spatially fixed, which means that testing of electrodes separately
can be omitted. Additonally, we can constrain sources to be uniformly amplitude modulated
in each trial, thus omitting testing of multiple latencies. The statistics for the available 3240
single trials resulted in a range of r2 from 0.003 to 0.60, with a mean of 0.15 ± 0.10 (F = 588
±519). As a more informative test of the components contributions to the single trials, the t-
statistic of the -weights within-subjects (across trials) indicated consistent scaling in the
majority of components and subjects. tIC1 was found significant in 15/15 participants (pp) at
t(df215) > 2.35 (p < 0.01) with an average (tavg) at t(df215) = 14.49 ± 8.39 (± SD), minimum
(min): 3.66, maximum (max): 38.55; tIC2: 14/15 pp, tavg 8.62 ± 6.64, min −2.17 max 24.61;
tIC3: 9/15 pp, tavg 6.72 ± 7.42, min −2.16 max 20.90; tIC4: 14/15 pp, tavg 13.91 ± 7.08, min
−0.67 max 30.08, tIC5: 14/15 pp, tavg 11.10 ± 6.99, min 0.81 max 28.42. Similarly, at a
threshold of t(df14) 2.63 (p < 0.01), the majority of the weight estimates were robust across
subjects for the target epochs across the observation time. Here, tIC1 was present in 172 out
of 216 epochs (79.6 %) with an averaged t(df14) 3.63±1.29, tIC2 amplitudes were more variable
with only 76 (35.2 %) trials, tavg 2.30 ± 1.05; similarly tIC3 with 45 trials (20.8 %) tavg 1.76
± 1.01; tIC4: 165 trials (76.4 %) tavg 3.48 ± 1.44; tIC5: 123 trials (57.0 %) tavg 2.81 ± 1.17.

tIC1 amplitude effects (fig. 3)
In order to assess slow drifts evolving with the total time-on-trial regardless of the local
manipulation of predictability, the twelve targets within one sequence were blocked and
averaged together, yielding one observation for each of the 18 sequence repetitions in each
participant, with the first point serving as baseline. The group averaged measure was used to
derive a best-fit function (with as little parameters as possible). In this case, a simple linear
trend f(x) = s·x + c across repetitions, with a slope (s) of −0.021 and offset c 0.045 provided a
reasonable fit (r2 = 0.76). This function was then used as a predictor of the single subject data,
yielding sufficient individual statistics in 6/15 participants (r2 0.2, F1,16 4, p 0.06), and the
weights being significantly larger than zero (tdf14 = 4.10, p<0.001). Amplitude modulation of
tIC1 in response to switching between random and regular TTI was assessed by averaging the
18 repetitions from each of the six random and six regular sequence positions across the
observation time together, after removing the mean from each sequence repetition to account
for the trend (see above). Inspection of the group averaged response suggested a transient
amplitude increment induced by the shift from predictable to unpredictable intervals with a
subsequent decline across the remainder of the sequence, while there was no discernible
response to the shift from unpredictable to predictable context. This shape was best modelled

(r2 = 0.91) as a function following a gamma distribution function ,
with the parameters shape a = 2.9 and scale b = 1.7. This function was then used as a predictor
of the single subject data, yielding sufficient positive correlation with the average-based model
in 5/15 participants (r2 0.27, F1,10 3.68, p 0.08), however, a right-tailed t-test on the -weights
failed the significance threshold by a small margin (tdf14 = 1.60, p = 0.07). Assuming that the
degree of individual variability regarding shape and scale of the gamma function accounted
for the failure of the test at small sample size, we conducted a complementary analysis with
individual best-fit estimates (maximum positive correlation) from a range of ±0.5 around the
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group-estimates for a and b. With these parameters left to vary, statistics improved to 8/15
participants (r2 0.31, F1,10 4.55, p 0.06) reaching significance in the t-test (tdf14 = 3.06, p<0.01).

fMRI correlates (fig. 4, table 1)
The trial-to-trial amplitude dynamic of tIC1 predicted selectively the timecourse of one sIC
fMRI map (tdf14 = 2.49, p = 0.02), that is, no other EEG tIC correlated significantly with this
sIC, neither did tIC1 covary with any other of the 24 fMRI sICs. The respective maps’
timecourse additionally displayed a strong covariation with the generic evoked response
predictor (tdf14 = 11.15, p < 0.001). Local maxima of the FDR corrected t-statistic sIC map
(table 1) were located in the posterior superior temporal gyri and temporal poles bilaterally,
the anterior cingulate gyrus, the subcallosal gyrus, the global maximum was situated in an area
in the right brainstem framed by the landmarks central gray dorsally and red nucleus ventrally.
Additionally, a smaller set of voxels was found in the vicinity of the left mamillary body.

Discussion
We have presented a method for parallel spatial and temporal independent component analysis
for concurrent multi-subject single-trial EEG-fMRI recordings that addresses the mixing
problem in both modalities (fig. 1). The data are integrated via correlation of the trial-to-trial
modulation of the recovered fMRI maps with EEG timecourses. The method afforded
identification of an additional spatiotemporal process corresponding to the auditory onset
response and subsequent low-level orienting/change detection (fig. 4). The discussion details
the area of application for this method, and provides an account for the potential functional
role of the reported component.

Area of application
The observation that a simple cognitive task such as target detection in an auditory oddball
experiment induces spatially and temporally widespread neuronal responses (Baudena, et al.,
1995; Calhoun, et al., 2006c; Eichele, et al., 2005; Halgren, et al., 1995a; Halgren, et al.,
1995b; Kiehl, et al., 2005) pertains to distributed network responses more than to
compartmentalized effects (Fox, et al., 2005; Halgren, et al., 1995c; Nunez, 2000). We see a
major utility for parallel ICA in this context as it provides the means to disentangle and visualize
these networks both in their spatial and temporal form (Calhoun, et al., 2006a; Debener, et al.,
2006; Makeig, et al., 2004a; McKeown, et al., 2003; Onton, et al., 2006).

However, some limitations apply: Infomax assumes sources to have non-normal, either super-
or subgaussian distributions (Bell, et al., 1995; Lee, et al., 1999), and this seems to hold for a
great variety of physiological signals as well as technical artefacts. However, if sources (or
noise) are gaussian, ICA will split these up into spurious non-gaussian components. In practice
this occurs mostly for heavily noisy data, and where more sources than present in the data are
extracted.

Generally, the utility of blind methods such as ICA lies in data-driven assessment of data where
specific hypotheses regarding spatial and temporal relationships are lacking, or are ill-
specified. In other words, in situations in which a traditional inference test, and its
implementation in the statistical parametric mapping framework (Friston, 2003; Friston, et al.,
1995) is not justifiable, or is too insensitive due to ensuing conservative significance thresholds.
Concurrent EEG-fMRI data adds another complexity in that one deals with two multivariate
spaces, and necessary specifications would not only encompass the regions in which fMRI
activation is expected, but also the particular samples from which to derive the predictor from
the EEG. Reversely, and somewhat more critically from our perspective, one should also be
able to justify which locations and latencies not to test. The two complementary blind
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decompositions avoid this issue since all available EEG data is used in the estimation and the
back-reconstruction to produce maximally condensed predictors, i.e. the trial-to-trial
modulation applies uniformly to the entire timecourse and topography of a component,
reducing multiple comparisons considerably. Similarly, the separate spatial ICA of the fMRI
data involves data reduction since the voxel-wise analysis is replaced by testing of the fMRI
component timecourses (here: 24), while the statistical significance of the maps is tested in a
separate random-effects analysis, applying appropriate correction using false discovery rate
(FDR, Benjamini, et al., 1995). Thus, finding IC-pairs across response modalities identifies
coherent neuronal sources that jointly express scalp electrophysiologic and hemodynamic
features. However, the current statistic trades in the ‘localizing power’ afforded by the mass-
univariate testing (Friston, 2003; Kiebel, et al., 2004), i.e. the possibility of drawing inferences
on the effect sizes in particular voxels in the fMRI and timepoints/channels in the EEG. A
hybrid approach might be plausible for applications in which one would use parallel ICA for
hypothesis generation and employ the components as spatial and temporal filters for region of
interest definition prior to mass univariate testing.

Here, we opted for a group ICA implementation because it provides a straight-forward and
stringent solution for multi-subject component estimation and directly affords population
inferences (Calhoun, et al., 2001; Schmithorst, et al., 2004). Group ICA works well for sources
that are spatially and temporally coherent across subjects, and will readily detect such sources
when present in about 10% of the sampled population (Schmithorst, et al., 2004). For the sICA
on preprocessed fMRI data this means that regional BOLD responses that overlap across
subjects can yield group-relevant components, which is the same criterion that applies to group
(2nd-level) statistics of fMRI contrast images or simple averaging. Processes that occur in a
spatially variable form over time in the recording of a single subject, or that are principally
spatially heterogeneous across subjects can not be captured by this implementation.
Correspondingly, the group tICA on EEG single trial time domain data is preferentially suited
to detect of components that represent or contribute to event-related potentials visible in
averaged data. Processes that are not time/phase-locked within and across subjects, such as
background rhythms and induced activity are not well visible. However, the choice of input
data to parallel ICA is arbitrary such that time domain data can be replaced with e.g. power-
spectra or time-frequency data where the fMRI correlates of EEG rhythms or event-related
synchronization and desynchronization are subject to study. In this respect, an useful extension
of the current framework would be incorporation of multiple EEG and MRI features from
single trial data (Calhoun, et al., 2006b).

The prerequisites outlined above do not apply to ICA on individual data, which renders this
approach principally a more versatile tool to identify components. Individual ICA results can
be combined across subjects by means of subsequent component clustering (Esposito, et al.,
2005; Onton, et al., 2006). This allows for group inferences and retains more relevant
information about inter-individual variability and its impact on the EEG-fMRI relationship (cf.
Goncalves, et al., 2006) than does our analysis, such that one should consider either option in
light of the purpose of the experiment at hand. Currently, however, the available techniques
are implemented and tested mostly for clustering within a modality, how well clusters can be
matched across modalities by their trial-to-trial modulation or other features should be further
investigated. Adequate algorithms that jointly cluster the maps and timecourses from both EEG
and fMRI will yet have to be evaluated. Another consideration is that clustering techniques
impose additional assumptions about between-subject correspondence and do not per se
provide a turnkey solution, such that proper handling of these techniques would usually require
expert user interaction.
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tIC function
tIC1 had a central topography dominated by a large negativity at 100ms (N1), followed by
smaller P2 and N2 deflections and a P3 at 270ms. The difference wave between standards and
targets yields a biphasic pattern with a sustained negativity from 100–200ms, followed by a
P3 (fig. 2, 4). Altogether, this suggests that tIC1 encompasses the N1 onset response per se,
N1-enhancement and a subsequent N2b-P3a (Naatanen, et al., 1987;Naatanen, 1992) as one
coherent process. Given the current experimental parameters, the 'N1-enhancement' seen here
may contain contributions from genuine sources of mismatch negativity (MMN), attentive
processing negativity (PN/Nd) and ‘fresh afferents’ of the N1 alike (Naatanen, et al.,
1987;Naatanen, 1992). The N2b-P3a portion of the waveform following the N1/MMN is seen
with attention-switching at large or task-relevant stimulus contrasts (Naatanen, 1992;Schroger,
1997).

The single trial amplitude estimates of tIC1 selectively covaried with an fMRI map that
comprised a set of fronto-temporal and mesencephalic regional responses (figure 4).
Activations were present for local maxima in the superior temporal gyri with a rightward
dominance, the temporal poles and the anterior cingulate gyrus. This partition of the map
encompasses the assumed sources of the scalp N1/MMN (Naatanen, et al., 1987;Picton, et al.,
1999;Picton, et al., 2000;Woods, 1995), and correspondingly the brain areas that previous
imaging experiments have implicated in automatic auditory deviance detection, stimulus
discrimination, sensory memory as well as novelty (surprise) related functions (Liebenthal, et
al., 2003;Molholm, et al., 2005;Rinne, et al., 2005;Sabri, et al., 2006). The occurrence of
deactivations observed in the subcallosal gyrus and the maps’ global maximum in the vicinity
of the midbrain reticular formation was surprising. However, seeing these areas apparently
interacting in anti-correlated fashion with auditory function is plausible, since both have been
found to be sensitive to novelty/predictability contrasts with more salient stimuli and tasks
(Berns, et al., 2001;Bunzeck, et al., 2006).

Two modulatory effects were present in tIC1: one effect was a linear amplitude decrement
evolving slowly with time on task, and the other was a local within-sequence gamma-shaped
modulation (fig. 3). The slow linear decrement is well in line with reports describing long-term
habituation for N1, MMN as well as P3a across the observation time (Debener, et al.,
2005a;Friedman, et al., 2001;Loveless, 1983;McGee, et al., 2001;Sambeth, et al., 2004;Woods,
et al., 1986). This might correspond to a slow adaptive process related to repetitions of stimulus
sequences (Jongsma, et al., 2006) or the overall decline in arousal/vigilance across trials.
Although tIC1 responded with amplitude increment at the transition from regular to random
intervals, the corresponding transition from random to regular (i.e. the beginning of a pattern)
did not elicit a response. Hence, instead of sigmoid learning curves that characterized the
behaviour of later components (Eichele, et al., 2005;Jongsma, et al., 2006), a gamma-shaped
function provided the best fit. Two explanations for this phenomenon can be offered: Firstly,
tIC1 may respond directly only to an increase in surprise. This means that the weight change
elicited by the comparison between actual input and the learning history represented in the
amplitude of tIC1 would only reflect increments of ‘surprise’ with the appearance of a target
at an unpredicted interval at the regular-random transition, but not a constant error or the onset
of the regular pattern. The second explanation relates to the time-span for which tIC1 can retain
information and incorporate it into the learning history. Assuming a memory trace length at or
below 10 seconds (Winkler, et al., 2001), it would be plausible that tIC1 cannot retain enough
interval repetitions to recognize the emergence of a pattern‥ For both accounts it is plausible
to assume that the modulation is not self-sustaining. It should receive additional backward
input from higher levels of processing which would exert an inhibitory influence on tIC1 when
intervals are predictable, while the response to the more surprising transition from predictable
to unpredictable intervals represents a salient bottom-up signal (Friston, 2005a;Schroger,
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1997). Altogether, this indicates that the component is to some extent modulated by target
predictability, specifically by increments of surprise/prediction error. This effect needs further
examination in ‘attended’ as well as ‘unattended’ settings with variations of stimulus onset
asynchrony, rules, and the physical deviant/target features (Baldeweg, 2006;Haenschel, et al.,
2005;Sussman, et al., 1998;Ulanovsky, et al., 2004).

In conclusion, we believe that parallel ICA is a useful addition to the selection of analysis
methods for concurrent EEG-fMRI, it can serve either as a primary tool for inferences about
the unmixed sources, or can be employed for data mining, hypothesis generation and model
specification/diagnostics.
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Figure 1. Schematic of parallel group independent component analysis
We assume that an experimental manipulation induces responses in a set of generic event/
function-related neuronal sources (s) in a consistent manner across the sampled population
(Subj. 1-M). The sources are expressed spatially (v) and temporally (t) and mixed by the
unknown mixing system A. Neurovascular coupling transforms the mixed signals (u) to
hemodynamic (BOLD) responses which are sampled from the entire cerebral volume by the
MR scanner (Bf), while passive volume conduction enables recording of the signals as scalp
EEG (Be). At this step the signals are either temporally (in Bf) or spatially (in Be) degraded,
but they sufficiently retain their functional signature, i.e. the trial-to-trial modulation, which
affords later matching of components. Modality-specific pre-processing steps (Tf, Te) are then
implemented to allow for later group inferences (e.g. spatial normalisation of individual MR
volumes), and to reduce noise (e.g. ICA-based artefact removal from the EEG). Hereafter, the
individual data are pre-whitened and reduced to N principal component maps (Rf) or
timecourses (Re). Individual PCs are then concatenated together in aggregate data-sets (Gf,
Ge), containing the N signal mixtures x from all subjects. From the aggregate fMRI data, the
mixing matrix Âf and the source maps (s) are estimated using spatial ICA, recovering N spatially
independent components in f. From the aggregate EEG data, the mixing matrix Âe and the
source timecourses (s) are estimated using temporal ICA, recovering N temporally independent
components in e. For each modality, individual component maps and timecourses are back-
reconstructed by projecting the aggregate components into the individual, pre-processed data.
Components are matched across modalities by correlating the trial-to-trial modulations of the
fMRI-sICs with those of the EEG tICs. ***: independent
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Figure 2. tIC timecourses and topographies
Top: Average ERP and corresponding timecourses of the five independent components or
standard (left) and target (right) epochs. Bottom: Component topographies, as scalp potential
( V) and t-statistic (t).
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Figure 3. tIC 1 amplitude effects
Top: Slow linear decrement of component activity with time on trial. Bottom: Within a sequence
indicated by the box-car function (black line) the trial-to-trial dynamics yield a gamma-shaped
modulation following the transition between regular and random targets.
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Figure 4. EEG-fMRI component
The figure shows the timecourse and topography for EEG-tIC1 for standard and target epochs
as well as the difference wave between them. The difference wave was subjected to pointwise
one-sample t-tests, black dots indicate timeframes with significant difference from zero at
p<‥05, Bonferroni corrected for 512 tests (t>6.93). The bilateral temporal activation in the
correlated fMRI component is shown as a surface rendering (top right). Additional slices in
the lower half illustrate the overall spatial pattern (see also table 1). The fMRI maps are
thresholded at 1% false discovery rate, cluster extent 5 voxels. Positive correlation is plotted
in red, inverse correlation in blue.
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