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Abstract
Representing receptors as ensembles of protein conformations during docking is a powerful
method to approximate protein flexibility and increase the accuracy of the resulting ranked list of
compounds. Unfortunately, docking compounds against a large number of ensemble members can
increase computational cost and time investment. In this manuscript, we present an efficient
method to evaluate and select the most contributive ensemble members prior to docking for targets
with a conserved core of residues that bind a ligand moiety. We observed that ensemble members
that preserve the geometry of the active site core are most likely to place ligands in the active site
with a conserved orientation, generally rank ligands correctly and increase interactions with the
receptor. A relative distance approach is used to quantify the preservation of the three-dimensional
interatomic distances of the conserved ligand-binding atoms and prune large ensembles quickly. In
this study, we investigate dihydrofolate reductase as an example of a protein with a conserved
core; however, this method for accurately selecting relevant ensemble members a priori can be
applied to any system with a conserved ligand-binding core, including HIV-1 protease, kinases
and acetylcholinesterase. Representing a drug target as a pruned ensemble during in silico
screening should increase the accuracy and efficiency of high throughput analyses of lead analogs.
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Introduction
Virtual screening, a process in which ligands are docked to the structure of a target receptor
and ranked according to their interactions with the receptor, has become an integral part of
identifying lead compounds in modern drug discovery. Accurately ranking closely related
cogeners is essential to successfully guide the design of optimized leads; incorporating the
flexibility of the target receptor and the ligand while considering their conformations is
critical to achieving accurate ranking results. It is well established that representing the
receptor as an ensemble of structures can substantially improve accuracy in ranking1-4.
Ensembles can be generated by compiling experimentally determined structures5 or
stochastically determined conformations via molecular dynamics (MD). MD is well
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established as a viable method of studying protein motion and generating realistic
conformations of apo and ligand-bound protein complexes.6-12 During docking, the
ensembles may better represent protein flexibility9,13,14, overcome energetic barriers and
thermodynamic issues15,16 or present alternate binding conformations over the ligand-
tuned version offered by crystal structures determined with a ligand.17-20

In previous work1, we docked a lead series of known compounds against structures of a
species of dihydrofolate reductase (DHFR) derived from X-ray crystallography and NMR
solution data as well as homology models. We showed that the docking scores of the
compounds fell into the correct generalized ranking order when the crystal structure was
used as the target receptor and that the solution and homology modeled structures did not
serve as good representations of the target. We then created ensembles of the target
receptors and docked the same series of compounds against the ensemble members. When
ensembles of the solution and homology modeled structures were used as target receptors,
the accuracy of docking and ranking increased to the same level as the crystal structure.

In the work described above1, as is typical in studies that have employed ensembles of
protein conformations, the entire ensemble with several tens of members is used as the
target. While this is the most thorough approach, there is a significant computational cost
and time loss. A more efficient approach would be to evaluate and select the most
contributive ensemble members prior to docking, therefore reducing the ensemble size and
saving substantial computational time as well as increasing the reliability of the ensemble. A
limited number of studies have focused on finding a method to filter or compress the
ensemble to the contributive members. As a related example, the unified receptor approach
attempts to combine ensemble members to a single representative member.12,21

A conserved core approach has been used by others and proven to be an effective means of
accurately identifying correct ligand-receptor interactions. The “Structural Interaction
Fingerprints” algorithm reduces ligand-protein interactions to a group of strings based on
ligand binding to conserved residues. These strings are then used to filter a virtual library for
known hits and cluster poses of a ligand in a receptor.22 The multiple protein structure
(MPS) method also uses conserved binding regions of a target to map a pharmacophore.
3,11,23

Here we report a method that uses the geometry of conserved core residues to select, a
priori, ensemble members with a strong positive contribution to accurate ligand orientation,
ranking, and docking. An MD simulation allows the residues to explore conformational
space and a relative distance approach is used to consider the preservation of the three-
dimensional interatomic distances of the relevant ligand-binding atoms. The relative
difference method is capable of culling ensemble sets to their most contributive members by
up to 75 %, substantially reducing computational time while also dramatically increasing the
predictive ability and docking metrics of the pruned ensemble.

In this study, we have chosen DHFR as an example of a protein with a conserved core, since
the reported ligands contain a 2,4-diaminopyrimidine or analogous moiety that binds to
conserved residues.24-28 With knowledge of the conserved binding of the pyrimidine ring,
we can judge the correct placement of ligands within the active site whose orientation has
not been proven via experimental methods. However, this method for accurately selecting
contributive ensemble members a priori is not restricted to DHFR. Rather, it has potential
for any system with a conserved active site core and related ligand-binding moiety. Such
families include common drug targets such as the CDK family29,30, HIV-1 nef31 and
protease29, many acetylcholinesterases6, p3822, many protein kinase families22, as well as
DHFR. Additionally, improving ensembles with the relative distance approach would be
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especially useful for drug targets that currently have limited or no experimentally
determined structures when a suitable homology model scaffold exists. Homology models
have traditionally been of questionable utility for drug design, but we describe a method for
substantially increasing their ability to not only correctly dock ligands, but also to accurately
rank groups of ligands in relation to one another.

Methods
All ligands were drawn in Sybyl32 and brought to their local energy minima as discussed
previously.1 Experimentally determined structures were obtained from the PDB and
prepared by adding hydrogens, checking geometries and calculating formal charges.
Individual ensemble members from NMR data were selected: 1LUD_1 is the representative
structure and 1LUD_av is the average structure. Homology models were created using the L.
casei DHFR (LcDHFR) sequence from 3DFR25 and various modeling servers
(EsyPred3D33, Geno3D34, or Swiss-Model35) using a ClustalW36 sequence alignment.
Models were based on three scaffolds: the DHFR structure from B. stearothermophilus that
has the highest DHFR sequence identity (PDB ID 1ZDR37, 36% sequence identity), the
DHFR structure from T. maritime that has the lowest DHFR sequence identity (PDB ID
1CZ338, 31% sequence identity), or using a multiple-template approach with several DHFR
scaffolds (PDB IDs 1ZDR, 1DYH39, 1RF740, 2INQ41). The multiple-template models
were selected based on a range of sequence identities resulting from a BlastP42 search of the
3DFR sequence. Ligands and the co-factor were added to these models and were minimized
with one of two methods: a 3.5 Å radius around the added ligands or the entire construct.
The resulting homology models are named based on the modeling server, the scaffold, and
the minimization technique. For example, the model generated by the Geno3D server using
a 1ZDR scaffold and a whole-structure minimization is referred to as Geno3D 1ZDR
Wholemin.

MD simulations were performed upon the starting structure with a 300 K or 1000 K
temperature for 10000 fs or 50000 fs, as indicated in the text. Motion was confined to a
specifically defined active site and the NADPH cofactor was held rigid. Conformational
snapshots were obtained at 500 fs increments, and resulting structures were minimized using
a Amber force field for 1000 iterations and a terminal energy change of 0 kcal/mol.
Receptors were checked for correct geometry and Φ/ψ angles. Structures are labeled with
their time course snapshot (i.e. R1500 indicates the conformational snapshot at 1500 fs),
with RS indicating the starting structure.

A specially defined ensemble set was created based on the backbone flexibility observed in
two loop regions of two DHFR NMR solution structure ensemble sets, one from LcDHFR
(PDB ID 1LUD43) and the second from human (hDHFR, PDB ID 1YHO44). Using an MD
simulation that included atoms within a 3.5 Å radius around the ligand as well as the near-
neighbors of the two flexible loops resulted in ensembles in which residues 44-55, 97,
13-20, 29-30, and 123-126 (numbering as per LcDHFR) were allowed to move.

Docking
Docking was carried out as previously discussed. 1 An in-house script was used to
automatically determine the top-scoring pose with the conserved orientation of the 2,4-
diaminopyrimidine moiety, which was defined as the N1H atom located within 2.75 Å of the
conserved acidic residue oxygen atoms. To ensure that the ligand was relatively planar in the
active site, a second constraint was used in which Hb (Figure 1) on the amino substituent at
C2 must fall within 4.2 Å of the conserved Thr residue oxygen.
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Docking results are presented as a combination of metrics. The docking score is expressed in
−log10(Kd) units with higher scores indicating a stronger affinity, as a sum of the
hydrophobic, polar, electrostatic, repulsive, entropic, and solvation terms.45,46 The docking
scores are averaged across ensembles, as all members are considered to have contributed
equally. A grouped ranking score represents the receptor's ability to accurately rank ligands
by placing them in the correct ligand-affinity bins. These are calculated using a near-
neighbor technique in which a ligand is considered correctly binned if it falls into the
matched affinity bin or its neighbor's bin. This creates a soft edge between adjacent bins and
alleviates the problem of numerical ranking when docking scores are very close or identical.
1 The grouped ranking score is represented as a percentage of ligands that are correctly
grouped and ranked, with 100 % equaling perfect order. Grouped ranking scores must be
greater than random in order to be statistically relevant. The random cutoff is determined for
each ligand set.

DHFR has a highly conserved 2,4-diaminopyrimidine binding orientation, allowing the
orientation of novel ligands to be assessed in the absence of structural data. The improper
orientation rate represents the percentage of ligands that were docked with an incorrect
orientation for the 2,4-diaminopyrimidine moiety as the top-scoring pose. In such cases, the
top-scoring correct pose is reported and used in the calculation but the ligand is flagged as
having originally been improperly oriented. An improper orientation rate (represented as IO
%) of 0 indicates that all ligands were correctly oriented by the docking program.

A relative distance scoring metric is used to compare the spatial geometries of relevant
conserved residues within the active sites of different models. This function is the averaged
total of similarity scores of distances between the relevant atoms of two models, as defined
by Equation 147.

where c = comparative model

r = reference model

nmeasures = number of compared measures

Vk
i = measure k of molecule i

Equation 1: The relative difference score comparing the similarity of measures between two
models.

The atoms used in the relative difference calculation are those that can be involved in
hydrogen bonds with the 2,4-diaminopyrimidine ring (Figure 1): both oxygens on the
sidechain of Asp 26 (numbering is defined by 3DFR), the hydroxy oxygen of Thr 116, the
backbone carbonyl oxygen of Trp 5, the backbone carbonyl oxygen of Leu 4, and the
backbone carbonyl of Ala 97. While the backbone carbonyl of Trp 5 and the hydroxyl
oxygen of Thr 116 do not appear to form hydrogen bonds in the crystal structure, they
played an important role in ligand orientation in docking. For hDHFR, the sidechain oxygen
of Tyr 121 can also interact with the ligand and is used in the calculation. The conserved
acidic residue Asp 26 carries additional weight (two atoms from this residue are used in the
calculation) because of its importance to the correct orientation of the 2,4-
diaminopyrimidine ring.
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Results and Discussion
We have previously shown that docking compounds in a lead series to ensembles of the
receptor structure with different conformations can improve the resulting grouped ranking of
the docked compounds. However, it is evident that not all ensemble members are positive
contributors to the final scores. Here, we first briefly explore various definitions of the
active site and the resultant motion across an MD time course to determine if a wider range
of motion impacts the predictive ability of the receptor. We then investigate whether
maintaining a conserved core orientation as defined by the relative interatomic measures of
the corresponding binding residues provides a metric that can assess the predictive worth of
an individual ensemble member a priori, effectively allowing ensembles to be substantially
trimmed to their positively contributive members.

Exploring parameters of the MD simulation
To begin this study, it was important to determine whether the parameters used in the MD
simulation to create the target receptor ensemble affected the degree to which the ensembles
improved docking scores, grouped ranking scores and improper orientation rates. We
therefore explored two different temperatures (300 K and 1000 K) during the simulation and
several different definitions of the active site. The same receptors were used as in our
previous study: a crystal structure of LcDHFR (PDB ID 3DFR25) and two crystal structures
of hDHFR (PDB ID 1KMV48 and 1OHJ49), the representative member of the ensemble of
the NMR solution structure of LcDHFR (1LUD43) as well as the averaged NMR structure
and several different LcDHFR homology models created with different templates and
different modeling algorithms. Ensembles were created via conformational snapshots across
an MD simulation. Motion was constrained to various active site definitions in which all
residues with at least one atom falling within a specific sphere around the co-crystallized
ligand were included. These radii were 3.5 Å, 6 Å, the ‘special set’ described in Methods, or
an MD simulation in which all residues were allowed to move across the time course (“full
set”).

The special set was created to model DHFR-specific protein flexibility, as determined by the
variance in backbone orientation with NMR solution structure ensembles. The
average3d.py50 Pymol script was used to create an average structure as well as a sausage-
structure of backbone flexibility with increased radius at higher variance from the average
structure alpha carbons, as shown in Figure 2. This averaged structure indicated substantial
mobility in the undefined loops above and in front of the active site and minimal flexibility
along the alpha-helices and beta-sheets of the active site. This mobility is in agreement with
E. coli and P. carinii DHFR studies that showed similar flexibility across the ligand binding
event.40,51,52

Two families of monocylic 2,4-diaminopyrimidine LcDHFR analogs were selected based on
their wide range of inhibition constants (0.05 nM – 1949.8 nM) and structural variety
(shown in Supplementary Information)53-55. These 40 ligands were split into six groups
based on logical breaks in Ki value and equivalent bin size. The random cutoff for grouped
ranking score was determined to be 31 %. These ligands exhibit drug-like properties with
molecular weights ranging from 201.2 to 382.5, logP values ranging from 0.12 to 4.55, three
to six rotatable bonds per ligand (with three outliers of seven, nine and twelve rotatable
bonds) and conformational energies ranging from 2.54 kcal/mol to 23.17 kcal/mol.

The results of the docking exercises for which the MD parameters were varied are presented
in Tables I-III. It is important to consider all three metrics: docking score, grouped ranking
score and improper orientation rate in order to evaluate whether a receptor or an ensemble
accurately docks the lead series. Docking scores reflect the number of ligand-receptor
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interactions and should be considered within their relative sets. Grouped ranking scores
reflect the percentage of ligands that fall in the correct affinity bin and improper orientation
rates reflect the percentage of ligands with the conserved orientation of the pyrimidine ring.
While there is no statistical relationship between the three metrics, they are often
interdependent.

Data from Tables I and II show that ensembles based on crystal structures do not improve
the metrics of docking and ranking. In fact, larger allowed radii of motion during the
simulation yield worse metrics. For instance, the metrics for 3DFR decrease as the radius
increases from 3.5 Å to the special set to 6 Å to the full MD set. While the grouped ranking
score increases by a few percentage points with each iteration, the IO rates steadily increase
and the docking scores decrease, indicating that potential ligand-receptor binding
interactions are lost. The crystal structure of hDHFR, 1KMV, also demonstrates a decrease
in metrics when the radius is increased from 3.5 Å to 6 Å. Another crystal structure of
hDHFR, 1OHJ, exhibits better docking metrics with a 6 Å radius compared to a 3.5 Å radius
but both ensembles exhibit high IO rates and large decreases in docking score as compared
to the single crystal structure receptor. If the crystal structure is considered to be the optimal
docking conformation, then larger motions move farther away from these orientations.
When higher temperature MD simulations (1000 K as opposed to 300 K) were performed on
the crystal structures, the results were inconsistent. For 3DFR, a 1000 K simulation offered
slight improvement over 300 K, while for 1KMV and 1OHJ, the higher temperature
simulation further degenerated the metrics of the ensemble by nearly doubling the IO rate.

In the case of 1LUD, the LcDHFR NMR solution structure, an MD ensemble based on
individual members dramatically improves the docking and ranking metrics (Table I).
However, larger radii degenerate the ensembles. Ensembles based on 1LUD_1, the
representative structure, and 1LUD_av, the averaged structure, both have the best
combination of metrics when a 3.5 Å radius is used (a 3.5 Å radius is roughly equivalent to
the special set) and then decrease for both the 6 Å and full set. The full-motion MD data are
not shown in the table as the majority of the ligands were not correctly placed within 200
poses, making it impossible to calculate a grouped ranking score. It is likely that for
experimentally observed structures only small motions are needed to ‘fine-tune’ the receptor
orientations when they are not initially optimal, as in the case of NMR solution structures as
compared to crystal structures. Large motions likely explore far too much conformational
space and rapidly escape their optimal orientations. In conclusion, after exploring different
temperatures and radii for the MD simulation, stand-alone crystal structures still remain the
best receptor model, followed by small radii MD ensembles of NMR solution structures.

The homology models present a converse case to the experimentally determined models
(Table III). In four out of five cases, an ensemble based on a 6 Å radius MD simulation
presents a better combination of metrics over a 3.5 Å radius. In most cases this is an
improvement of both the grouped ranking score and improper orientation rate. In the case of
the multiple-template model, the 6 Å radius is still considered optimal despite the 6.3 %
increase in improper orientation and drop in docking score because of the substantial 27 %
increase in grouped ranking score. Given the wide-ranging structural variability of
homology models, it is possible that the larger motions are needed to place the side-chains
into better orientations. However, the varied nature of the improvements makes absolute
statements in these cases difficult.

In summary, we have previously determined that docking and ranking metrics for solution
and homology modeled structures are improved by the use of MD ensembles with a 3.5 Å
radius of allowed motion. With larger ranges of motion across the MD timecourse and
increased temperatures, our findings were consistent in that no type of explored ensemble
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improved the metrics of a crystal structure. While NMR and homology models are improved
by ensembles, the solution structure members are best served by limited radii of motion and
homology models are best served with larger radii of motions. However, overall, varying the
active site definition yields minimal and varied improvement, leading us to the conclusion
that the parameters in the MD simulation are less important factors to consider.

Relative Difference
Here, we investigated the hypothesis that ensemble members that maintain the geometry of
the conserved core will be the most positive contributors to the docking metrics. In order to
find a descriptor that measured whether the geometry of the conserved core was maintained
relative to a reference structure, we first explored using a simple root mean squared
deviation (RMSD) measurement of selected atoms. We observed that RMSD has no
correlation to the preservation of the conserved core because RMSD measures the
differences in the location of the residues themselves as opposed to what they should be
representing: the ability to correctly orient a conserved ligand-binding moiety. It is the
interatomic distances of the relevant atoms of these residues that must be conserved as
opposed to the location of the entire residue itself. Relative difference as explored here
identifies receptors which preserve these interatomic distances, and therefore, receptors that
will orient the ligands correctly. We have found no statistical relationship between relative
difference and RMSD, or RMSD and the resulting metrics, while there is a direct and
substantial relationship between relative difference and scoring metrics.

Eight relative distances are used in the calculation for LcDHFR, with most forming a
triangle that maintains order in 3-dimensional space, as shown in Figure 3. Six of the eight
measures involve the location of the conserved acidic residue (Asp 26 in LcDHFR). In the
case of hDHFR, Tyr 121 is an additional residue that can be involved in orienting the 2,4-
diaminopyrimidine moiety. By using this residue in the calculation, there are a total of 12
distances involved, shown in Figure 3. Six of these measures involve the conserved acidic
residue Glu 30. In the case of DHFR, this is well warranted as the conserved residue has
been shown to play a critical role in both the docking and orientation of ligands. If the N1
atom is oriented to make the relevant hydrogen bonds with this conserved residue, the other
residues are oriented at certain distances in order to form hydrogen bonds to the 2,4
diaminopyrimidine moiety at the other locations.

The relative difference calculation uses a reference structure that has been experimentally
determined with the ligand docked into the conserved core to demonstrate optimal distances.
In the case of MD ensembles based on crystal or NMR solution structures, the reference
structure is the original structure. The calculation assigns a score to each of the indicated
measures based on the similarity of the same measure in the reference structure. Each score
is then averaged to provide each ensemble member with a single ‘relative difference score’.

For homology models, the original scaffold structure is used as the reference structure. A
DHFR homology model should preserve the critical conserved geometries. If the resulting
LcDHFR homology model has a low relative difference to the conserved core of the scaffold
model, it should also be similar to the conserved core of 3DFR. In fact, there is a strong
correlation (R2=0.94) between the relative difference of the homology models to 3DFR and
the relative difference of the homology models to the scaffold model. The relationship
between the scaffolding structure and resulting homology model at the conserved core can
be used to identify homology models that do not maintain the conserved geometry, and
therefore are not likely to reflect the actual structure.

The resulting relative difference scores are sorted and graphically analyzed for clustering
patterns, obvious groups of more than two that occur because the conformations cluster in
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locations of least steric strain (see Figure 4 for examples). Several patterns can emerge in the
graphed scores: clear clustering (Fig. 4a), a ‘rocky slope’ with small groups of distinct
clusters (Fig. 4b) or no clustering (Fig. 4c and 4d). For the first two types of patterns, the
ensemble members in the cluster with the least relative difference are separated and ligands
are docked to the pruned ensemble. A comparison of the docking and ranking metrics from
the pruned and full ensembles shows that the pruned ensemble returns metrics equivalent to
or better than the full set (Tables I-III). These scores for the pruned ensembles led us to the
conclusion that the relative difference calculation is the primary descriptor that allows
selection of contributive ensemble members prior to docking.

A detailed example using 1KMV 6 Å 300 K illustrates both the process and the
interpretation of results. First, using MD, an ensemble is created based on 1KMV as the
reference structure with a 6 Å sphere defining the active site at 300 K. Relative differences
are calculated for the conserved core using the ensemble members and 1KMV as the
reference structure; these differences are then sorted and result in a clear clustering pattern
as shown in Table IV.

The complete docking score matrix for the ensemble is shown in Table V. The excluded
members, belonging to the cluster with substantially different conserved core orientations
and therefore, higher relative difference scores, are indicated with an X in the last row of the
table. A quick visual inspection shows that the excluded ensemble members are those with
much lower docking scores, as indicated by the collection of cool colors. These members are
also generally those with higher improper orientation rates and most also have lower
grouped ranking scores. However, there is no statistical correlation between relative
difference and improper orientation rate (R2 = 0.601) or grouped ranking score (R2 = 0.205).
In this example, there is a correlation between maximum docking score and relative
difference (R2 = 0.907), but this is not consistent across all ensembles created during this
study. While several of the excluded members have high grouped ranking scores, they also
have high improper orientation rates.

Pruning the ensemble to select members in the best-scoring cluster results in improved
docking and ranking metrics relative to the full ensemble (Table II). The grouped ranking
scores are roughly equivalent for the small number of ligands used in the hDHFR set, but the
improper orientation substantially decreases with the relative difference set, from 16.7 % to
7.2 %, showing that more compounds maintained the conserved orientation in the active
site. The docking score also increases by greater than one point (an increase of 11 %),
indicating increased interactions with the receptor. More importantly, the ensemble set has
been decreased by half: from 22 members to 11 members. This cuts the processing time in
half and means that more ligands can be investigated, with more accurate results, in the
same amount of time.

As shown in Tables I-III, there is a consistent trend in the application of relative difference,
especially for ensembles based on solution structures and homology models. If the graphed
relative difference scores cluster, the resulting best-scoring cluster always improves some
combination of docking, ranking or orientation metrics (usually all three) while substantially
reducing the number of ensemble members. If there is a rocky slope, or small groups of
clusters, then the resulting metrics may be equivalent or improved. In these cases, however,
there is still a substantial reduction in the number of ensemble members and therefore a
significant improvement in computational time over the original ensemble. If the calculation
results in no clustering pattern, then no ensemble members are better than others, they
cannot be judged a priori and the ensemble cannot be pruned. In the case of a non-clustering
smooth gradient, selection of the lower-scoring members may actually decrease the docking
score metrics.
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It should be noted in the reported scores for Geno 1ZDR Wholemin 50K and Multiple-
template 3.5Å 50K in Figure 4a and 4b and Table VI that the members in the low-scoring
cluster are not sequential, nor are they necessarily found within one region of the MD
simulation. This indicates that as conformational space is explored across the time course
that the residues move in and out of an orientation that conserves the core structure. A
superposition of the selected ensemble members shows that conformational changes, both
inside and outside the conserved core, are clearly evident.

To investigate whether clustering improved with a larger number of possible ensemble
members, MD simulations over 50,000 fs were performed (resulting in 100-member
ensembles) using the same constraints of the 10,000 fs simulation and the homology models
that showed clustering. The clustering patterns in the relative difference calculations were
the same, often with simply more members per cluster, but no new low-scoring clusters
emerged that would offer better ligand placement. For example, in Geno 1ZDR Wholemin
the same low-scoring relative difference cluster was found in the 50,000 fs run with 35
members as the 10,000 fs run with seven members. As the 35 members do not offer a
computational time savings, the 10,000 fs run is sufficient for exploring the space,
increasing the docking and ranking metrics and reducing the computational time. A longer
time course in the systems investigated here with constrained motion is not likely to explore
radically different conformations. This is not surprising as other studies exploring steadily
increasing time courses have found no substantial improvement with additional snapshots or
a consistent trend with improved metrics.11

Additionally, despite the fact that different MD simulations with the same parameters can
generate different conformations across a time course, the resulting relative difference
clustering patterns are consistent. Models that show a clustering pattern in the initial
simulation show a similar clustering pattern with subsequent simulations. Conversely, if
models do not show a clustering pattern with an initial simulation, they typically do not
show a clustering pattern within four simulations.

Generally speaking, excluded ensemble members will have lower docking scores, higher
improper orientation rates and lower grouped ranking scores or some combination of the
three. The trend for the change in metric is not consistent due to the contributive effect of
each ensemble member. The grouped ranking score of an ensemble is not an average of the
individual members' score, but the grouped ranking score of the averaged docking scores.
The final improper orientation rate is the total percentage across the ensemble, not the
average. By excluding sets based on the underlying cause for some combination of poor
metrics, rather than an individual metric itself, the resulting pruned ensembles are generally
improved all around.

While our study focused on species of DHFR, there are no unique structural features of the
ligand set or receptor that would make the methodology specific to only DHFR. The
ensemble reduction method presented here would be useful with other families of receptors
that possess either a conserved core within the active site and/or whose ligands include a
conserved moiety that is always placed in the same active site location. For example, HIV-1
protease presents a highly conserved region of ligand-binding residues in the active site56,
as demonstrated in the overlay of several crystal structures in Figure 5.

Conclusion
In our previous work we established that the use of an ensemble of structures of the target
receptor can substantially improve the docking and ranking metrics of a non-
crystallographic structure. In this study we have explored other parameters of the MD
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simulation to determine that varying the temperature and definition of the active site make
only minor further improvements to the ensemble approach. Since the contribution of the
individual ensemble members vary, we sought a method to select those with a positive
contributive effect a priori.

We have determined a method that can select positively contributing ensemble members
prior to any docking experiments providing that the system has a conserved core. This
method uses a relative difference calculation based on the preservation of specific
interatomic distances of conserved residues that are critical for binding of a conserved ligand
moiety. Using distances as opposed to Cartesian coordinates allows the residues to move
and explore other possible conformations while preserving the critical distances.
Maintenance of the conserved core, as measured by relative differences, has proven to be a
reliable predictive measure for pruning ensembles and increasing docking metrics such as
correct ligand orientation, grouped ligand ranking, and docking score. The relative
difference approach can substantially reduce the size of the ensemble, typically by at least
50 % and up to 75 %. This reduction in ensemble size makes high throughput analysis of
lead analogs via an ensemble approach a very reasonable and reliable option for drug
development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Atoms used in the relative difference calculation of LcDHFR, showing the conserved
orientation of the 2,4-diaminopyrimidine ring within the active site, with hydrogen bonding
defined by crystallographic data.
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Figure 2.
Representative structures of backbone location variation as determined by tube radius and
color (blue to red) with the script average3d.py for 1LUD (left) and 1YHO (right).
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Figure 3.
The relative distances used in the LcDHFR (left) and hDHFR (right) calculation, with
residue numbering as per 3DFR (LcDHFR) and 1KMV (hDHFR).
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Figure 4.
A comparison of clustering patterns using a relative difference calculation on an ensemble
set. A) Geno3D 1ZDR Wholemin shows a clear clustering pattern, b) the Multiple Template
calculation shows small regions of defined clusters (RS is very low scoring, and then an
obvious cluster of three is seen). The data points corresponding to selected relative
difference clusters are shown as open circles. C) The 1LUD_av 3.5Å radius ensemble
calculation shows no apparent clustering, with a steady increase across the ensemble. D)
Swiss 1ZDR also shows no clustering. RS is low scoring, followed by a smooth gradient of
all other ensemble members.
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Figure 5.
The conserved core of HIV-1 protease. HIV-1 protease is shown with crystal structures and
varying ligands (PDB IDs 1T7I57, 2AOC58, 2FGV59, 2HB360, 2HS161, 2I4U62, 2O4L63,
3B7V64) overlaid with the highly conserved residues Asp 25, Gly 27, Ala 28, Glu 29, and
Gly 49 shown in white and ligands superposed in blue.
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Table IV

The relative difference scores and clustering of 1KMV 6Å 300K. Relative difference scores are shown on the
left sorted ascendingly, with those in the lower cluster highlighted.

Ensemble
Member

Relative
Difference

1KMV_6_RO 0.0698

1KMV_6_R8500 0.0772

1KMV_6_R5500 0.0776

1KMV_6_R500 0.0777

1KMV_6_R8000 0.0796

1KMV_6_R7000 0.0804

1KMV_6_R7500 0.0804

1KMV_6_R9000 0.0806

1KMV_6_R6500 0.0807

1KMV_6_R5000 0.0811

1KMV_6_R3000 0.1878

1KMV_6_R4500 0.1930

1KMV_6_R6000 0.1950

1KMV_6_R2000 0.1990

1KMV_6_R2500 0.1995

1KMV_6_R3500 0.1998

1KMV_6_R10000 0.1998

1KMV_6_R1500 0.1998

1KMV_6_R1000 0.2005

1KMV_6_R4000 0.2006

1KMV_6_R9500 0.2009

Proteins. Author manuscript; available in PMC 2010 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bolstad and Anderson Page 24

Table V

1KMV 6Å 300K ensemble docking scores and grouped ranking scores. X indicates ensemble members that
are excluded based on relative difference clustering. Docking scores are colored in a heat map scheme,
moving from warm (red, 10+; orange, 9; yellow, 8) to cool (green, 7; blue, 6; purple, 5) to monochrome (dark
grey, 4; light grey, 3; black, <2).
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Table VI

Relative difference scores for ensemble members belonging to simulations from Geno3D 1ZDR Wholemin
50K and Multiple-template 3.5Å 50K. Selected relative difference cluster members are shown in grey.

Ensemble Member Relative Difference Ensemble Member Relative Difference

Geno 1ZDR W 50K R7500 0.1922 Multiple-template 3.5Å 50K RS 0.0958

Geno 1ZDR W 50K R6500 0.1938 Multiple-template 3.5Å 50K R10000 0.1923

Geno 1ZDR W 50K R9500 0.1949 Multiple-template 3.5Å 50K R9500 0.1929

Geno 1ZDR W 50K R6000 0.1953 Multiple-template 3.5Å 50K R6500 0.1929

Geno 1ZDR W 50K R7000 0.1956 Multiple-template 3.5Å 50K R0 0.2003

Geno 1ZDR W 50K R10000 0.1956 Multiple-template 3.5Å 50K R1500 0.2029

Geno 1ZDR W 50K RS 0.1980 Multiple-template 3.5Å 50K R3000 0.2029

Geno 1ZDR W 50K R1500 0.3120 Multiple-template 3.5Å 50K R7500 0.2031

Geno 1ZDR W 50K R8500 0.3123 Multiple-template 3.5Å 50K R6000 0.2031

Geno 1ZDR W 50K R3000 0.3126 Multiple-template 3.5Å 50K R1000 0.2033

Geno 1ZDR W 50K R8000 0.3131 Multiple-template 3.5Å 50K R8500 0.2033

Geno 1ZDR W 50K R5000 0.3132 Multiple-template 3.5Å 50K R2500 0.2035

Geno 1ZDR W 50K R2000 0.3137 Multiple-template 3.5Å 50K R2000 0.2040

Geno 1ZDR W 50K R9000 0.3141 Multiple-template 3.5Å 50K R9000 0.2041

Geno 1ZDR W 50K R2500 0.3143 Multiple-template 3.5Å 50K R5500 0.2042

Geno 1ZDR W 50K R0 0.3152 Multiple-template 3.5Å 50K R8000 0.2044

Geno 1ZDR W 50K R5500 0.3153 Multiple-template 3.5Å 50K R7000 0.2051

Geno 1ZDR W 50K R3500 0.3158 Multiple-template 3.5Å 50K R4500 0.2051

Geno 1ZDR W 50K R500 0.3165 Multiple-template 3.5Å 50K R5000 0.2054

Geno 1ZDR W 50K R4500 0.3169 Multiple-template 3.5Å 50K R3500 0.2055

Geno 1ZDR W 50K R1000 0.3169 Multiple-template 3.5Å 50K R4000 0.2058

Geno 1ZDR W 50K R4000 0.3176 Multiple-template 3.5Å 50K R500 0.2147
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