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Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal subtype of stroke and produces severe
neurological deficits in survivors. At present, there is lack of effective treatments that improve
outcome in ICH. A neglected aspect of ICH research is the development of approaches that can be
effectively used to improve recovery. Although previous studies have showed that thrombin induces
blood-brain barrier leakage, brain edema and neuronal death after intracerebral hemorrhage (ICH),
our recent studies have shown that thrombin may have a role in brain recovery after ICH. An
understanding of the mechanisms by which thrombin affects neurogenesis, angiogenesis and
plasticity may facilitate brain recovery after ICH.
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Introduction
Intracerebral hemorrhage (ICH), from a variety of sources, causes instantaneous mass effect,
disruption of surrounding brain, and often an early neurological death 1. To date there are no
specific treatments for human ICH. While thrombin participates in acute brain injury after ICH
1, our recent studies indicate that it also has a role in brain recovery following ICH 2. Evidence
suggests that thrombin affects neurogenesis, angiogenesis and plasticity. This paper discusses
the pathways activated by thrombin in the brain and their potential role in brain recovery.
Clarification of the mechanisms involved in such recovery may be very helpful for developing
new therapeutic strategies against ICH-induced brain injury.

Thrombin, thrombin receptors and signaling pathways
The essential role of thrombin is to cleave fibrinogen to fibrin. However, other important
cellular activities of thrombin, for example, p44/42 mitogen activated protein kinases (MAPK)
activation, appear to be receptor mediated. Three protease-activated receptors (PARs), PAR-1,
PAR-3 and PAR-4, can be activated by thrombin. PARs are seven transmembrane G protein-
coupled receptors that are activated by proteolytic cleavage rather than by ligand binding.
PAR-1 expression is found in neurons, astrocytes, oligodendroglial cells and microglia and
there is functional evidence for the presence of PAR-1 on all cell types.

Many intracellular signaling cascades in brain cells can be activated by thrombin 3. Recent
studies have demonstrated that thrombin can activate MAPK, phosphoinositide 3-kinase
(PI3K) and p70 S6K 4, 5. In rats, p44/42 MAPKs are activated in the brain after intracerebral
infusion of thrombin. PD 98059, a specific p44/42 MAPKs kinase inhibitor, abolishes
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thrombin-induced activation of p44/42 MAPKs and also blocks thrombin-induced brain
tolerance 4. In addition, thrombin increases brain hypoxia inducible factor-1α levels through
the p44/42 MAPKs pathway6.

The PI3K-Akt-mammalian target of rapamycin (mTOR)-p70S6K signaling pathway can be
activated by thrombin 5. A PI3K inhibitor, LY-294002 and rapamycin suppressed thrombin-
induced DNA synthesis and cell migration 5. As well as evidence that the p44/42 MAPK and
PI3K-Akt-mTOR-p70 S6K pathways are activated by thrombin, there is also evidence that
these pathways can play a role in neurogenesis.

PAR-1 is linked to a wide variety of intracellular signaling cascades 7. Thus, for example,
PAR-1 can couple to members of the G12/13, Gq and Gi families, and, dependent on which G-
protein is coupled, it may regulate Rho, inositol 1, 4, 5-trisphosphate (IP3), diacylglycerol,
adenylate cyclase and a number of other pathways 3, 7.

Brain recovery following ICH
In earlier studies, we have shown a marked recovery of function over the weeks following ICH
in the rat 8. The extent to which this recovery of function after ICH reflects the resumption of
normal function by ipsilateral neurons, the assumption of new functions by ipsi- or contralateral
neurons or neurogenesis is as yet unknown.

Neurogenesis has been found in animal models after ICH. Recent studies have demonstrated
the existence of progenitor cells and their potential for neurogenesis in the subventricular zone,
hippocampus dentate gyrus and cortex of adult mammalian brain. Our recent data showed that
neurogenesis occurs after ICH 2. In that study cell proliferation marker bromodeoxyuridine
(BrdU) and immature neuronal marker doublecortin (DCX) were used. We found that DCX
levels in the ipsilateral caudate started to increase as early as seven days after ICH, peaked at
14 days and then gradually decreased at one month. Immunohistochemistry also demonstrated
that DCX immunoreactivity was increased in the ipsilateral subventricular zone and caudate
at two weeks after ICH. Some DCX positive cells were BrdU positive. Temporally, there is
some concordance between neurogenesis and improvement functional outcomes. However, it
is still uncertain as to whether or not ICH-induced neurogenesis contributes to functional
recovery.

Thrombin and neurogenesis
The importance of thrombin in modulating brain injury after stroke has become clear 3. Recent
studies have demonstrated a role of thrombin and its receptors in progenitor cells 9. For
example, thrombin stimulates differentiation of bone marrow-derived endothelial progenitor
cells 10. In addition, thrombin enhances the synthesis and secretion of nerve growth factor in
glial cells, modulates neurite outgrowth, and stimulates astrocyte proliferation 3. The effects
of thrombin on neurogenesis may, at least in part, be through activation of thrombin receptors.
PAR-1 activation stimulates progenitor cell differentiation10.

We have also tested the role of thrombin in neurogenesis. One unit thrombin, which does not
cause marked brain injury, was injected into the caudate and it increased DCX levels in the
ipsilateral caudate 2. To examine the effect of thrombin in ICH-induced neurogenesis, a
specific thrombin inhibitor, hirudin, was used. Hirudin blocked ICH-induced upregulation of
DCX in the ipsilateral caudate 2.
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Thrombin and angiogenesis
Thrombin is a potent promoter of angiogenesis. PAR-1 has an important role in thrombin-
induced angiogenesis 11. Thrombin activates an angiogenic cascade through, at least in part,
modulating vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 and
angiopoietin.

VEGF is a specific mitogen of endothelial cells and a strong stimulator of angiogenesis.
Thrombin stimulates cells to secrete VEGF and upregulates VEGF receptors in endothelial
cells 11. Hypoxia inducible factor-1 (HIF-1), composed of HIF-1α and HIF-1β subunits, plays
an important role in angiogenesis during vascular development. HIF-1α is involved in the
regulation of some specific genes, including VEGF. We have found that intracerebral injection
of thrombin causes HIF-1α accumulation 6. In addition, the angiopoietin pathway is modulated
by thrombin receptor PAR-1 activation12.

Thrombin and plasticity
It is unclear whether or not thrombin-induced plasticity has a role in brain recovery following
ICH. Thrombin is involved in synaptic remodeling and lack of PAR-1 results in learning and
memory deficits in mice 13, 14.
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