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The nonsense-mediated mRNA decay (NMD) pathway is a well-
known eukaryotic surveillance mechanism that eliminates aber-
rant mRNAs that contain a premature termination codon (PTC). The
UP-Frameshift (UPF) proteins, UPF1, UPF2, and UPF3, are essential
for normal NMD function. Several NMD substrates have been
identified, but detailed information on NMD substrates is lacking.
Here, we noticed that, in Arabidopsis, most of the mRNA-like
nonprotein-coding RNAs (ncRNAs) have the features of an NMD
substrate. We examined the expression profiles of 2 Arabidopsis
mutants, upf1-1 and upf3-1, using a whole-genome tiling array.
The results showed that expression of not only protein-coding
transcripts but also many mRNA-like ncRNAs (mlncRNAs), including
natural antisense transcript RNAs (nat-RNAs) transcribed from
the opposite strands of the coding strands, were up-regulated in
both mutants. The percentage of the up-regulated mlncRNAs to
all expressed mlncRNAs was much higher than that of the up-
regulated protein-coding transcripts to all expressed protein-
coding transcripts. This finding demonstrates that one of the most
important roles of NMD is the genome-wide suppression of the
aberrant mlncRNAs including nat-RNAs.

ncRNA � tiling array � UPF1 � UPF3

In Arabidopsis thaliana, hundreds of nonprotein-coding RNA
(ncRNA) transcripts have been discovered based on the

cloning of full-length cDNAs, whole-genome tiling array, and
deep-sequencing analysis (1–8). They include microRNA
(miRNA) precursors, transacting siRNA (ta-siRNA) precursors,
and mRNA-like ncRNAs (mlncRNA). The mlncRNAs were
divided into 2 types—natural antisense transcript RNAs (nat-
RNAs) that arise from the strands opposite the coding strands
and other mlncRNAs.

Nonsense-mediated mRNA decay (NMD) is a eukaryotic
mRNA quality-control mechanism that eliminates aberrant
mRNAs containing a premature termination codon (PTC) from
cells to avoid the production of truncated proteins (9–13). Such
transcripts can arise by genomic frameshifts, nonsense muta-
tions, inefficiently spliced premRNAs, and so on. Several pro-
teins involved in NMD have already been discovered (10).
Among them, the UP-Frameshift (UPF) proteins, UPF1, UPF2,
and UPF3, are core components of mRNA surveillance com-
plexes and are essential for normal NMD function. In yeasts and
mammals, aberrant transcripts with nonsense mutations are
recognized by the UPF complex and then degraded from the 5�
and 3� ends by recruiting-decapping and 5�33� exonuclease
activities and deadenylating and 3�35� exonuclease activities
(14–16).

Plants also have a sophisticated NMD system (10). The
Arabidopsis genome encodes homologues of 3 UPF genes (UPF1,
UPF2, and UPF3). Some UPF1 and UPF3 mutants were obtained
in Arabidopsis and analyzed to investigate the NMD system in
plants and to identify several mRNA substrates for NMD by
using microarrays (17–20). For example, the aberrant mRNAs

containing PTC were overaccumulated in the upf1 and upf3
mutants (17–19).

In plants, aberrant mRNAs with termination codons located
distant (�300 nt) from the 3� termini of mRNAs or �50 nt
upstream of the last exon–exon junction tend to be recognized
as substrates for NMD (21–23) (Fig. 1A). Furthermore, NMD in
plants also targets mRNAs that do not possess any introns as in
yeast, which is different from NMD in animals (24).

We hypothesized that many mlncRNAs are degraded by the
NMD system, because most of the mlncRNAs have the features
of NMD substrates and the potential to be recognized as
aberrant transcripts by the UPF complex in Arabidopsis. Here,
we performed whole-genome tiling arrays for upf1-1 and upf3-1
mutant plants. The results showed that NMD suppresses not only
protein-coding transcripts but also many mlncRNAs. Identifica-
tion of NMD substrates including many mlncRNAs will aid in
understanding the regulatory mechanisms of eukaryotic tran-
scriptomes and elucidating the roles of mlncRNAs.

Results
Features of mlncRNAs as NMD Substrates. Of the mlncRNAs with
Arabidopsis Genome Initiative (AGI) codes in Arabidopsis The
Arabidopsis Information Resource 8 (TAIR8) genome version,
74.6% (293/393) have one or more introns. Of the mlncRNAs
with introns, 39.9% (117/293) have termination codons that are
located �50 nt upstream of the last exon–exon junction when the
first AUGs near the 5� termini are recognized as start codons
(Fig. 1B). Notice that the majority of the mlncRNAs with
intron(s) have a termination codon located upstream of the last
exon–exon junction (Fig. 1B, black bars). However, only 17.0%
(3,463/20,374) of the protein-coding mRNAs with intron(s) have
the 5�-end-closest termination codons that are located �50 nt
upstream of the last exon–exon junction (Fig. 1B, white bars).
They include either the termination codons of the protein-
coding ORFs or the termination codons of the upstream ORFs
(uORFs) that sometimes exist in front of the major ORFs.
Furthermore, of the mlncRNAs with ORFs, 87.3% (331/379)
have termination codons that are located �300 nt from the 3�
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termini of the mRNA, although, only 49.5% (11,655/23,438) of
protein-coding mRNAs have such termination codons (Fig. 1C).
Thus, many mlncRNAs have the features of a plant NMD target
as described above and may be suppressed by NMD.

Overaccumulation of Many mlncRNAs in upf1-1 and upf3-1. To ex-
amine whether these mlncRNAs are suppressed by NMD, we
performed whole-genome-tiling array analysis by using 2 upf
mutants: upf1-1 and upf3-1. We focused on the up-regulated
transcripts, because the target RNAs should be released and
up-regulated when the NMD mechanism is inhibited in the upf
mutants. In this study, we used the gene annotations of TAIR8
for gene classification. However, we excluded the AGI codes for
conserved uORFs from the analyses described throughout this
article, because they represent uORFs in the 5� untranslated
regions (UTRs) of the protein-coding mRNAs but not indepen-
dent transcripts themselves.

Compared with the wild-type accumulation of 237 and 167,
AGI-annotated transcripts were increased �1.8-fold in upf1-1
and upf3-1, respectively (P initial �10�8, FDR � � 0.05, Fig. 2A
and supporting information (SI) Table S1 and Table S2). Of the
increased AGI-annotated transcripts, 198 (83.5%) and 138
(82.6%) were protein-coding genes in upf1-1 and upf3-1, respec-
tively (Fig. 2 A and Table S1 and Table S2). We estimated that
55.6% and 60.1% of those in upf1-1 and upf3-1, respectively,
were genes whose transcripts have uORFs in their 5�UTRs,
whereas only 31.8% and 32.0% of the protein-coding genes that
were not up-regulated in upf1-1 and upf3-1, respectively, had
uORFs. This result is consistent with previous reports that many
transcripts with uORFs were regulated by the NMD system in
mammals and yeasts (16, 25, 26).

Of the increased AGI-annotated transcripts, 31 (13.1%) and
25 (15.0%) transcripts encoded mlncRNAs in upf1-1 and upf3-1,
respectively. Furthermore, of the mlncRNAs that were up-
regulated, 25 (80.6%) and 20 (80.0%) were classified as nat-
RNAs, and 6 (19.4%) and 5 (20.0%) were classified as other
mlncRNAs in upf1-1 and upf3-1 (Fig. 2B). Of the mlncRNAs that
were up-regulated in each mutant, 20 were found in both
mutants (Fig. 2C). Eighteen (90%) of them were nat-RNAs, and
two (10%) were other mlncRNAs. For example, accumulation of
a nat-RNA from the gene At3g56408 (Fig. 2D) and an mlncRNA
transcribed from the gene At3g26612 (Fig. 2E) are up-regulated
in both mutants, but accumulation of the transcripts from the
sense gene At3g56410, encoding an unknown protein, is not
up-regulated (Fig. 2D).

Importantly, all termination codons of 36 AGI-annotated
mlncRNAs up-regulated in upf1-1 and upf3-1 were located �400
nt upstream (average 1,250 nt upstream) of the 3� termini.
Furthermore, 30 of the up-regulated mlncRNAs have exon–exon
junction(s). Their termination codons are located upstream
(average 59 nt upstream) of the last exon–exon junction. These
features of the up-regulated mlncRNAs in the upf mutants
almost meet the previously proposed consensus of aberrant
RNA molecules targeted by the NMD system (21–23). There-
fore, our tiling-array analysis indicated that the mlncRNAs are
recognized as the aberrant transcripts and suppressed by the
NMD system.

Of all expressed protein-coding AGI-annotated transcripts
(16,268 in upf1 and 15,771 in upf3, P initial �10�8), the tran-
scripts with �1.8-fold increase (FDR � � 0.05) were 1.2% and
0.9%, respectively; however, of all the expressed mlncRNAs with
AGI codes (148 in upf1 and 149 in upf3, P initial �10�8), the
mlncRNAs with �1.8-fold increase (FDR � � 0.05) were 20.9%
and 16.8% (Fig. 2F). These percentages were much higher than
those of the protein-coding transcripts.

We also classified the expressed mlncRNAs (153 in the wild
type or upf1-1, and 158 in the wild type or upf3-1) or the
protein-coding transcripts (17,004 in the wild type or upf1-1, and
16,800 in the wild type or upf3-1) with AGI codes into some
groups based on the fold changes (Fig. S1 A and B, Table S3 and
Table S4). The mlncRNAs showed an apparent tendency toward
increased accumulation in both upf1-1 and upf3-1 mutants (Fig.
S1A), whereas the protein-coding transcripts relatively did not
(Fig. S1B). These findings suggested that one of the most
important roles of NMD is the genome-wide suppression of
aberrant mlncRNAs including nat-RNAs.

Prediction and Characterization of Non-AGI Transcriptional Units
(TUs). The ARTADE program (4, 27) to detect expressed genes
and unannotated (non-AGI) TUs from tiling-array data pre-
dicted 1,752, 1,707, and 1,894 non-AGI TUs in the wild type,
upf1-1 and upf3-1, respectively (P initial �10�8). We classified
these TUs into 2,980 nonredundant groups. The non-AGI TUs
that are located on the same strand of the genome and over-
lapped each other by more than one base were classified into the

C 

A 

B 

Fig. 1. The features of mRNA-like ncRNAs. (A) Illustration of the proposed
consensus for the NMD target. The mRNAs with termination codons located
distant (�300 nt) from the 3� termini of mRNAs or �50 nt upstream of the last
exon–exon junction tend to be recognized as substrates for NMD. Arrows (�)
and (�) indicate upstream and downstream from the last exon–exon junction,
respectively. (B) Distribution of the distances from the last exon–exon junc-
tions to the 5�-end-closest termination codons of protein-coding mRNAs or
mRNA-like ncRNAs (mlncRNAs). (C) Distribution of the distances from the
3�termini of RNAs to the 5�-end-closest termination codons of protein-coding
mRNAs or mlncRNAs. Ter, termination codon. CDS, coding sequence.
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same group (Fig. S2). Among the TUs in the same group, 1 TU
with the highest intensity was identified as the group-
representative TU. We used the predicted gene structure of each
group-representative TU for the analyses described below.

Of all the predicted non-AGI TUs, 77 and 59 TUs were
up-regulated �1.8-fold in upf1-1 and upf3-1, respectively (P
initial �10�8, FDR � � 0.05) (Table S5 and Table S6). Of them,
at least 46.8% and 47.5% were supported by cDNA clones. Of
the increased non-AGI TUs, 51 and 42 in upf1-1 and upf3-1,
respectively, were the TUs for putative nat-RNAs, and 26 and 17,
respectively, were the TUs for putative intergenic ncRNAs
(incRNA) (Fig. 3A). Here, we identified TUs overlapping �1 nt
with antisense AGI code genes as nat-RNAs and the rest as
incRNAs. Of the non-AGI TUs that were increased, 39 were
found in both upf1-1 and upf3-1 (Fig. 3B). For example, G2116,
a putative nat-RNA that was derived from the antisense strand
of the gene for PHYTOALEXIN-DEFICIENT 4 (PAD4;
At3g52430), was up-regulated in both mutants (Fig. 3C), and
Group 2870 (G2870), a putative incRNA, was also up-regulated
in both mutants (Fig. 3D). These results suggest that more
mlncRNAs were regulated by the NMD system than estimated
from the analysis of AGI-annotated genes shown in Fig. 2.

Validation of the Tiling-Array Results. To validate the tiling-array
experiments, quantitative reverse transcription-PCR (RT-PCR)
of the mlncRNAs with �1.8-fold increase in upf1-1 and upf3-1
(P initial �10�8) (Table S3 and Table S4) was performed. 5�
rapid amplification of cDNA ends (RACE)-based RT-PCR was
used to detect strand-specific bands of nat-RNAs (Fig. 4A),
because sense and antisense transcripts should arise from both
strands at the same locus. The sample RNAs were dephospho-
rylated, decapped, ligated with 5� adapter, and reverse-

transcribed followed by quantitative PCR by using a 5� forward
primer annealed to the adapter and gene-specific reverse primer
(Fig. 4A). However, the common quantitative RT-PCR was used
to analyze the other mlncRNAs and incRNAs. Among 30
mlncRNAs up-regulated in the array analysis, accumulation of at
least 28 mlncRNAs including 17 nat-RNAs was increased in
upf1-1 and upf3-1 compared with those of the wild type (Fig. 4B).
Similar results were obtained by using plants containing another
mutant allele of UPF3, upf3-2 (Fig. S3).

The 5�RACE-based RT-PCR described above can detect only
the capped transcripts but not uncapped transcripts. To examine
whether uncapped mlncRNAs were also targeted by NMD, we
directly ligated the 5� adapter to the sample RNAs followed by
quantitative RT-PCR. If uncapped mlncRNAs were targeted,
this experiment could detect higher signals in the upf mutants
than in the wild type. However, no mlncRNA-specific amplified
bands were detected in either the wild type, upf1-1 or upf3-1 (Fig.
S4). This result indicated that the capped mlncRNAs, but not
uncapped mlncRNAs, were the major substrates of NMD.

To compare the sequences of the up-regulated mlncRNAs
among the wild type, upf1-1 and upf3-1, we cloned and se-
quenced the PCR-amplified products of 5 AGI-annotated mlnc-
RNAs. The sequences were highly homologous (�99%), and the
5�-end-closest termination codons, which are putative triggers of
NMD, were conserved among the wild type, upf1-1 and upf3-1.
The results described above suggested that the native mlncRNAs
were recognized as aberrant transcripts and were suppressed by
the NMD system.

Regulation of the mlncRNAs by NMD Depends on Their Translation.
The NMD system is a translation-dependent pathway (9). To
obtain further experimental support, we treated wild-type seed-
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lings with cycloheximide (CHX), which inhibits translation and
thus temporarily suppresses the NMD system (17, 21, 23), and
examined the expression of some mlncRNAs. Of the 9 detected
mlncRNAs, accumulation of 7 mlncRNAs in the CHX-treated
(CHX�) plants was up-regulated compared with those in the
mock-treated (CHX-) plants (Fig. 5). These results, and the data
in Fig. 4, indicate that the NMD system suppresses aberrant
mlncRNAs.

Discussion
In this study, we showed that many mlncRNAs could serve as
NMD substrates (Fig. 1) and that not only protein-coding
transcripts but also many mlncRNAs, including nat-RNAs, were
up-regulated in upf1-1 and upf3-1 (Figs. 2 and 3). The location
of the 5�-end-closest termination codons of the up-regulated
AGI-annotated mlncRNAs is in agreement with the previously
proposed consensus of the aberrant RNA molecules targeted by
the NMD system (21–23). This finding suggests that the NMD

system genome-widely suppresses aberrant mlncRNAs including
nat-RNAs. Identification of the NMD-targeted mlncRNAs may
help identify the roles of these mlncRNAs.

Some short ORFs that could encode short peptides have been
reported to function in biologically important processes (28, 29).
In fact, the short ORFs of many mlncRNAs, which could be
recognized by NMD, could produce short peptides. It is un-
known whether these putative peptides could be translated and
whether they have an important function in biological processes.
However, their overaccumulation might have an unfavorable
effect on plant cells. Thus, NMD may coordinate the amount of
these short peptides by suppressing the short peptide-encoding
mlncRNAs before the translation.

The NMD system is considered to be a mechanism involved in
the degradation of aberrant mRNAs that contain a premature
termination codon (PTC) resulting from unexpected errors such
as genomic mutations, transcriptional errors, and missplicing (9).
However, the percentage of up-regulated mlncRNAs to all
expressed mlncRNAs was much higher than the percentage of
up-regulated mRNAs to all expressed mRNAs in upf1-1 and
upf3-1 (Fig. 2F and Fig. S3). This result suggests that one of the
most important roles of NMD is the suppression of the mlnc-
RNAs that are recognized as aberrant transcripts.

Many transcripts including hundreds of intergenic ncRNAs
are overaccumulated in RNAi knockdown lines of core subunits
of the exosome in Arabidopsis (3). The transcripts up-regulated
in the upf mutants may overlap with exosome substrates iden-
tified previously, because, in the NMD pathway, the RNAs
recognized as the aberrant transcripts by the UPF complex
should be degraded from the 3� end by deadenylation and
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subsequent 3�35� exonuclease activity, which is probably in-
cluded in the exosome (14–16). However, only subtle overlaps (6
AGI-annotated transcripts) were found between the transcripts
up-regulated in the upf mutants and exosome substrates (Table
S1 and Table S2). In addition, the previously identified popu-
lation of exosome substrates does not include any nat-RNAs.
These differences are probably because of the difference of
growth condition, age of plants used, and statistical analysis
method.

Of the AGI-annotated transcripts up-regulated in upf1-1 and
upf3-1, 8 transcripts were derived from transposon genes (Fig.
2A, Table S1 and Table S2). In addition, 4 up-regulated nat-
RNAs were derived from the antisense strands of nonexpressed
sense genes annotated as transposons or pseudogenes (Table S1
and Table S2). Taken together, of the 97 non-AGI TUs up-
regulated (Fig. 3A), 21 (22%) TUs include short segment(s) of
the repeat sequence(s) originating from transposable elements
(E value �0.01) (Table S5 and Table S6). The transposon-
associated ncRNAs have been reported to be suppressed by
DNA methylation at the transcriptional level (2, 6). The rela-
tionship between DNA methylation and the suppression of
mlncRNA by the NMD system is as yet unknown.

Nuclear cap binding protein 80 (CBP80) promotes the inter-
action of UPF1 with UPF2 in mammals (30). The Arabidopsis
CBP80 homolog, ABA HYPERSENSITIVE1 (ABH1), is in-
volved in premRNA splicing and processing of miRNA precursor
(7, 8). Inactivation of ABH1 that results in decreased levels of
mature miRNAs is accompanied by apparent stabilization of the
precursors. However, our tiling-array analysis of upf mutants did
not reveal any remarkable accumulation of miRNA precursors.
Therefore, the NMD system is probably involved in the suppres-
sion of the aberrant mlncRNAs, not in the processing of miRNA.

Materials and Methods
Plant Materials and RNA Extraction. The Col-0 ecotype of Arabidopsis was
used in this study. The mutants upf1-1 (point mutation), upf3-1

(SALK_025175), and upf3-2 (SALK_097931) were as described previously
(14 –16). Plants were grown in plastic dishes (30 plants per plastic dish)
containing GM agar (0.85%) medium supplemented with 1% sucrose
�16-h-light/8-h-dark (40 – 80 �mol of photons m�2 sec�1) essentially as
described in ref. 4. Total RNA was extracted from 15-day-old seedlings by
using Isogen reagent (NIPPON GENE), precipitated with 1/3 volume of 8M
LiCl, and resolved in RNase-free DEPC water.

Whole-Genome-Tiling Array and Analysis. The GeneChip Arabidopsis tiling-
array set (1.0F Array and 1.0R Array, Affymetrix) was used (2, 4). Eight
micrograms per array of the total RNA extracted from 15-day-old seedlings
was used for probe synthesis. Probe synthesis, array hybridization, and com-
putational analyses of RNA expression were performed as described in ref. 4.
Three independent biological replicates were performed for each strand
array. The ARTADE-based method (P initial �10�8) was used to detect the
expressed AGI-annotated genes and predict the non-AGI TUs from the ex-
pression data (4, 27). We identified the AGI transcripts and the non-AGI TUs
predominantly up-regulated in both upf mutants by Mann–Whitney U test
(FDR � � 0.05) as described in ref. 4.

The Arabidopsis genome annotation used in this analysis was based on the
TAIR8 genome version (ftp://ftp.arabidopsis.org/home/tair/Genes/
TAIR8_genome_release/TAIR8_functional_descriptions) as of May 5, 2008. Of
the AGI-annotated genes annotated as ‘‘other RNA,’’ the genes annotated as
‘‘Potential natural antisense gene’’ were identified as nat-RNAs, and the rest
except transacting siRNA precursors were as other mlncRNAs in this study.
When 1 AGI-annotated gene had some structural variations, 1 variant with the
youngest variant number was selected for use in the analyses of array data.

CHX Treatment. Fifteen-day-old Arabidopsis seedlings were vacuum-
infiltrated with 10 �g/ml CHX (Nacalai Tesque) in the buffer (0.046 g/L Mu-
rashige and Skoog Plant Salt Mixture, 0.3 g/L sucrose, pH 5.8). The seedlings
were incubated on the bench at room temperature for 3 h, followed by total
RNA extraction.

Quantitative RT-PCR Analysis. The total RNA was subjected to DNase I (Takara)
treatment before the RT reaction. cDNA was synthesized from 4 �g of the total
RNA in 40 �L of mixture by using a Primescript 1st strand cDNA synthesis kit
(Takara) and oligo(dT) primer. PCR was performed in 20 �L of mixture with 0.5
�L of the RT product, Ex Taq polymerase (Takara) and the respective gene-
specific primer sets. The cycling parameters were 94 °C for 2 min and 30 sec, 25
or 30 cycles of 20 sec at 94 °C, 30 sec at 55 °C, 30 sec at 72 °C, and a final
elongation step at 72 °C for 2 min and 30 sec. Primer sets used are listed in
Table S7. PCR products were subjected to electrophoresis on 2% agarose gel
followed by ethidium bromide staining for visualization.

Quantitative 5�RACE-Based RT-PCR analysis. The total RNA was subjected to
DNase I (Takara) treatment before the series of treatments. GeneRacer Kit
(Invitrogen) was used according to the modified protocol described below.
The total RNA (5 �g) was treated with calf intestinal phosphatase (CIP)
followed by treatment of tobacco acid pyrophosphatase (TAP) to remove
the 5� cap structure. Three micrograms of the resulting RNA were subjected
to ligation with GeneRacer RNA oligo adapter to 5� end of the RNA by using
T4 RNA ligase. The ligated RNA was reverse-transcribed to synthesize cDNA
by using SuperScript III RT and the GeneRacer Oligo dT primer in 20 �L of
mixture. First PCR was performed in 20 �L of mixture with 0.25 �L of RT
product, Ex Taq polymerase, GeneRacer 5� forward primer, and the gene-
specific reverse primer. The cycling parameters of first PCR were 94 °C for
2 min and 30 sec, 40 cycles of 20 sec at 94 °C, 30 sec at 60 °C, 30 sec at 72 °C,
and a final elongation step at 72 °C for 2 min and 30 sec. Second (nested)
PCR was performed in a 20 �L of mixture with 1 �L of the first PCR product,
Ex Taq polymerase, GeneRacer 5� nested forward primer, and the gene-
specific reverse primer. The cycling parameters of nested PCR were 94 °C for
2 min and 30 sec, 20 cycles of 20 sec at 94 °C, 30 sec at 60 °C, 30 sec at 72 °C,
and a final elongation step at 72 °C for 2 min and 30 sec. Visualization was
as described above. The forward and reverse primers used are listed in
Table S8.
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Fig. 5. Quantitative RT-PCR analysis of some mlncRNAs in the cycloheximide
(CHX)-treated plants. Two independent samples from CHX-untreated (CHX-)
and CHX-treated (CHX�) plants, respectively, were loaded. ACT2 mRNA was
used as an internal control.
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