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Abstract

Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from
environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA+ plasma
cells remain poorly understood. Here, we report that the B cell–expressed tetraspanin CD37 inhibits IgA immune responses
in vivo. CD37-deficient (CD372/2) mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers
of IgA+ plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow
chimeric mice revealed that CD37–deficiency on B cells was directly responsible for the increased IgA production. We
identified high local interleukin-6 (IL-6) production in germinal centers of CD372/2 mice after immunization. Notably,
neutralizing IL-6 in vivo reversed the increased IgA response in CD372/2 mice. To demonstrate the importance of CD37—
which can associate with the pattern-recognition receptor dectin-1—in immunity to infection, CD372/2 mice were
exposed to Candida albicans. We report that CD372/2 mice are evidently better protected from infection than wild-type
(WT) mice, which was accompanied by increased IL-6 levels and C. albicans–specific IgA antibodies. Importantly, adoptive
transfer of CD372/2 serum mediated protection in WT mice and the underlying mechanism involved direct neutralization
of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal
immune response.
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Introduction

Plasma cells (non-dividing antibody-secreting cells, ASC) are

terminally differentiated B cells that are central to humoral

immunity. Both mucosal and systemic immune responses to

infection can induce IgA+ plasma cell formation, resulting in

production of secretory and serum IgA respectively. In both

pathways, isotype class-switching in B cells is tightly regulated by

the cytokine-milieu. While it is believed that interleukin-6 (IL-6),

originally described as a B-cell stimulating factor [1], stimulates

plasma cell differentiation and promotes IgA responses in vivo [2],

the molecular mechanisms underlying the development of IgA-

secreting plasma cells remain poorly understood. In particular,

detailed knowledge about proteins in the B cell membrane that

control this process is lacking.

IgA-secreting plasma cells are predominantly found in the

mucosal-associated lymphoid system (MALT) and bone marrow.

During the mucosal immune response, intestinal dendritic cells

present mucosal antigen to CD4+ T cells in Peyer’s patches, or

present antigen directly to B1 cells in a T cell-independent manner

[3,4]. This leads to the local production of secretory IgA, which is

important in neutralizing intestinal microbes and controlling gut

homeostasis. Secondly, systemic immune responses to T cell-

dependent antigens lead to the development of germinal centers

(GC) in spleen and peripheral lymph nodes that are the origin of

long-lived plasma cells that produce high affinity IgG and IgA

antibodies in serum [5–7]. Recent studies have underlined the

importance of local production of B cell stimuli (cytokines, TLR

ligands) in inducing IgA production during the humoral immune

response [3,8], including IL-6 that promotes the generation of

IgA-secreting plasma cells [2,3].

Tetraspanins, or transmembrane-four superfamily proteins, are

implicated in organizing (immuno)-receptors, integrins, and

signaling molecules into functional membrane complexes (tetra-

spanin microdomains) [9–12]. Consequently, tetraspanins are

important in fundamental cellular processes including migration,

proliferation, differentiation, and –when deregulated- cancer [13].

CD37 is expressed exclusively on cells of the immune system, in
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contrast to most other tetraspanins. CD37-deficient mice display

defects in various arms of the immune system, including impaired

T cell-dependent IgG responses, T cell hyperproliferation, and

increased antigen-presenting capacity by dendritic cells [14–16].

We have recently demonstrated that the C-type lectin dectin-1

interacts with tetraspanin CD37 [17]. Dectin-1 recognizes b-

glucans that are found in the cell wall of fungi, and is involved in

cytokine production and killing of fungal pathogens including

Candida albicans [18,19].

In this study, we provide novel insights into the mechanisms

underlying IgA production during the humoral immune response.

We demonstrate that the B cell-expressed tetraspanin CD37

inhibits the formation of IgA-secreting plasma cells in vivo that is

critically dependent on IL-6. Moreover, CD37-deficient mice are

protected against C. albicans infection, which was dependent on

fungal-specific IgA antibodies. Taken together, tetraspanin protein

CD37 inhibits IgA responses both in steady state conditions and

during infection. This is the first demonstration that tetraspanins

control the immune-mediated defense against fungal pathogens.

Results/Discussion

CD37 inhibits IgA production in vivo
CD37 expression was determined in different mouse and

human leukocyte populations at the mRNA and protein level,

respectively. In both mice and human, B cells were found to be the

major CD37 expressing cells (Figure 1A and 1B). In lymphoid

tissue, CD37 expression was highest in the B cell follicle area as

expected (Figure 1B, data shown for spleen). This high CD37

expression on B cells prompted us to study humoral immunity in

CD37-deficient mice in detail. When analyzing the basal antibody

levels in sera of naı̈ve mice, we observed that basal levels of serum

IgA in CD372/2 mice were increased more than 15-fold

compared to C57BL/6J wild-type (WT) mice (Figure 1C). At the

same time, IgG1 levels were decreased 2-fold and serum IgM

levels were unaltered compared to WT mice. Next, we

investigated antibody responses after immunization with the T

cell-dependent antigen (NP-KLH) in CD372/2 and WT mice.

Sera were analyzed for the presence of antibodies reactive with

NP3-BSA (high affinity anti-NP antibody) and NP20-BSA (total

anti-NP antibody) [20]. Again, CD372/2 mice developed high

titers of anti-NP IgA, with .10-fold increase of high affinity IgA

compared to controls 21 days after immunization (Figure 1D).

B cells lacking CD37 are responsible for the high IgA
production

We wanted to investigate whether CD37-deficiency on the B

cell population was indeed responsible for the high IgA response.

WT mice were sublethally irradiated and reconstituted with bone

marrow; 80% from mMT mice (B cell-deficient mice), and 20%

from WT or CD372/2 mice as a source of B cells. This created

WT mice and mice with a CD37-deficient B cell compartment

(referred to as chimeric CD372/2 mice). The percentages of

CD19-, CD3-, GR-1-, and F4/80-expressing cells assessed in

peripheral blood revealed equally efficient reconstitution in WT

and chimeric CD372/2 mice (data not shown). Next, NP-specific

antibody production was analyzed 35 days after immunization

with NP-KLH. The results clearly demonstrate that chimeric mice

with a CD372/2 B cell repertoire also produced high titers of

NP-specific IgA comparable to intact CD372/2 mice after

immunization (Figure 1D, right). Thus, we can conclude that the

elevated IgA response in CD372/2 mice is a B cell-intrinsic

defect.

Increased formation of IgA–secreting plasma cells in
CD372/2 mice

The high IgA titers in serum of CD372/2 mice suggest an

enhanced generation of IgA-secreting plasma cells. To determine

if this was the case, spleens, bone marrow, and mucosal-associated

lymphoid tissue from immunized mice were examined for the

frequency of NP-specific IgA-ASC using ELISPOT assays. In line

with IgA levels in serum, the numbers of IgA-ASC were increased

in spleen of CD372/2 mice compared to control WT mice at day

14 following immunization (Figure 2A). This observation was

confirmed by immunohistochemical analysis (Figure 2B). High

numbers of IgA+ cells were present in GC and white pulp area in

spleens of immunized CD372/2 mice, whereas in spleens of WT

mice IgA+ cells were very rarely detected. CD138 stainings

confirmed that the IgA+ cells in CD372/2 spleens were indeed

plasma cells (Figure 2C). Since IgA-ASC are known to migrate

preferentially to the MALT using specific gut-homing receptors

[21], Peyer’s patches and mesenteric lymph nodes of immunized

CD372/2 mice were analyzed for the presence of NP-specific

IgA-ASC. Both the morphology and organization of mesenteric

lymph nodes (Figure 2D) and Peyer’s patches (Figure 2E) of

CD372/2 mice were comparable to WT mice, although

CD372/2 Peyer’s patches were slightly increased in size. The

percentage of IgA+ NP-specific plasma cells was increased in

MALT of immunized CD372/2 mice compared to WT controls

(Figure 2F), demonstrating that IgA-ASC generated in CD372/2

spleens preferentially homed to the MALT rather than to the bone

marrow. IgG1+ NP-specific plasma cells were hardly detected in

MALT of CD372/2 and WT mice as expected. Taken together,

CD372/2 mice possess increased generation of antigen-specific

IgA+ plasma cells after immunization.

Elevated IgA responses in CD372/2 mice are dependent
on IL-6

IL-6 is a cytokine that has been implicated in promoting the

generation of IgA-secreting plasma cells [2,3]. Moreover, we have

recently shown that signals transduced through the CD37

Author Summary

Antibody, or immunoglobulin (Ig), production by plasma
cells in the immune system is important for protecting the
host from microbial infections. IgA is the most abundant
antibody isotype produced in the body. However, the
molecular mechanisms underlying the generation of IgA–
producing plasma cells remain poorly understood. We
now report that the B cell–expressed protein CD37
regulates IgA immune responses, both in steady-state
conditions and during infection. We found highly in-
creased levels of IgA in serum and elevated numbers of
IgA+ plasma cells in lymphoid tissue of mice that are
deficient for CD37 (CD372/2 mice). To demonstrate the
importance of CD37 in immunity to infection, CD372/2
mice were exposed to the fungus Candida albicans. C.
albicans can cause systemic infection with high mortality
in immunocompromised patients. We demonstrate that
CD372/2 mice are evidently better protected from
infection than wild-type mice, which was dependent on
C. albicans–specific IgA antibodies. The underlying mech-
anism involved direct neutralization of fungal cells by IgA.
In summary, the B cell protein CD37 inhibits IgA responses
and anti-fungal immunity. This study may contribute to
the development of novel immunotherapeutic approaches
for invasive fungal disease.
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molecular partner, dectin-1, lead to an elevated production of IL-6

by CD372/2 cells [17]. Consequently, we examined whether a

dysregulation of IL-6 production in immunized CD372/2 mice

may underlie the excess production of IgA. We first examined the

expression of IL-6 in the germinal centers (GC) of immunized

mice by immunohistochemistry. We readily detected IL-6

Figure 1. Increased IgA production in CD37-deficient mice. (A) Murine CD37 mRNA expression (arbitrary units) on various MACS-purified
leukocyte subsets determined by quantitative RT–PCR. i/mDC = (im)mature dendritic cell, mf = macrophage. (B) Human CD37 expression on
peripheral blood CD19+ B cells determined by flow cytometry (left) and in B cell follicle area (arrow) of spleen determined by immunohistochemistry
(right). Scale bar is 50 mm. Similar CD37 expression was found in lymph nodes. (C) Sera of non-immunized WT (black) and CD372/2 (white) mice
were analyzed for the amount of immunoglobulin isotypes by ELISA. Antibody titer is expressed in arbitrary units and represented as mean6SEM
(n = 9). Asterisks indicate significant difference (*p,0.0002, **p,0.00005). (D) WT and CD372/2 mice were immunized with NP-KLH and sera were
assayed for high affinity NP-specific IgA by ELISA (left). IgA response in chimeric mice that contain either WT or CD37-deficient B cell compartment
35 d after immunization (right). Antibody titer is expressed in arbitrary units and represented as mean6SEM (n = 6). Asterisks indicate significant
difference as per: *p,0.03 and **p,0.001. Similar results were obtained for total (low and high affinity) NP-specific IgA.
doi:10.1371/journal.ppat.1000338.g001
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Figure 2. Increased formation of IgA–secreting plasma cells in CD372/2 mice. (A) The frequency of high affinity NP-specific IgA–ASC was
assessed in CD372/2 (white) and WT (black) spleen and bone marrow by ELISPOT at d 14 and 35 of the immune response. Non-immunized mice are
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expression in the GC area of spleens of immunized CD372/2

(Figure 3A). In contrast, non-immunized mice (WT and CD372/2

mice) as well as immunized WT mice had non-detectable levels of

IL-6 in spleens. IgA production by peritoneal B1 cells during T cell-

independent responses is not dependent on IL-6 [22], which

correlates with the normal IgA response in CD372/2 mice after T

cell-independent immunization (data not shown).

Next, the effect of IL-6 on IgA production during ex vivo

restimulation experiments was analyzed. Splenocytes of immu-

nized WT and CD372/2 mice were stimulated with NP-KLH in

vitro in the absence or presence of neutralizing IL-6 antibodies.

Figure 3B shows increased IgA production by CD372/2 cultures

compared to WT cells as expected. Blocking IL-6 resulted in

substantially reduced IgA production by CD372/2 cells, which

supported our hypothesis that the mechanism underlying the

elevated IgA responses in CD372/2 mice is controlled at the

level of IL-6. WT and CD372/2 cultures produced 1900 vs.

5500 pg/ml IgA respectively, which decreased to 500 vs.

2000 pg/ml in the presence of neutralizing IL-6 antibodies. We

also established that purified CD372/2 splenic B cells were

capable of autocrine IL-6 production upon restimulation in vitro

using intracellular cytokine stainings (data not shown).

To prove that increased IgA production in CD372/2 mice

was indeed dependent on IL-6 in vivo, we neutralized IL-6 in WT

and CD372/2 mice during immunizations using blocking

antibodies. Serum was analyzed for the presence of high affinity

(anti-NP3) IgA antibodies at different days after immunization.

Evidently, IL-6 neutralization reversed the production of high IgA

levels in CD372/2 serum (Figure 3C, left), demonstrating the

importance of IL-6 in IgA+ plasma cell development in CD372/2

mice. Only 25% of the CD372/2 mice produced NP-specific IgA

titers after treatment with anti–IL-6 antibodies, compared to 100%

of isotype control-treated CD372/2 mice 14 days after immuni-

zation (Figure 3C, right). IgA formation by WT mice (with or

without anti–IL-6) was below the level of detection (not shown). Our

findings are in accordance with observations made in IL-6-deficient

mice that exhibit impaired antibody production during systemic

immune responses [23–25]. Mucosal IgA responses were reported

to be significantly impaired or unaltered in IL-6-deficient mice

dependent on the model of immunization used [2,23,25,26].

Moreover, IL-6 polymorphisms were recently reported to be

associated with IgA-deficiency in patients [27]. Since IL-6 is crucial

for the induction of already-committed (surface IgA+) B cells to

become IgA-secreting plasma cells [2]), our data suggest that CD37

is directly implicated in the inhibition of the late-stage development

of IgA+ plasma cells, i.e. at the level of terminal B cell differentiation.

Taken together, we established that high IL-6 levels directly relate to

the increased IgA production in CD372/2 mice.

IgA production during fungal infection in CD37-deficient
mice

Given that IgA contributes to protecting the host from microbial

infections, we hypothesized that CD37-deficiency may have

important implications for the outcome of infectious diseases.

We have recently demonstrated that CD37 interacts with the C-

type lectin dectin-1 [17], a b-glucan receptor that is required for

effective immunity to fungal infections [28,29]. Therefore, the

CD37-deficient immune response during Candida albicans infection

was explored. C. albicans normally colonizes the mucosa without

causing disease, but can cause systemic infection with high

mortality in immunocompromised patients [30,31]. In particular,

the incidence of invasive C. albicans infections is high among cancer

patients [32–34].

CD372/2 and WT mice were infected with C. albicans and IL-6

production by CD372/2 and WT splenocytes was studied upon

restimulation with fungal antigens. CD372/2 splenocytes pro-

duced increased levels of IL-6 compared to WT cells upon exposure

to either live or heat-killed C. albicans, or the fungal cell wall extract

zymosan both 3 and 7 days after infection (Figure 4A). Blocking

dectin-1 with antibody 2A11 inhibited IL-6 production by both WT

and CD372/2 splenocytes stimulated with C. albicans or the dectin-

1 ligand curdlan (Figure S1), showing that IL-6 production is

dependent on dectin-1. As such, CD37 controls dectin-1-mediated

IL-6 production, possibly by recruiting dectin-1 into tetraspanin

microdomains that may alter signal transduction pathways and

subsequent cytokine profiles. In line with our findings, IL-6-deficient

mice are more susceptible to C. albicans and A. fumigatus infection,

which is related to decreased neutrophil effector activity, impaired

Th1-mediated immune responses [25], and defective Th17

responses [35]. Studying Th2/Th1/Th17 cytokine production by

CD372/2 splenocytes revealed that IL-10 production was

comparable between CD372/2 and WT splenocytes, and cIFN

production was low but increased by CD372/2 cells 3 days after

infection (Figure 4A). The role of IL-6 in inducing Th17 responses is

well established in mice. Accordingly, we observed significantly

increased IL-17 production by CD372/2 splenocytes upon C.

albicans stimulation (Figure 4A). Th17 cells have been implicated as

an important effector mechanism against C. albicans infection

[36,37], although IL-17 may also impair anti-fungal immunity

under certain conditions [38,39].

Next, the development of fungal-specific IgA antibodies in

CD372/2 and WT mice exposed to C. albicans was analyzed. WT

mice did not generate a detectable IgA response after C. albicans

after infection. In contrast, all CD372/2 mice exhibited high

titers of IgA antibodies specific for C. albicans and zymosan in their

serum (Figure 4B). Candida-specific IgG was not detected in serum

of WT and CD372/2 mice 7 days after infection (not shown).

Finally, we investigated the role of tetraspanin CD37 in the

outcome of infectious disease. WT and CD372/2 mice were

systemically infected with C. albicans yeasts, and kidneys were

analyzed for the outgrowth of viable C. albicans after 1 and 7 days.

CD372/2 mice exhibited significantly decreased susceptibility to

infection and reduced fungal outgrowth in their kidneys –the main

target organ for C. albicans - 7 days after infection when compared

to WT mice (Figure 4C, left). Histology revealed major infection

areas with abscesses and hyphal infiltration in WT kidneys. In

contrast, morphology of kidneys of CD372/2 mice looked

shown as control (grey). Data are presented as mean6SEM (n = 6). Asterisks indicate significant differences at p,0.05. (B) Immunohistochemical
analysis of WT (left) and CD372/2 spleens (right) demonstrating IgA–positive plasma cells (arrows) at d 14 after immunization. Scale bar is 50 mm. (C)
Immunohistochemical analysis of serial sections from spleens of CD372/2 mice stained with antibodies specific for IgA (left) and plasma cell marker
CD138 (right) at d 14 after immunization. Arrows indicate co-localization. Scale bar is 50 mm (upper) and 15 mm (lower). Mesenteric lymph nodes (D)
and Peyer’s patches (E) of WT and CD372/2 mice were analyzed by immunohistochemistry at 14 d after NP-KLH immunization using antibodies
specific for B cells (upper) and IgA (lower). Note the increased numbers of IgA–positive cells in CD372/2 tissue. Scale bars are 300 mm. (F) Percentage
of IgA+ and IgG1+ NP-specific plasma cells in Peyer’s patches of WT (black) and CD372/2 (white) mice determined by flow cytometry at d 21 after
immunization. Data are presented as mean6SEM (n = 4). Asterisk indicates statistical difference at p,0.05.
doi:10.1371/journal.ppat.1000338.g002
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Figure 3. Increased IgA production after immunization in CD372/2 mice is dependent on IL-6. (A) Immunohistochemical analysis of
spleens from CD372/2 and WT mice 14 d after NP-KLH immunization. Germinal centers (identified in serial sections by PNA staining) are indicated in
the B cell follicles. Immunized WT mice have non-detectable levels of IL-6 in spleens (left). In contrast, B cell follicles in spleens of immunized CD372/2
mice are clearly positive for IL-6 (red) in the GC area (right). Spleens of non-immunized mice (WT and CD372/2) were negative for IL-6 staining (not
shown). Scale bar is 50 mm. (B) Effect of neutralizing anti–IL-6 during ex vivo restimulation. Splenocytes from WT and CD372/2 mice were prepared 14 d
after NP-KLH immunization, and stimulated in vitro with NP-KLH (1 mg/ml) in the absence or presence of anti–IL-6. Supernatants were collected after
48 h, and assayed for IgA production by ELISA (expressed in arbitrary units). Asterisk indicates significant difference (*p,0.002). (C) IL-6 was neutralized
in WT and CD372/2 mice during immunizations using blocking IL-6 antibodies (as described in Materials and methods). High affinity NP-specific IgA
was assayed in serum of CD372/2 mice treated with anti–IL-6 (black) or control antibody (white) (left). Antibody titer is expressed in arbitrary units and
represented as mean6SEM (n = 6). Asterisks indicate significant difference as per: *p,0.04. Histogram shows percentage of CD372/2 mice with high
IgA anti-NP3 levels (above 106background level) in serum after treatment with anti–IL-6 (black) compared to control treated CD372/2 mice (white) at
indicated days after immunization (right). Similar results were obtained for total NP-specific antibody (against NP20-BSA).
doi:10.1371/journal.ppat.1000338.g003
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normal with no mycelial structures and presence of leukocyte

infiltrates (Figure 4C, right). Next, we evaluated survival of WT

and CD372/2 mice after lethal fungal infection. The absence of

CD37 resulted in prolonged survival and decreased mortality after

lethal candidiasis (Figure 4D), further emphasizing the importance

of CD37 in regulating anti-fungal immunity.

In order to get more insight into the underlying mechanism,

CD372/2 serum was analyzed for fungal opsonization and/or

neutralizing capacity. IgA-mediated phagocytosis through Fc

alpha receptor CD89 is well-established in humans [40,41], in

whom serum IgA is mostly monomeric. In mice, serum IgA is

predominantly dimeric/polymeric and it is currently unknown

whether the murine Fca/m receptor is effective in clearing IgA-

opsonized pathogens [42]. We observed similar uptake of C.

albicans by GR-1+ neutrophils in the presence of WT or CD372/2

serum of infected mice (Figure 5A). Serum heat-inactivation

inhibited C. albicans uptake, demonstrating that the phagocytosis

was mainly complement-mediated and not dependent on IgA. Also,

the increase in GR-1-expressing cells in blood after C. albicans

infection was comparable between WT and CD372/2 mice

Figure 4. CD372/2 mice are protected against C. albicans infection. CD372/2 and WT mice (n = 5) were systemically infected with 16105 C.
albicans. (A) Spleens were removed 3 or 7 d after infection and splenocytes were stimulated with live, heat-killed C. albicans yeasts, zymosan (E:T ratio
2:1) for 48 h, after which IL-6, IL-10, IL-17, and cIFN in supernatants were measured by ELISA. Asterisks indicate significant difference as per: *p,0.05
and **p,0.002. (B) Serum of CD372/2 and WT mice was analyzed for the presence of IgA antibodies reactive with C. albicans yeast (left) or zymosan
(right) by flow cytometry as described in Materials and methods. Serum of non-infected mice is shown as control. Asterisks indicate significant
difference as per: *p,0.05. (C) left: Subgroups of five or six animals were sacrificed on d 1 or 7, and kidneys were analyzed for the number of viable
Candida cells (expressed as log CFUg21 tissue). Horizontal bars represent mean. Asterisks indicate significant difference as per: *p,0.0005. Right:
Histology of kidneys from WT and CD372/2 mice 7 d after infection. Note the major infection area and infiltrating hyphae in WT kidneys. (D) Survival
of WT and CD372/2 mice (n = 6) was assessed after intravenous injection of lethal dose of 56105 CFU C. albicans.
doi:10.1371/journal.ppat.1000338.g004

Figure 5. Adoptive transfer of CD372/2 serum increases resistance of WT mice to fungal infection. (A) Percentage of GR-1+ blood
leukocytes that phagocytosed FITC-labeled C. albicans in the absence or presence of serum from infected WT or CD372/2 mice for various time
points at 37uC was quantified by flow cytometry. Sera were heat-inactivated (56uC for 30 min) to inactivate complement (left). In addition, uptake in
the presence of WT or CD372/2 serum was analyzed by fluorescence light microscopy (right; data shown for 30-min. incubation). Bar represents
10 mm. (B) C. albicans was incubated in the absence or presence of 20% serum (from infected WT or CD372/2 mice) or 20% IgA–depleted serum and
growth (CFU) was assessed. Asterisks indicate significant difference as per: p,0.005. (C) WT mice (n = 5) were systemically infected with 16105 C.
albicans and untreated, or treated with either pooled CD372/2 serum containing high levels of fungal-specific IgA, or IgA-depleted CD372/2
serum. Kidneys were analyzed for the number of viable Candida cells (expressed as log CFUg21 tissue) 7 d after infection. Horizontal bars represents
mean. Asterisks indicate significant difference as per: p,0.05.
doi:10.1371/journal.ppat.1000338.g005
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(Figure S2). Thus, these data demonstrate that IgA in CD372/2

serum does not increase C. albicans phagocytosis by neutrophils.

Next, we investigated whether serum IgA of CD372/2 mice

could directly neutralize fungal cells. C. albicans was grown in the

absence or presence of WT and CD372/2 serum of infected

mice and viability was assessed by classical plate assays. CD372/2

serum significantly inhibited C. albicans growth in contrast to WT

serum (Figure 5B). To demonstrate that the growth inhibition was

due to fungal-specific IgA, CD372/2 serum was depleted for IgA.

Serum deprived from IgA abrogated the effect, and C. albicans

growth was comparable between WT and CD372/2 serum. From

these findings we conclude that IgA in CD372/2 serum directly

neutralizes C. albicans and may thereby prevent dissemination in vivo.

To test this hypothesis, WT mice were infected and treated with

pooled CD372/2 serum containing high levels of IgA anti-C.

albicans. We observed that WT mice were protected from fungal

disease by CD372/2 serum treatment (Figure 5C). Importantly,

the resistance was abrogated when IgA was depleted from

CD372/2 serum, demonstrating that the passive transfer of

resistance to candidiasis in CD372/2 mice is dependent on IgA.

Although the elevated IL-6-IL-17 response may also contribute to

increased anti-fungal effector activity in CD372/2 mice

(Figure 4A), our passive transfer data clearly show that C.

albicans-specific IgA alone is sufficient to confer protection against

invasive fungal disease. Whilst several studies have alluded to a

role for the development of protective anti-fungal antibodies in

experimental candidiasis [43,44], this is—to the best of our

knowledge—the first description of an important role for IgA in

protection against systemic candidiasis. These studies also

highlight the non-redundant role of the tetraspanin CD37, as

CD37-deficiency stimulates anti-fungal immunity even in the

presence of other tetraspanins. The results of this study may

stimulate the development of novel immunotherapeutic strategies

for invasive fungal disease that are urgently warranted [33].

In summary, we reveal a unique role for the tetraspanin CD37

in the humoral immune response; CD37 is a negative regulator of

IgA+ plasma cell generation in vivo and this role is critically

dependent on IL-6. Moreover, this is the first demonstration that

tetraspanins may control the immune-mediated defense against

fungal pathogens. This study increases our understanding of

molecular mechanisms underlying the formation of IgA-secreting

plasma cells and may contribute to better insight into anti-fungal

immunity.

Materials and Methods

Quantitative RT–PCR
Murine CD37 expression was analyzed at the mRNA level by

quantitative RT–PCR due to unavailability of anti-mouse CD37

antibodies. Total RNA was extracted from WT and CD372/2

leukocyte populations (purified by MACS sorting, Miltenyi Biotec)

using Trizol (Invitrogen) and transcribed into cDNA using random

hexamer primers (Amersham) and Superscript II RT (Invitrogen).

Brain tissue was taken as negative control. Real-time RT–PCR

was performed in ABI Prism Sequence Detection system 7000.

cDNA was amplified using SYBR Green PCR mastermix (Applied

Biosystems) with mouse CD37 primers (59GTCCTTTGT-

GGGTTTGTCCTT and 59GAGACAGCGCAGCTCCTT-

TAG). The amount of CD37 mRNA expression was normalized

to the housekeeping gene PBGD.

Human CD37 expression
Peripheral blood lymphocytes were stained with anti-CD37

(clone WR17, Serotec) and processed for FACS analysis as

previously described [17]. CD37 staining in tissue was performed

on frozen sections (6 mm) of spleen and lymph node that were

fixed in acetone for 10 minutes at 220uC. Slides were blocked

(5% horse serum) and stained with anti-CD37 or mIgG2a isotype

control. Horse anti-mouse-biotin (Molecular Probes) was used as

secondary Ab, and staining was revealed using SA-alkaline

phosphatase labeling kit (Vector Laboratories) with Fast Red

substrate. Slides were counterstained with Meyer’s heamatoxylin.

Mice
CD372/2 mice were generated by homologous recombination

[14] and backcrossed 10 times to the C57BL/6J background. Age

and sex-matched C57BL/6J wild type (WT) mice were obtained

from the Walter and Eliza Hall Institute (Melbourne, Victoria,

Australia) and Charles River (France). CD372/2 mice were bred

at the Burnet Institute Austin Campus (Heidelberg, Victoria,

Australia) and the Central Animal Laboratory (Radboud Univer-

sity Nijmegen, The Netherlands). mMT (B cell-deficient) mice [45]

were bred at the Walter and Eliza Hall Institute. Mice were used

at 8–12 weeks of age. Animal studies were approved by animal

ethics Committee of the Austin&Repatriation Medical Centre,

and the Nijmegen Animal Experiments Committee.

Immunization
WT and CD372/2 mice (n = 6) were injected intraperitoneally

with 100 mg of NP (4-hydroxy-3-nitrophenylacetate) coupled to

Keyhole Limpet Hemocyanin (KLH) (NP17:KLH, conjugation

ratio, 17:1) precipitated in alum. Mice were bled and sera collected

at days 7, 14, 21 and 35 post-immunization. Lymphoid organs

(spleens, bone marrow, mesenteric lymph nodes, and Peyer’s

patches) were frozen for immunohistochemistry or processed for

FACS analysis.

Detection of Ag-specific immunoglobulin and antibody-
secreting cells

Basal immunoglobulin levels in serum of non-immunized mice

(n = 9) were determined by ELISA using goat anti-mouse IgG/

IgA/IgM (BD-Pharmingen). Ig standards were purchased from

BD. Levels of NP-specific antibodies in serum after immunization

were assayed by ELISA using plates coated with 20 mg/mL of

either NP20-BSA or NP3-BSA to detect total and high affinity anti-

NP antibody, respectively. The frequency of total and high affinity

NP-specific ASC in spleen and bone marrow was determined by

ELISPOT as described [20,46], again using NP20-BSA and NP3-

BSA for antibody capture.

Immunohistochemistry
Spleens, mesenteric lymph nodes and Peyer’s patches taken

from mice before and after immunization were embedded in

OCT. Frozen sections (6 mm) were fixed in acetone for 10 min. at

220 C. Slides were blocked (5% goat serum) and stained with

anti-IgA, anti-IgG1, anti-IL6, anti-CD138, anti-CD45R (B220)

(all from BD-Pharmingen), or isotype controls. Goat anti-rat-biotin

(Molecular Probes) was used as secondary Ab, and staining was

revealed using SA-alkaline phosphatase labeling kit (Vector

Laboratories) with Fast Red substrate. Slides were counterstained

with Meyer’s heamatoxylin.

Reconstitution experiments
Bone marrow chimeras were generated as previously described

[47]. Briefly, 107 (CD372/2 or WT) and mMT (CD37+) bone

marrow cells were injected intravenously into sublethally irradi-

ated C57Bl/6J recipients at a ratio of 4 parts mMT to 1 part WT
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or CD372/2 bone marrow as a source for B cells. This created

WT mice and mice with a CD37-deficient B cell compartment

(referred to as chimeric CD372/2 mice). Six weeks after

reconstitution, heparinized blood was obtained from chimeric

mice and reconstitution of all major leukocyte populations was

monitored by flow cytometry, using the antibodies against: PE-

conjugated 1D3-PE (CD19, BD-Pharmingen), PE-conjugated

RB6-8C5-PE (GR-1, BD-Pharmingen), Cy5-conjugated KT3.1

(CD3, made in house), PE-conjugated F4/80 (BD-Pharmingen),

and FITC-conjugated M1/70 (CD11b, made in house). 2 weeks

thereafter, mice (n = 7) were immunized with NP-KLH as

described above. Sera were collected 35 days after immunization

and analyzed for presence of NP-specific antibodies by ELISA.

Ex vivo restimulation experiments
Splenocytes were prepared from WT and CD372/2 mice

14 days after NP-KLH immunization. Cells were stimulated with

NP-KLH (1 mg/ml) in the absence or presence of 5 mg/ml (azide-

and LPS-free) neutralizing anti–IL-6 MP5-20F3 (Biolegend).

Supernatants were collected after 48 h, and IgA production was

determined by ELISA.

IL-6 neutralization in vivo
WT and CD372/2 mice (n = 6) were immunized with NP-

KLH as described above. Mice received 2 injections of

neutralizing (azide- and LPS-free) anti–IL-6 MP5-20F3 or isotype

control; 60 mg intraperitoneally at day 0, and 60 mg intravenously

7 days after immunization. Mice were bled and sera collected at

days 7, 14, 21 and 35 post-immunization. Lymphoid organs

(spleens, bone marrow, mesenteric lymph nodes, and Peyer’s

patches) were frozen in OCT for immunohistochemistry or

processed for FACS analysis.

Candida albicans infection protocols
C. albicans ATCC MYA-3573 (UC820), a well-described clinical

strain [48], was injected intravenously (16105 colony-forming units

(CFU), in 100 mL sterile pyrogen-free saline) in CD372/2 and WT

mice. Blood (50 ml) was collected at different time points after

infection and stained with GR-1-PE to identify neutrophils by flow

cytometry. Subgroups of five or six animals were sacrificed on day 1

or 7, and kidneys were removed aseptically, weighed and

homogenized in sterile saline in a tissue grinder. The number of

viable Candida cells in the tissues was determined by plating serial

dilutions on Sabouraud dextrose agar plates. Colony-forming units

were counted after 24 h of incubation at 37uC, and expressed as log

CFUg21 tissue. Alternatively, kidneys were were embedded in OCT,

and frozen sections (6 mm) were stained with periodic acid-Schiff to

identify C. albicans by histology. In adoptive transfer experiments,

WT mice (n = 5) received 16105 CFU C. albicans intravenously (in

100 mL sterile pyrogen-free saline) with 20% pooled serum of

infected CD372/2 mice that was either untreated or depleted for

IgA (as described below). Colony-forming units were determined in

kidneys 7 days after infection. For survival experiments, CD372/2

and WT mice (n = 6) were injected intravenously with lethal dose of

56105 CFU C. albicans and mice were assessed twice daily.

Restimulation assay with fungal antigens
To assess cytokine production, spleens were removed 3 or

7 days after infection and 56106 splenocytes were stimulated with

16107 live or heat-killed C. albicans yeasts (E:T ratio 2:1), or 1 mg/

ml zymosan (Sigma). Measurement of IL-6, IL-10, IL-17 and

cIFN was performed in supernatants collected after 48 h of

incubation at 37uC (5% CO2) in 24-well plates by commercial

ELISA assays (Biosource, Camarillo, CA; detection limit 16 pg/

ml), according to the instructions of the manufacturer. In dectin-1

blocking studies, antibody 2A11 (10 mg/ml) was added during

stimulations as described [17]. Curdlan is a specific dectin-1 ligand

with no TLR2- or TLR4-stimulating properties [49].

Detection of anti-Candida IgA antibodies in mice
Serum of CD372/2 and WT mice (n = 5) was collected 7 days

after C. albicans infection, and different dilutions were incubated

with 16105 Candida or 16105 zymosan particles for 30 min. at

4uC. After washing twice in saline, Candida particles were

incubated with biotinylated anti-mouse IgA (BD-Pharmingen)

followed by SA-CY5 (Invitrogen), and analyzed by flow cytometry.

Serum of non-infected mice was used as control.

IgA depletion of serum
Streptavidin-coated 2 mm microspheres (Polysciences, PA) were

incubated with biotinylated anti-mouse IgA (BD Biosciences)

according to the instructions of the manufacturer. Sera of WT and

CD372/2 mice (n = 4) were collected 7 days after C. albicans

infection, pooled, and incubated with 1006106 anti-IgA coated

microspheres (1 h at RT, shaking).

C. albicans phagocytosis and neutralization assays
C. albicans phagocytosis was performed as described [41]. Briefly,

FITC-labeled C. albicans particles were incubated with blood

leukocytes (ratio 4:1) in the absence or presence of serum from

infected WT or CD372/2 mice for various time points at 37uC. As

control, sera were heat-inactivated at 56uC for 30 min. to inactivate

complement. GR-1-PE was used to stain neutrophils and phagocy-

tosis was quantified by flow cytometry. In addition, uptake was

analyzed by fluorescence light microscopy. For neutralization

experiments, C. albicans was cultured overnight at 37uC in Sabouraud

dextrose medium (Oxoid, UK), washed, and 16105 yeasts were

incubated in the absence or presence of 20% serum (from WT or

CD372/2 mice; collected 7 days after infection) or 20% IgA-

depleted serum. Viability was assessed after shaking for 5 h at 37uC
by plating serial dilutions on Sabouraud dextrose agar plates.

Statistical analyses
Data are presented as mean6SEM. Statistical differences were

determined using the unpaired Student’s t-test. Significance was

accepted at the p,0.05 level.

Accession/ID numbers
Human CD37, GeneID 951; Murine CD37, GeneID 12493,

MGI: 88330; Murine IL-6, GeneID: 16193, MGI: 96559; Murine

IgA, GeneID: 238447, MGI: 96444.

Supporting Information

Figure S1 IL-6 production by WT and CD372/2 splenocytes

stimulated by C. albicans is dependent on dectin-1. Spleens were

removed from CD372/2 and WT mice 7 d after infection

(16105 CFU C. albicans) and restimulated with heat-killed C.

albicans (E:T ratio 2:1) or the dectin-1 ligand Curdlan (100 mg/ml)

for 48 h, after which IL-6 in supernatants were measured by

ELISA. Antibody 2A11 was added during stimulations (10 mg/ml)

to block dectin-1.

Found at: doi:10.1371/journal.ppat.1000338.s001 (0.01 MB PDF)

Figure S2 Normal increase of GR-1-positive cells in blood of

CD372/2 mice. Granulopoiesis in WT and CD372/2 mice

(n = 5) systemically infected with 16105 CFU C. albicans. Percentage

CD37 Inhibits IgA Responses

PLoS Pathogens | www.plospathogens.org 10 March 2009 | Volume 5 | Issue 3 | e1000338



of GR-1-positive cells in blood was determined by flow cytometry at

different time points after infection.

Found at: doi:10.1371/journal.ppat.1000338.s002 (0.01 MB PDF)
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