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Abstract
In recent decades, protein-based therapeutics have substantially expanded the field of molecular
pharmacology due to their outstanding potential for the treatment of disease. Unfortunately,
protein pharmaceuticals display a series of intrinsic physical and chemical instability problems
during their production, purification, storage, and delivery that can adversely impact their final
therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer
the long-term stability of proteins during their pharmaceutical employment. Due to the well
known effect that glycans have in increasing the overall stability of glycoproteins, rational
manipulation of the glycosylation parameters through glycoengineering could become a promising
approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent
of this review is therefore to further the field of protein glycoengineering by increasing the general
understanding of the mechanisms by which glycosylation improves the molecular stability of
protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities
displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved
by glycosylation, and by discussing the possible mechanisms by which glycans induce these
stabilization effects.
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INTRODUCTION
The employment of proteins as pharmaceutical agents has greatly expanded the field of
molecular pharmacology as these generally display therapeutically favorable properties,
such as, higher target specificity and pharmacological potency when compared to traditional
small molecule drugs.1,2 Unfortunately, the structural instability issues generally displayed
by this class of molecules still remain one of the biggest challenges to their pharmaceutical
employment, as these can negatively impact their final therapeutic efficacies (Tab. 1).2-50
In contrast to traditional small molecule drugs whose physicochemical properties and
structural stabilities are often much simpler to predict and control, the structural complexity
and diversity arising due to the macromolecular nature of proteins has hampered the
development of predictive methods and generalized strategies concerning their chemical as
well as their physical stabilizations.51,52 While the protein primary structure is subject to

Correspondence to: Ricardo J. Solá and Kai Griebenow (Telephone: 787−764−0000 x2391, x4781; Fax: 787−756−8242; E-mail:
rsola@bluebottle.com, kai.griebenow@gmail.com).

NIH Public Access
Author Manuscript
J Pharm Sci. Author manuscript; available in PMC 2010 April 1.

Published in final edited form as:
J Pharm Sci. 2009 April ; 98(4): 1223–1245. doi:10.1002/jps.21504.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the same chemical instability issues as traditional small molecule therapeutics (e.g. acid-base
and redox chemistry, chemical fragmentation, etc), the higher levels of protein structure
(e.g., secondary, tertiary) often necessary for therapeutic efficacy can also result in
additional physical instability issues (e.g., irreversible conformational changes, local and
global unfolding) due to their non-covalent nature.2,15,53-55 The innate propensity of
proteins to undergo structural changes coupled with the fact that there is only a marginal
difference in thermodynamic stability between their folded and unfolded states provides a
significant hurdle for the long-term stabilization of protein pharmaceuticals. This is due to
the fact that a thermodynamically stabilized protein could still inactivate kinetically even at
the relatively low temperatures used during storage.2,53,55-59 Additionally, as a result of
their colloidal nature, proteins are prone to pH, temperature, and concentration dependant
precipitation, surface adsorption, and non-native supramolecular aggregation.
11,14,20,47,60-65 These instability issues are further compounded by the fact that the
various levels of protein structure can become perturbed differently depending on the
physicochemical environment to which the protein is exposed.2 This is of special relevance
in a pharmaceutical production setting where proteins can be simultaneously exposed to
several destabilizing environments during their production, purification, storage, and
delivery (Tab. 1).

Due to these stability problems much emphasis has been given to the development of
strategies for the effective long-term stabilization of protein pharmaceuticals.
2,4,11,61,66-77 These include external stabilization by influencing the properties of the
surrounding solvent through the use of stabilizing excipients (e.g., amino acids, sugars,
polyols) and internal stabilization by altering the structural characteristics of the protein
through chemical modifications (e.g. mutations, glycosylation, pegylation).2,53,58 While
many protein pharmaceuticals have been successfully formulated by employing stabilizing
mutations, excipients, and pegylation, their use can sometimes be problematic due to
limitations, such as, predicting the stabilizing nature of amino acid substitutions, the
occurrence of protein and excipient dependant non-generalized stabilization effects, protein /
excipient phase separation upon freezing, cross-reactions between some excipients and the
multiple chemical functionalities present in proteins, acceleration of certain chemical (e.g.
aspartate isomerization) and physical (e.g. aggregation) instabilities by some excipients
(e.g., sorbitol, glycerol, sucrose), detection interferences caused by some sugar excipients
during various protein analysis methods, and safety concerns regarding the long-term use of
pegylated proteins in vivo due to possible PEG induced immunogenecity and chronic
accumulation toxicity resulting from its reduced degradation and clearance rates.
2,4,33,48,66,78-95

Due to these limitations, there is still a need for further development of additional strategies
of protein stabilization.2 Amongst the chemical modification methods, glycosylation
represents one of the most promising approaches as it is generally perceived that through
manipulation of key glycosylation parameters (e.g. glycosylation degree, glycan size and
glycan structural composition) the protein's molecular stability could be engineered as
desired.2,66,96-105 In this context, it is important to highlight the fact that glycosylation has
been reported to simultaneously stabilize a variety of proteins against almost all of the major
physicochemical instabilities encountered during their pharmaceutical employment (Tab. 2),
suggesting the generality of these effects.

Even though a vast amount of studies have evidenced the fact that glycosylation can lead to
enhanced molecular stabilities and therapeutic efficacies for protein pharmaceuticals (Tab.
3), an encompassing perspective on this subject is still missing due to the lack of a
comprehensive review of the literature. The intent of this article is therefore to further the
field of protein glycoengineering by increasing the general understanding of the mechanisms
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by which glycosylation improves the molecular stability of protein pharmaceuticals. This is
achieved by presenting a survey of the different instabilities displayed by protein
pharmaceuticals, by addressing which of these instabilities can be improved by
glycosylation, and by discussing the possible mechanisms by which glycans induce these
stabilization effects.

PROTEIN GLYCOSYLATION
Protein glycosylation is one of the most common structural modifications employed by
biological systems to expand proteome diversity.106-108 Evolutionarily, glycosylation is
widespread found to occur in proteins through the main domains of life (archaea, eubacteria,
bacteria and eukarya).109,110 The prevalence of glycosylation is such that it has been
estimated that 50% of all proteins are glycosylated.111 Functionally, glycosylation has been
shown to influence a variety of critical biological processes at both the cellular (e.g.
intracellular targeting) and protein levels (e.g. protein-protein binding, protein molecular
stability).103 It should therefore not come as a surprise that a substantial fraction of the
currently approved protein pharmaceuticals need to be properly glycosylated to exhibit
optimal therapeutic efficacy.100,112

Structurally, glycosylation is highly complex due to the fact that there can be heterogeneity
with respect to the site of glycan attachment (macroheterogeneity) and with respect to the
glycan's structure (microheterogeneity). Although many protein residues have been found to
be glycosylated with a variety of glycans (for a detailed discussion see review by Sears and
Wong), in humans the most prevalent glycosylation sites occur at asparagine residues (N-
linked glycosylation through Asn-X-Thr/Ser recognition sequence) and at serine or
threonine residues (O-linked glycosylation) with the following monosaccharides: fucose,
galactose, mannose (Man), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine, and
sialic acid (N-acetylneuraminic acid).109,113-115 Since all of the potential glycosylation
sites are not simultaneously occupied this leads to the formation of glycoforms with
differences in the number of attached glycans. Further structural complexity can occur due
to variability in the glycan's monosaccharide sequence order, branching pattern, and length.
In humans N-linked glycan structures are classified in three principal categories according to
their monosaccharide content and structure: high mannose type (Man2-6Man3GlcNAc2),
mixed type (GlcNAc2Man3GlcNAc2), and hybrid type (Man3GlcNAcMan3GlcNAc2).113
The terminal ends of these glycans are often further functionalized with chemically charged
groups (e.g., phosphates, sulfates, carboxylic acids) in human glycoproteins, leading to even
greater structural diversity. These charged glycans most probably impact to some degree the
overall stability of glycoproteins since they can alter their isoelectric point (pI).116,117
Some of these charged terminal glycans (e.g., sialic acid) have also been found to be critical
in regulating the circulatory half-life of glycoproteins. This has led to the development of
glycosylation as a novel strategy to improve the therapeutic efficacies of protein
pharmaceuticals by engineering their pharmacokinetic profiles (for a detailed discussion see
the recent review by Sinclair and Elliot).100

Due to the high degree of structural variability arising from physiological (natural)
glycosylation, novel strategies are currently being pursued to create structurally
homogeneous pharmaceutical glycoproteins with humanized glycosylation patterns.118
These include engineered glycoprotein expression systems (e.g., yeast, plant, and
mammalian cells) as well as enzymatic, chemical, and chemo-enzymatic in vitro
glycosylation remodeling methods. Alternatively, to understand the mechanisms by which
glycosylation influences protein physicochemical properties researchers have employed
comparatively simpler glycosylation strategies. These include enzymatic deglycosylation of
natural glycoproteins, chemical glycosylation via the use of structurally simple chemically-

SOLÁ and GRIEBENOW Page 3

J Pharm Sci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activated glycans, and glycation of the lysine residues with reducing sugars via the Maillard
reaction. Although some of these glycosylation methods (e.g., glycation) may be undesired
for use in protein pharmaceuticals their fundamental scientific value for the understanding
the effects of glycosylation on protein stability cannot be ignored.119 This is due to the fact
that independently of the method by which the structurally different glycans are attached to
the protein surface (e.g. enzymatic and chemical glycosylation, or reductive glycation) they
all seem to induce similar stabilization effects.103 In the next sections, we thus focus on
discussing which pharmaceutically-relevant chemical and physical protein instabilities have
been reported to be ameliorated by glycosylation and discuss possible mechanisms by which
glycans achieve such effects.

EFFECTS OF GLYCOSYLATION ON PROTEIN STABILITY CHEMICAL
INSTABILITIES PREVENTED BY GLYCOSYLATION

The presence of multiple reactive chemical functionalities in the amino acids side chains of
proteins makes them particularly sensitive to several chemical degradation processes. These
can include: glutamine (Gln) and asparagine (Asn) deamidation; histidine (His), methionine
(Met), cysteine (Cys), tryptophan (Trp), and tyrosine (Tyr) oxidation; serine (Ser), threonine
(Thr), phenylalanine (Phe), lysine (Lys), and Cys β-elimination; disulfide fragmentation,
exchange, and crosslinking; backbone peptide hydrolysis caused either by proteases or by
pH sensitive backbone sequences (e.g., aspartic acid-proline (Asp-X)); transamidation;
racemization; and chemically-triggered non-specific crosslinking (Tab. 1).
2,6,8,15,54,55,112 For further detailed discussions on the general mechanisms which trigger
these chemical instabilities the reader is referred to several excellent reviews on the subject.
2,6,8,9,12,55 In the next section, we focus on those chemical instabilities which have been
reported to be improved by glycosylation (e.g., proteolytic degradation, oxidation, and
chemical crosslinking) (Tab. 2).

Proteolytic Degradation
Protein pharmaceuticals are typically administered intravenously and not via the oral route
due to their chemical degradation by the proteases of the digestive system.120 However, the
systemic expression of proteases also makes proteins administered by other routes highly
susceptibly to proteolytic degradation.120 Therefore, the in vivo molecular stability and
therapeutic efficacy of protein pharmaceuticals is intimately related to their stability towards
proteolytic degradation.2,6,100,120 In general, glycosylation has been found to protect
proteins against proteolytic degradation.96,121-123 Some examples include granulocyte
colony stimulating factor (G-CSF) (GRANOCYTE®, Chugai Pharma),124,125 lipase
(MERISPASE®; Meristem Therapeutics),126 protein C (XIGRIS®; Eli Lilly),127
ribonuclease (ONCONASE®; Alfacell),128,129 thyroid-stimulating hormone
(THYROGEN®; Genzyme),130 urokinase (ABBOKINASE®; ImaRx Therapeutics),131
interferon-γ(ACTIMMUNE®; Intermune),132 streptokinase,133 cellulose,134 ovomucoid,
135 amylase,136,137 lysosomal integral membrane proteins Lamp-1 and Lamp-2,138
peroxidase,139 and catalase.140 There is also evidence that this proteolytic stability can be
engineered into proteins as was described by Holcenberg et al. upon chemical glycosylation
of asparaginase and by Raju and Scallon upon enzymatic glycosylation of IgG-like
antibodies.141,142 Particularly, in this last study it was found that altering the end-terminal
glycan structures (e.g., N-acetylglucosamine, galactose, and sialic acid) led to increasingly
greater in vitro proteolytic stability when subjected to papain digestion.142 Mechanistically,
it has been proposed that this proteolytic stability arises due to the fact that the glycan's
presence provides a steric hindrance around the peptide backbone of the amino acids
adjacent to the glycosylation site.114,115,143 This prevents the contact between the
glycoprotein's surface and the cleaving protease's active site.
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Oxidation
Protein pharmaceuticals can potentially lose their bioactivity during their manufacture and
storage due to the oxidation of several of their amino acid side chains (His, Met, Cys, Trp,
and Tyr).2,6,9,22,55,144 These oxidation events have been mainly attributed to the
production of active oxygen-based radicals in protein formulations due to the combination
of trace amounts of transition metals, atmospheric oxygen, and exposure to ultraviolet light.
2,6 Thus far, erythropoietin (EPOGEN®, PROCIT®; Amgen, Ortho) is the sole reported
case of a protein whose bioactivity can be impacted by oxidation and where glycosylation
has been found to ameliorate this chemical instability.145 The loss of bioactivity for this
protein was found to correlate with the levels of tryptophan oxidation when exposed to
oxidizing conditions.145 Comparison of the oxidative susceptibility for the naturally
glycosylated erythropoietin with that of its deglycosylated form revealed that glycosylation
diminished the tryptophan oxidation rates and the inactivation of this protein.145 These
results suggest that glycosylation can protect the protein structure from damage by active
oxygen radicals although more studies are still needed to shed some light on the mechanisms
of this stabilization and to determine the extent to which engineered glycosylation could
prevent this type of instability. Also, whether this stabilizing effect is specific to when the
glycans are chemically attached to the protein surface or non-specific having to do more
with the radical scavenging capabilities of the glycans remains to be established.70

Chemical Crosslinking
Protein therapeutics can form covalent dimers and oligomers due to polymerization
triggered by both disulfide and non-disulfide crosslinking pathways.2,6 Preventing the
formation of these covalently linked species in protein pharmaceuticals is important as these
frequently lead to loss of bioactivity.2,6 Additionally, for many proteins it has been found
that this type of instability, in addition to protein unfolding, could trigger the formation of
larger soluble and insoluble protein aggregates.2,6,11 There are several reports in the
literature were it has been found that glycosylation prevents the formation of these
crosslinked species. For example, Oh-eda et al. reported that the presence of the single
glycan in human granulocyte colony-stimulating factor (G-CSF) (GRANOCYTE®; Chugai
Pharma) prevented the polymerization-induced inactivation of the protein.146 The
mechanism by which G-CSF polymerizes was studied by Krishnan et al. and Raso et al. and
found to be due to disulfide crosslinking.147,148 Interferon beta (REBIF®, Pfizer / Serono;
AVONEX®, Biogen) is another example of a therapeutically relevant protein where
glycosylation prevents its inactivation due to disulfide crosslinking.149 Glycosylation has
been also reported to prevent non-disulfide protein crosslinking. For example, Baudys et al.
reported that engineered chemical glycosylation of insulin, especially at the PheB-1 amino
group, suppressed the self-association of the protein into dimers and oligomeric species.97
The formation of these crosslinked insulin species occurs due to a transamidation reaction
between AsnA-21 and PheB-1.2 This finding is highly significant since it demonstrates that
this type of stabilization can also be engineered into proteins via rationally designed
glycosylation. These results additionally suggest that the mechanism by which this type of
instability is prevented is due to increased intermolecular steric repulsion between the
crosslinking-prone protein species due to the glycan's presence at the protein surface.

PHYSICAL INSTABILITIES PREVENTED BY GLYCOSYLATION
The functional efficacy of proteins critically depends on the conformational stability of their
natively folded state.2 Most proteins adopt a tertiary structure by folding as to minimize the
exposure of their hydrophobic residues in aqueous solution.56,150-152 This creates a
compact native state with a hydrophobic core that is additionally energetically stabilized by
the presence of several types of atomic interactions within the protein core (e.g. electrostatic
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and charge-charge interactions, hydrogen bonds, Van der Waals interactions).151-154
Unfortunately, the resulting thermodynamic and kinetic stability of this state tends to be
intrinsically low due to the non-covalent nature of these forces.2,53 Therefore, any physical
or chemical phenomena which can disrupt these forces will trigger either small or large scale
protein structural changes. These conformationally altered species are more prone to interact
either with themselves or with the hydrophobic surfaces and interfaces present during
protein manufacturing and storage leading to additionally physical instabilities, such as,
adsorption, aggregation, and precipitation.2,42 Examples of pharmaceutically-relevant
phenomena that can lead to protein physical instability include exposure to extremes of
temperature and pH; exposure to amphipatic interfaces (e.g., aqueous/organic solvent,
aqueous/air), hydrophobic surfaces, and chemical denaturants; and formulation at extreme
protein concentrations (Tab. 1). For further detailed discussions on the general mechanisms
which trigger these physical instabilities the reader is again referred to a series of excellent
reviews on the subject.2,6,8,9,11,12,14,42,61,63,64 In the next section, we focus on those
physical protein instabilities which have been reported to be improved by glycosylation
(e.g., precipitation; pH, chemical, and thermal denaturation; and aggregation) (Tab. 2).

Precipitation
One of the most fundamental challenges when designing a protein-based formulation
involves achieving the desired therapeutic protein concentration in solution.2,63 This is due
to the fact that protein solubility is not only inversely proportional to the protein
concentration but also dependant on the solution's pH, temperature, ionic strength, and
excipient concentration.2,52,63,155,156 Therefore, as the target concentration of the
formulation is increased (e.g. ≥ 100 mg/mL) protein precipitation becomes a more critical
problem.63 Glycosylation has been shown to increase the solubility of many proteins,99,157
although the generality of this effect has been questioned.158 Some examples include
interferon beta (REBIF®, Pfizer / Serono; AVONEX®, Biogen),159,160 alpha-galactosidase
A (REPLAGAL®, Shire),161 glucose oxidase,162 and invertase.163 While studying the
effects of glycosylation on peroxidase, Tams et al. determined that the solubility of the
protein showed a linear dependence with the glycosylation degree.164 Although one could
logically consider that this increased solubility is due to a greater hydration potential since
the glycans have a higher affinity for the aqueous solvent than the polypeptide chain, Bagger
et al. recently showed that this is not the case.165 From this study it was concluded that it is
unlikely that strengthened interactions with the aqueous solvent are the mechanism for
increased protein solubility due to glycosylation.165 Analternative explanation can be
provided from a comparative in silico structural and energetic analysis recently performed
by Solá and Griebenow on a series of chemically glycosylated α-chymotrypsin conjugates
with increasing levels of glycosylation (Fig. 1).103,166 From these computer simulations it
was found that the overall molecular solvent accessible surface area (SASA) for the whole
glycoprotein increased linearly as the glycosylation degree was increased (Fig. 2A).103,166
The linear dependence of these results are agreement with the solubility findings of Tams et
al..164 These results therefore suggest the mechanism by which glycosylation increases
protein solubility is due to an increase in the number of possible interactions between the
glycoprotein surface and the surrounding solvent molecules due to an overall greater
molecular solvent accessible surface area (SASA) caused by the presence of the glycans.

pH Denaturation
Exposure of proteins to extremes of pH can result in loss of structure by disruption of both
internal electrostatic forces and charge-charge interactions.2 At extreme pH values, far from
the isoelectric point (pI), the unfolding propensity of proteins increases as a result of
electrostatic repulsions between similarly charged atoms.2,151,167,168 Additionally, the
diminished capability of salt bridge formation between differently charged atoms at
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extremes of pH can also increase the structural unfolding propensity of proteins.2 This
partial unfolding leads to a reduction in local charge density which can further decrease the
electrostatic free energy of the protein leading to global unfolding.2,169

There are several reports were glycosylation is essential in maintaining the conformational
stability of proteins against pH denaturation. Some examples include GCSF
(GRANOCYTE®; Chugai Pharma),124,170 erythropoietin (EPOGEN®, PROCIT®; Amgen,
Ortho),171 acid phosphatase,172 amylase,137 bromelain,173 fibronectin,174 cathepsin E,
175 glucose oxidase,176 and tripeptidyl peptidase.177 Increased pH stability can be also
artificially engineered into proteins as was demonstrated by Masárová through the glycation
of penicillin G acylase.178 The half-life for the glycated version of this protein was
increased 13-fold at pH 3 and 7-fold at pH 10 when compared to the non-glycated protein.
178

Mechanistically this type of stabilization occurs due to an increase in the internal
electrostatic interactions of the protein as a result of glycosylation.103 Support for this
mechanism was recently provided by the comparative in silico structural and energetic
analysis conducted by Solá and Griebenow on a series of chemically glycosylated
αchymotrypsin conjugates with increasing levels of glycosylation (Fig. 1).103,166 From
these computer simulations it was found that the solvent accessible surface area (SASA) for
the protein portion of the glycoconjugates decreased linearly as the number of surface bound
glycans was increased (Fig. 2B).103,166 The presence of the glycans thus increases the
effective distance between the protein electrostatics and the solvent electrostatics by acting
as a molecular spacer. This should lead to an increase in the strength of the internal
electrostatic interactions for the protein due to a smaller dielectric screening effect on the
protein by the surrounding water molecules.103,166 The observed increase in the coulombic
energy parameter (reflected in larger negative values) as the glycosylation degree was
increased for the in silico glycoconjugates analyzed by Solá and Griebenow provide support
for the occurrence of this phenomena (Fig. 2C). This phenomenon also has the peculiarity
that it transforms the overall conformational fluctuations of the protein from being solvent
slaved to non-slaved (slaved refers to molecular phenomena influenced by the solvent
electric dipole moment fluctuations).103,166,179,180 Physically this transduces into the
generally observed decrease in structural dynamics and increase in conformational stability
for glycosylated proteins (Fig. 3 and 4).102,103,166

Chemical Denaturation
In addition to electrostatic interactions, the native state of proteins is also conformationally
stabilized by other non-covalent forces, such as, hydrophobic interactions and hydrogen
bonds. The strength of these forces is often probed indirectly by exposing the protein to
chemical denaturants that can selectively disrupt them, such as, guadinidium hydrochloride
(GdnHCl), urea, and sodium dodecyl sulfate (SDS).2 Multiple studies have shown that
glycosylation can increase the conformational stability of proteins against chemically
induced denaturation. Some examples include alpha-1 antitrypsin (PROLASTIN®; Talecris
Biotherapeutics),181 erythropoietin (EPOGEN®, PROCIT®; Amgen, Ortho)171 lecithin
cholesterol acyltransferase,182 acid phosphatase,172 bromelain,183 lysozyme,184 amylase,
185 and peroxidase.186,187 Evidence that this type of stability can also be engineered into
proteins was recently provided by Sundaram through the chemical glycosylation of α-
chymotrypsin and by Srivastava through the chemical glycosylation of amylase.136,188 In
the α-chymotrypsin studies it was found that the protein could be stabilized against both urea
and SDS denaturation by glycosylation.188 These results therefore suggest that the
mechanism by which glycosylation increases the chemical denaturation stability of proteins
must involve an increase in the strength of their hydrogen bonding and hydrophobic
interactions. The increase in Van der Waals (VdW) energy as a function of increased
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glycosylation degree observed by Solá and Griebenow during the in silico structural
energetic analysis recently conducted on this protein provides further support to this
argument (Fig. 2D).103,166 While increased hydrogen bonding strengths can be explained
by the reduced water dielectric screening (H-bonds are treated as pure electrostatic
interactions in current protein computational forcefields), increased hydrophobic interaction
strengths can be explained by the increased structural compactness and rigidification of the
protein core upon glycosylation.103,166

Thermal Denaturation
Proteins can also denature due to exposure to extremes of temperature since all of the forces
that stabilize their native-state structure are sensitive to thermal changes.53,56-58 Therefore,
it is no surprise that the principal stability indicator used to establish if a formulation
strategy stabilizes a protein involves the determination of its thermal denaturation
susceptibility.2,6,53,58 Coincidently, this is one of the most fundamental biophysical
properties which becomes altered for proteins upon their glycosylation.99,101-103 The
number of proteins whose thermal stability has been reported to be increased by
glycosylation is extensive. Some pharmaceutically-relevant examples include erythropoietin
(EPOGEN®, PROCIT®; Amgen, Ortho),171 alpha 1-antitrypsin (PROLASTIN®; Talecris
Biotherapeutics),181 G-CSF (GRANOCYTE®; Chugai Pharma),124,146,170 interferon-
beta (REBIF®, Pfizer/EMD Serono; AVONEX®, Biogen),149,159 RNAse (ONCONASE®;
Alfacell),129,189,190 follicle-stimulating hormone (GONAL-F®; EMD Serono),191
urokinase (ABBOKINASE®; ImaRx Therapeutics),192 α-glucosidase (MYOZYME®;
Shire),193 α-chymotrypsin (MOBE MUGOS®; Marlyn Nutraceuticals),101-103,188 lecithin
cholesterol acyltransferase,182 and IgG-like antibodies.194,195 It is important to note that
thermodynamic theory also predicts that all proteins will also be susceptible to cold
denaturation at ambient pressures.154,196,197 This creates a significant problem during the
production of protein-based pharmaceuticals as their handling often requires repeated
freeze-thawing cycles.2,10,47,55,198-200 In this context, it was recently reported by Jiang
et al. that glycosylation increases the conformational stability of cystatin during freezing.201

Multiple mechanistic studies have been conducted to try to determine the molecular
mechanisms involved in protein thermodynamic stabilization by glycosylation. For example,
Dwek and coworkers related the increased thermostability of glycosylated RNAse to a
decrease in its overall structural dynamics through H/D exchange NMR studies.128,190
Gervais et al. came to the same conclusion upon examination of the structural dynamics of
glycosylated G-CSF by NMR.202 It is interesting to note that from the studies conducted by
Dwek and coworkers it was found that the reduction in structural mobility due to
glycosylation occurred in regions as far as 30Å away from the glycosylation site suggesting
that these local effects could be transferred throughout the whole protein structure.203
Additionally, in both of these studies it was found that the glycans interacted weakly with
the protein surface suggesting that the glycans extend into the solution, away from the
protein surface.128,190,202

Wang et al. performed a systematic study on several natural glycoproteins (invertase, fetuin,
glucoamylase, ovotransferrin, and avidin) to determine the generality of these stabilizing
effects by glycosylation.98 In this study, the naturally glycosylated proteins were
deglycosylated enzymatically and the changes in their stability studied through calorimetric
analysis.98 For all these proteins, a decrease in Tm was found after enzymatic
deglycosylation with the most glycosylated proteins displaying the greatest changes in Tm.
Curiously, the magnitude of this change was found to be independent of the linkage (N- or
O-linked) and branching (mono- or multi-branched) of the glycans but dependant on the
carbohydrate content of the structurally different glycoproteins.98 Subsequent comparative
calorimetric studies between the glycosylated isoform of ovomucoid and its non-

SOLÁ and GRIEBENOW Page 8

J Pharm Sci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



glycosylated isoform led DeKoster and Robertson to conclude that the increase in
thermodynamic stability of glycoproteins was mainly of an entropic nature due to the lack of
change in the enthalpy of unfolding (ΔHm) between these homologous proteins.204 Another
study that provided some additional fundamental insights into the increased thermodynamic
stability for glycoproteins was performed by Kwon and Yu in 1997 by studying the effects
of glycosylation on the unfolding and refolding rates of human alpha 1-antitrypsin
(PROLASTIN®; Talecris Biotherapeutics).181 It was found that glycosylation slows the
protein unfolding process without affecting the refolding rates significantly. From these
results it was proposed that the increase in thermodynamic stability caused by glycosylation
could be due to stabilization of the native state and not due to destabilization of the unfolded
state.181

Through the use of glycation with small sized glycans (e.g. glucose, fructose) De Jongh and
collaborators recently reported that β-lactoglobulin thermostability could be artificially
enhanced by increasing the degree of glycosylation, reinforcing the generality of these
effects.205 From this work, it was proposed that glycans achieved such effects by lowering
the protein's change in heat capacity of unfolding (ΔCp).119 It is important to note that in
theory ΔCp can be lowered by both stabilizing the native state as well as by destabilizing the
unfolded state (ΔCp = Cp(unfolded) − Cp(native)). To determine the influence that the
glycosylation parameters had on increasing the thermodynamic stability of proteins and to
further the mechanistic understanding of these effects by glycans, Solá et al. recently
performed a detailed experimental thermodynamic analysis on a series of chemically
glycosylated α-chymotrypsin conjugates by differential scanning calorimetry (DSC).
101-103 In this study, both the amount of surface bound glycans (glycosylation degree) and
the size of the attached glycans were systematically varied. It was found that increases in the
glycosylation degree shifted the Tm linearly to higher temperature values independently of
the glycan's molecular size (Fig. 3A).101-103 It is important to note that although the
thermostabilizing effects of both glycation and chemical glycosylation could be caused by a
decrease in the protein's isoelectric point (pI) due to alteration of the surface lysine charges,
this is not the case. Evidence of this comes from the fact that acetylation of α-chymotrypsin
lysine residues which is chemically analogous to glycosylation at the lysine residues and
leads to a similar decrease in pI, leads to a decrease in protein stability.206 Interestingly,
increasing the pI of proteins by making them more positively-charged through guanidination
increases thermostability.206,207 Since the observed increase in thermal stability upon
chemical glycosylation occurred only up to a certain maximum temperature and could be
statistically correlated with an overall structural rigidification of the protein, from data
determined by H/D exchange FTIR experiments (Fig. 4), this suggests that the protein core
has reached its maximum compactness.101-103 Therefore the magnitude of thermal
stabilization achieved by increasing the glycosylation degree should be specific to each
different protein and reflects the maximum amount of native state stabilization that the
protein can obtain (it is important to note that additional overall stabilization can be brought
about by destabilizing the unfolded state). An additional effect that was observed in this
study was that increasing the glycosylation degree led to a decrease in ΔCp although here it
was found that increases in glycan size led to a more pronounced lowering of ΔCp, reaching
even negative values for the most glycosylated conjugates which is rare for protein
unfolding (Fig. 3B).101-103 Since the decrease in ΔCp as a result of increased glycosylation
degree could be also related to native-state stabilization through a decrease in protein
structural dynamics this result suggests that increasing the glycan's size could possibly
destabilize the unfolded state.101,103 This is due to the fact that a negative ΔCp implies a
lower Cp for the unfolded state than for the folded state (ΔCp = Cp(unfolded) − Cp(native)).
This conclusion is further supported by the fact that the Gibbs free energy of unfolding
(ΔGU(25°C)) which is indicative of overall protein stability increased with increases in the
glycosylation degree and to an even larger extent with increases in the glycan size (Fig. 3C).
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101-103 Comparison of the magnitude of maximum gains in overall conformational stability
(ΔΔGU(25°C)) induced by chemical glycosylation of αchymotrypsin (ΔΔGU(25°C) ∼ 9
kcal/mol) with those induced by the traditionally employed carbohydrate excipients in liquid
formulations (e.g. trehalose, sucrose, fructose) (ΔΔGU(25°C) ∼ 3 kcal/mol) reveals the
potentially greater stabilization effect by the covalent attachment of the glycans to the
protein surface at a greatly reduced effective molar glycan concentration (∼ 0.1 mM for
surface bound glycans vs. 1M for solution free glycans).101,103,208,209 Furthermore,
examination of the literature reveals that the average thermodynamic stabilization afforded
per glycan unit attached to the protein surface is ∼ 1−2 kcal/mol.103,183,210,211
Mechanistically all of these results suggest that the glycosylation parameters play different
roles in the overall thermodynamic stabilization of the protein.103 For example, while the
glycosylation degree mainly influences protein thermal stability by stabilizing the native
state through increased internal non-covalent forces and decreased structural dynamics, the
glycan size can further influence the overall thermodynamic stability of proteins by
destabilizing the unfolded state.103

Kinetic Inactivation
The long-term storage times to which protein-based pharmaceuticals are usually exposed
provide an additional challenge for the preservation of their structural intactness. This is due
to the fact that many of the aforementioned physicochemical instabilities could still occur
kinetically for a thermodynamically stabilized protein.2,55,59 Several studies conducted
under accelerated degradation conditions suggest that glycosylation can increase the long-
term stability of proteins. For example, early reports by Dellacherie et al., Lenders and
Crichton, and Srivastava on glycated hemoglobin and amylase evidenced an increase in the
functional lifetimes of these proteins when exposed to extremely high temperatures.
136,212,213 In subsequent studies, it was found that deglycosylation of catalase, human
interleukin 5, erythropoietin, G-CSF, and the chemokine CCL2 led to a decrease in their
kinetic stabilities.146,214-217 While studying the effects of the natural glycans of phytase
on its overall stability Hoiberg-Nielsen et al. recently found that their presence significantly
increased the kinetic stability of the protein by reducing the rate of aggregation while
leaving the equilibrium melting temperature relatively unaltered.218 More recently Solá et
al. studied the effects of the glycosylation degree and glycan size on the kinetic stability of
α-chymotrypsin.101,103 It was found that both the degree of glycosylation and the glycan
size increased the protein's inactivation half-lifes but with significantly greater magnitude of
kinetic stabilization brought about at increasing glycan size.101,103 In agreement with these
results, Tams and Welinder also found a correlation between increased glycosylation
amount and increased kinetic stability for peroxidase relating these effects to a dampening of
both native and unfolded state backbone fluctuations.186 These results again suggest that
both the glycosylation degree and glycan size can play different roles in the kinetic
stabilization of proteins with the glycan's size leading to a larger stabilization effect by
possibly destabilizing the unfolded state. These results are also intriguing since they
highlight the fact that protein samples with similar thermal stabilities (Tm values) will not
necessarily display similar kinetic and overall stabilities (ΔGU(25°C)) which is often an
assumption during protein stability studies.2

Aggregation
Proteins behave as colloids due to their large molecular sizes coupled with their high
intermolecular interaction potentials.20,60,219 This makes the protein structure susceptible
to aggregation-prone phase transitions that are dependant on pH, temperature, and protein
concentration. Aggregation of protein pharmaceuticals is undesirable due to the potential
harmful effects of these on the patient and on the increased production costs due to
additional protein recovery and refolding protocols.11,14,20,47,60-65,220,221 There are

SOLÁ and GRIEBENOW Page 10

J Pharm Sci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



several reports where glycosylation has been shown to either reduce or prevent protein
aggregation. For example, Baudys et al. reported that the physical stability of insulin could
be improved by reducing its aggregation kinetics through the chemical attachment of small
sized glycans.97 Reduced insulin aggregation was related in this work to prevention of a
transamidation crosslinking reaction which suggests a stabilizing mechanism involving
steric intermolecular repulsion phenomena.97 Ioannou et al. found that for α-galactosidase
A (REPLAGAL®; Shire) glycosylation at Asn215 is required to prevent the exposure of a
surface hydrophobic patch that facilitates the aggregation of the protein.161 Weintraub et al.
reported that deglycosylation of thyroid-stimulating hormone (THYROGEN®; Genzyme)
made the protein more prone to aggregation.130 Similar results were found for
erythropoietin (EPOGEN®, PROCIT®; Amgen, Ortho) by Endo et al..222 Hoiberg-Nielsen
et al. also reported increased colloidal stability for the glycosylated form of phytase.218
From their studies on this protein it was proposed that the inhibition of aggregation was
likely dependant on steric hindrance of the glycans in the unfolded protein state and not on
their hydration-related properties.165,218,223 More recently Solá et al. conducted an
accelerated aggregation study directed at understanding the mechanisms by which
systematic changes in the glycosylation parameters could impact non-specific protein
aggregation.101,103 It was found that under extreme conditions (temperature = 60°C and
protein concentration = 20 mg/mL), aggregation could not be prevented by the smaller sized
glycans irrespective of the amount bound to the protein surface. In contrast, the aggregation
process was completely inhibited upon chemical glycosylation with two or more of the
larger sized glycans.101,103 All of these results therefore suggest a mechanism in which
protein aggregation is prevented due to an increase in steric repulsions between aggregation-
prone protein species due to the presence of the glycans on the protein surface.

SUMMARY
Design of successful protein-based therapeutics requires the simultaneous optimization of
both in vitro and in vivo molecular stability as well as improved pharmacokinetics and
pharmacodynamics. Glycosylation could provide ample opportunities in this respect since in
principle all of these could be simultaneously optimized through glycoengineering.100
While the pharmaceutical application of glycosylation still suffers from some technical
challenges due to the intrinsically complex nature of glycoprotein structure and the
difficulties related to glycoprotein production in host-expression systems (e.g., low
glycoprotein expression yields, glycosylation macro- and micro-heterogeneity), further
advancements in the understanding of chemical- and enzyme-based glycan remodeling
strategies being currently pursued by glycoengineering companies (e.g., Neose
Technologies, GlycoFi, GlycArt Biotechnology, GlycoForm), will allow for the rational
design of targeted glycoprotein structures.

As discussed in this review, glycosylation has been shown to ameliorate a multitude of
pharmaceutically-relevant chemical and physical protein instabilities. Mechanistically, the
different glycosylation parameters (e.g., number of glycans attached and glycan molecular
size) studied so far can apparently impart different stabilization effects on the protein. While
increasing the glycosylation degree apparently stabilizes the protein native state by
increasing the internal non-covalent forces and rigidifying the protein structure, increasing
the glycan molecular size appears to destabilize the protein unfolded state. The review also
points out areas in which a more fundamental knowledge is necessary to further decipher the
effects of glycosylation. For example, the impact of glycosylation on the behavior of the
unfolded state still needs further investigation. Furthermore, more systematic studies are
needed to understand the mechanisms by which glycans prevent chemical instability events.
It is important to note the possibility that other instabilities not explored so far (e.g.
deamidation, β-elimination, racemization, adsorption to amphipatic interfaces and
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hydrophobic surfaces) could be also ameliorated or prevented by glycosylation; this
therefore remains to be tested. Nevertheless, the significant potential that glycosylation
engineering holds towards improving the physicochemical properties of protein
pharmaceuticals should lead to further research towards the understanding of the
fundamental effects that glycans have on proteins.
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Figure 1.
Molecular models for the α-chymotrypsin (α-CT) glycoconjugates engineered through
chemical glycosylation. α-CT at center and α-CT glycoconjugates with glycosylation degree
increasing clockwise from top (Lacn-α-CT with varied n: 1, 3, 5, 7, and 14). Protein
represented in CPK style with standard atom coloring, glycans represented in stick style
with green coloring. Reproduced with permission of Springer, from Solá et al.103
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Figure 2.
Changes in energetic parameters and in solvent accessible surface area (SASA) for the
overall glycoprotein and for the protein portion of the glycoprotein as a function of
glycosylation degree. Results were derived from calculations performed on the molecular
models constructed for the various α-CT glycoconjugates engineered through chemical
glycosylation (see Fig. 1). Glycosylation degree is equal to the number of glycan molecules
chemically attached to the protein surface. Adapted with permission of Wiley-Blackwell,
from Solá and Griebenow.166
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Figure 3.
Changes in thermodynamic unfolding parameters as a function of glycosylation degree and
glycan size (lactose (○) and dextran (Δ)) for the various α-CT glycoconjugates engineered
through chemical glycosylation. Reproduced with permission of Springer, from Solá et al.
103
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Figure 4.
Changes in protein structural mobility (〈ΔGmic〉−1) as a function of glycosylation degree and
glycan size (lactose (○) and dextran (Δ)) for the various α-CT glycoconjugates engineered
through chemical glycosylation. Reproduced with permission of Springer, from Solá et al.
103
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Table 1

Chemical and Physical Instabilities Encountered by Protein-based Pharmaceuticals and Typical
Countermeasuresa

Process Main Stress Factors Main Degradation Pathways Typical Countermeasures Referencesb

Purification Proteases, contaminations,c
extremes of pH, high pressures,
temperature,f chemical
denaturants, high salt and
protein concentrations,
amphipatic interfaces,
hydrophobic surfacesi

Proteolytic and chemical
hydrolysis, fragmentations,
crosslinking, oxidation,
deamidation,e denaturation,
adsorption, aggregation,k
inactivation

Protease inhibitors, control
of pH and temperature,
chelating agents,d
antioxidants, addition of
surface activeg and
stabilizing excipientsh

2, 5, 6, 10,

19-22,

68-72

Liquid storage Contaminations,c extremes of
pH, temperature,f chemical
denaturants, high protein
concentrations, freeze thawing,
amphipatic interfaces,
hydrophobic surfacesi

Fragmentations, chemical
hydrolysis, oxidation,
crosslinking, β-elimination,
racemization, deamidation,e
denaturation, adsorption,
aggregation,k inactivation

Control of pH and
temperature, chelating
agents,d antioxidants,
addition of surface activeg

and stabilizing excipientsh

2, 5-12,

19-22, 47,

49, 50,

68-72

Lyophilization Ice-water interface, pH changes,
dehydration, phase separation

Aggregation,k inactivation Co-lyophilization with
surface activeg and
stabilizing excipientsh,j

4, 18, 23-29,

48, 73

Solid-phase storage Contaminations,c protein-
protein contacts, moisturek

Aggregation,k fragmentation,
oxidation, deamidation,
inactivation

Similar to lyophilization 4, 16-18, 30

Spray-drying, Spray-freeze drying Liquid-air interface, dehydration Similar to lyophilization Similar to lyophilization,
precipitationl

31-38, 74

Sustained-release formulationsm Liquid-organic solvent
interface, hydrophobic
surfaces,i mechanical stress

Aggregation,k inactivation Addition of surface activeg

and stabilizing excipients,h
avoidance of water/organic
interfacesn

39-44, 77

a
Covalent modification as countermeasures are excluded in the table because they are discussed in the paper and in table 2 for glycosylated

proteins;

b
the references cited include many reviews to which the interested reader is referred to for details;

c
i.e., contaminating (transition) metal ions and proteases can catalyze fragmentations;22

d
to remove metal ions;2

e
other prominent chemical instabilities are oxidations and disulfide scrambling;2

f
control of temperature can be non-trivial when ultrasonication is being used because of local heating events;

g
mild detergents at low concentration can prevent detrimental interactions of proteins with hydrophobic surfaces/interfaces;42

h
such excipients include sugars, polyols, and amino acids that stabilize protein structure by so-called preferential exclusion;2,75

i
the potentially most harmful surfaces are hydrophobic, e.g., Teflon;45

j
the mechanism of stabilization is believed to be a combination of hydrogen-bond forming propensity and increase in the glass transition

temperature in the solid;23

k
a prominent pathway to aggregation is by so-called sulfide-disulfide interchange;11

l
precipitation prior to the procedure afforded stabilization;
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m
the sole FDA approved formulation thus far consists in the encapsulation of the protein in microspheres comprised of poly(lactic-co-glycolic)

acid;

n
stabilization is mostly achieved by keeping the protein away from denaturing interfaces or by simply avoiding such interfaces altogether.

39,42,46,76
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Table 2

Protein Instabilities Improved by Glycosylation

Instability References Instability References

Proteolytic degradation 96, 121-141 Heating denaturation 98, 101-103, 119, 124, 128, 129, 146, 149, 159, 170,

171, 181, 182, 188-195, 202, 204, 205

Oxidation 145 Freezing denaturation 201

Chemical crosslinking 97, 146, 149 Precipitation 159-165

pH denaturation 124, 137, 171-178 Kinetic inactivation 101, 103, 136, 146, 186, 212-218

Chemical denaturation 136, 164, 171, 172, 181-185, 187,
188

Aggregation 97, 101, 103, 130, 218, 222
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