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Abstract
As learning progresses, human and animal studies suggest that a frontal executive system is strongly
involved early in learning, whereas a posterior monitoring and control system comes online as
learning progress. In a previous study, we employed dense array EEG methodology to delineate the
involvement of these two systems as human participants learn, through trial and error, to associate
manual responses with arbitrary digit codes. The results were generally consistent with the dual-
system learning model, pointing to the importance of both systems as learning progressed. In the
present study, we replicate and extend the previous findings by examining the brain responses to
error trials as well as examine the activity of these two systems’ response to feedback processing.
The results confirmed the role of these two systems in learning but they also provide a more complex
view of their makeup and function. The frontal system includes ventral (inferior frontal gyrus, ventral
anterior cingulate cortex, anterior temporal lobe) corticolimbic structures that are involved early in
learning whereas the posterior system includes dorsal (anterior and posterior cingulate and medial
temporal lobe) corticolimbic circuits that are engaged later in learning. Importantly, the engagement
of each system during the course of learning is dependent on the nature of the events within the
learning task.

Keywords
Event-related potential; ERP; Learning; Medial Frontal Negativity; Feedback-Related Negativity;
MFN; P300; Expertise; Action

1. INTRODUCTION
Regulating behavior requires learning appropriate actions in the context of environmental
events. The outcome of successful learning reflects the integrated function of self-regulatory
processes (such as regulation of motives, action monitoring, memory encoding and retrieval
etc.) that are controlled by specific corticolimbic networks. Electrophysiological and imaging
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studies have converged to identify diffferential engagement of these networks during different
stages of learning. For example, the prefrontal lobes (including the inferior frontal gyrus,
dorsolateral prefrontal cortex, and medial prefrontal cortex), and anterior cingulate cortex
(ACC) have been observed to be strongly engaged early in the learning cycle when stimulus-
response mappings are actively being established (Chein & Schneider, 2005; Luu, Tucker,
Stripling, 2007; Toni et al., 1998). In later stages of learning, however, once contingency
mappings have become consolidated, these frontal structures exhibit a reduction in activity. In
contrast, posterior regions, including the posterior cingulate cortex (PCC), precuneus, cuneus,
superior parietal lobule, and intraparietal sulcus demonstrate increased activity during these
later stages (Chein & Schneider, 2005; Luu et al., 2007; Toni & Passingham, 1999). The
reduction of activity observed in frontal structures in later stages of learning appear to represent
reduced reliance on top-down control systems once learning has been established, while the
increased activity observed in posterior structures may represent the establishment and
automatization of the learned action patterns as well as continued monitoring of performance
(Chein & Schneider, 2005; Toni & Passingham, 1999).

These findings, based on human studies, are consistent with animal research identifying two
separable circuits underlying discriminative learning: one that supports the rapid acquisition
of new skills through regulation of ‘executive’ control systems, and a second system that
supports the habitual automatization of learned behavior (Gabriel et al., 2002). These two
systems allow learning to be graded: moving from intensive monitoring and control early in
the learning cycle, when stimulus-response contingencies remain undeveloped, to reduced
reliance on these resource-demanding processes and automated performance once these
contingencies have been sufficiently mapped (see Gabriel et al., 2002 for additional
discussion). Bringing the animal learning model to human learning studies, we hypothesized
that initial learning requires greater executive control from frontolimbic networks, whereas in
later stages of learning, when performance becomes more automated, processing in posterior
corticolimbic networks dominates both performance and the continued adjustments of learning
(Luu et al., 2007).

In that research, we examined the activity of cortical and limbic systems during visuomotor
learning in humans using dense-array EEG methodology. The task employed is amenable to
automated performance once learning has been achieved because the stimulus-response
mappings are constant (see Chein & Schneider, 2005). We found that posterior cortical regions
(including parietal, PCC, and parahippocampal cortices, as indexed by the P3) became
progressively engaged as participants discovered and learned stimulus-response mappings
(Luu et al., 2007). However, the pattern of neural activity in learning was more complex for
frontal components. We identified a frontal component of the averaged event-related potential
(ERP) that was localized to ventral corticolimbic networks (anterior temporal pole and inferior
frontal cortex). Furthermore, this component was lateralized according to the stimulus (to the
left frontal lobe for digit codes and to the right frontal lobe for spatial locations). The analysis
showed that, although it could be confused with the inferior dipole inversion of the P3 or “Late
Positive Complex”, this component showed not only a unique source but a unique time course
as well.

We described this component as the Lateralized Inferior Anterior Negativity (LIAN). Although
the LIAN was differentially lateralized for verbal and spatial stimuli, it showed a gradual
deactivation during learning only for spatial location-response mappings. Under the hypothesis
that early control of learning engages greater control from frontal executive networks, we
would predict that the decrease in the LIAN after learning would be observed for both the digit
code and spatial pattern learning conditions. On the other hand, a right-lateralized frontal
decrease with learning is consistent with a meta-analytic study, based on fMRI findings that
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revealed right-lateralized biases for learning-related deactivations of the lateral ventral
prefrontal cortex (Chein & Schneider, 2005).

In contrast, the LIAN for digit-response mappings showed a slight, although not significant,
increase as learning progressed. A possible explanation for the sustained LIAN after learning
is that participants may not have achieved automated levels of performance. A second
explanation, though not exclusive of the first, involves the observation by Chein and Schneider
(2005) that the left ventral prefrontal cortex remains strongly engaged during practice
performance of word pair association tasks, which suggested to them that this region may be
involved in representational functions that are not immediately associated with cognitive
control.

In the Luu et al. (2007) study, we also examined a component reflecting activity in dorsal
frontolimbic networks, described as the medial frontal negativity (MFN), localized to the
medial prefrontal cortex, including the ACC. The MFN has been shown to be important to
aspects of the executive monitoring of the learning process (Gehring & Willoughby, 2002).
The hypothesis that frontal control decreases as learning progressed was not supported by the
measures of the MFN in the Luu et al. study; the MFN actually increased as subjects gained
knowledge of the correct stimulus-response mapping, and as they demonstrated consistent
performance guided by this knowledge.

In the present study, we replicated and extended the findings by Luu et al. (2007) in a separate
sample of subjects. The replication involves analysis of target-locked brain responses on
correct trials. The extension involves analysis of target-locked brain responses to error trials
and feedback-locked brain responses. The analysis of target-locked brain responses on error
trials permits further examination of the nature of the MFN increase we previously observed.
The analysis of feedback-locked responses will permit determination of how corticolimbic
structures involved in learning are affected by informational content, providing us with a more
complete picture of how their activity is moderated during different learning stages.

Based on our previous explanation that the MFN increase may reflect development of action
context representations (thus leading to opportunities for response conflicts), we predict that
target-locked MFN amplitudes would be particularly large for error trials that occur after
learning. We hypothesize that activity of the frontal circuit (i.e., fast learning system) would
be reduced in response to feedback as learning progressed because the accuracy of actions are
internally represented once learning is established (see Holroyd & Coles, 2002). Specifically,
we predict the feedback-related negativity (FRN; Luu, et al., 2003), which indexes frontolimbic
evaluative mechanisms, would decrease in amplitude with learning. Similarly, we predict that
the LIAN would appear in evaluation of the feedback to integrate the response outcome during
the learning process (see Passingham, Toni, & Rushworth, 2000) and would decrease with
learning. In contrast, we hypothesized that activity of the slow learning system in the posterior
brain (as indexed classically by the P3 response) would show a decreased response to correct
feedback as learning progresses (reflecting less context-updating) but not a decreased response
to error feedback. The logic is that context updating processes (Donchin & Coles, 1988) remain
sensitive to context violations such as errors1.

1In this paradigm, the feedback was given immediately after the response. Therefore, the error-related negativity (ERN) precedes all of
the feedback-locked ERP components that were analyzed in this study. However, it is noted that the ERN does not temporally overlap
with any of the feedback-locked ERP components that were analyzed. The aims of the research reported in this manuscript are to examine
learning-related changes associated with processing of target and feedback stimuli as predicted by the dual-system learning model rather
than error monitoring per se. Therefore, analyses were not performed on the ERN.
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2. RESULTS
Behavioral Findings

Mean number of trials required for participants to learn was 13 (SD = 6). The median reaction
times for Go trials were cast into a 2 (Accuracy: Error, Correct) × 2 (Learning: Pre-Learn, Post-
Learn) within-subject ANOVA, which revealed Accuracy (F(1,10) = 21.887, p=0.001) and
Learning (F(1,10) = 6.522, p=0.029) main effects, indicating that reaction times were longer
on error trials (mean = 1065 ms, SD = 130 ms) compared to correct trials (mean = 922 ms, SD
= 111 ms), and on Pre-Learned trials (mean = 1029 ms, SD = 128 ms) compared to Post-Learned
trials (mean = 959 ms, SD = 144 ms). An Accuracy by Learning interaction (F(1,10) = 7.382,
p=0.022) revealed that reaction times decreased for correct responses after learning but not for
error responses (Figure 1). That is, error responses had about the same reaction time before
and after learning. These results are consistent with our previous findings (Luu et al., 2007).

Because participants determined how long they examined the feedback stimulus before they
performed the next trial, the duration that they attended to each of the positive and negative
feedback signals could be assessed. Feedback duration was submitted to a 2 (Accuracy: Error,
Correct) × 2 (Learning: Pre-Learn, Post-Learn) within-subject ANOVA. One participant never
responded to remove the feedback screen and the feedback remained for the full ten seconds.
The analysis (n=10) revealed that participants spent a longer time viewing the feedback before
they learned, compared to after they learned the task, F(1,9) = 7.884, p=0.03, consistent with
reduced need for the feedback once contingencies were learned. No other main effects or
interactions reached significance. Again, these results are consistent with those reported
previously (Luu et al., 2007).

To define skilled performance on the task after learning the stimulus-response mappings, we
computed the coefficient of variation (CV, Segalowitz & Segalowitz, 1993), which is the ratio
of the standard deviation (SD) to the median reaction time (RT, CV = SD/RT). The logic is
that controlled processes, such as those required early in learning, are inherently more variable
than those processes responsible for automatic performance. Therefore a reduction in
controlled processes should result in a reduction in the CV. For this analysis, CV values were
only obtained for correct responses. Post-Learn trials were grouped into four equal bins to
provide multiple measures of the post-learning performance. Within each bin, the RTs were
sorted and the values for those RTs in the top and bottom 10% of the RT distribution (i.e., the
tails) were set to the 10th percentile. This procedure removes extreme values at both ends of
the RT distribution to provide a more stable SD measure (Wilcox, 1997). The data were
submitted to a trend analysis with Learning (post1, post2, post3, post4) as a factor. The analysis
revealed a significant linear trend, F(1,10) = 18.1, p < .01 (Figure 1).

Target-Locked ERP Findings
For the scalp potential ERP analyses, the channel groups used to characterize each of the major
components (for target-locked and feedback-locked averages) are identified in Figure 2. The
statistical analyses were performed on the scalp data with these channel groups. Source
localization (using all 128 channels) for each component is provided in each figure.

MFN—Figure 3 shows the waveform for target- locked data at FCz. As can be seen, there is
a clear negative deflection that peaks approximately 320 ms after target onset, closely
resembling the latency and topography of MFNs identified in other studies (e.g., Gehring &
Willoughby, 2002). We quantified the MFN at four channels, including FCz (see Figure 2).
The MFN was defined as the difference between the most negative peak between 230–370 ms
after target onset (Gehring & Willoughby, 2002;Luu et al., 2003) and the most positive
preceding peak (P2, 140–280 ms after target onset). Both peaks were averaged over a 44 ms
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interval centered around that peak (inclusive). The MFN measure was averaged across all four
channels. Source localization (from all 128 channels) examined the major contrast between
pre-learn error and post-learn error conditions. This difference provided maximal contrast with
regards to peak amplitude as well as functional contrast (development of action context and
response conflict, see Discussion). The results showed frontal midline sources for the MFN,
including dorsal ACC and medial frontal gyrus, as well as secondary sources in the mid-
cingulate and precuneus. The source orientation vectors (dark lines for each voxel) show the
net dipole moment (positive direction) for each voxel, and allow the source results to be related
to the potential fields in the scalp maps (e.g., the positive-down direction of the source
orientation vectors for the medial frontal sources in Figure 3C are consistent with the surface-
negative midline scalp potential pattern in Figure 3B).

For the MFN, a 2 (Accuracy: Correct, Error) × 2 (Learning: Pre, Post) within-subjects ANOVA
revealed a main effect of Learning, F(1,10) = 8.8, p <.02, indicating that MFN amplitude is
larger for Post-Learn trials. A significant interaction between Accuracy and Learning showed
that the MFN differed the most between Pre- and Post-Learn error trials, F(1,10) = 5.0, p < .
05 (see Figure 2).

LIAN—Figure 4A shows the LIAN at FT9 (channel 38) and FT10 (channel 121, see Figure
2). The LIAN to targets was defined as the average amplitude between 250–700 ms post-target
at inferior fronto-temporal sites (refer to Figure 2 for channel cluster), referenced to a 400 ms
average of the baseline period. A 2 (Accuracy: correct, error) × 2 (Learning: Pre-Learn, Post-
Learn) × 2 (Laterality: left, right) within-subjects ANOVA revealed a trend for a Laterality
main effect, F(1,10) = 4.29, p = .07, showing that the LIAN was of greater amplitude over the
left-hemisphere. No other main effects or interactions reached significance. Figure 4B shows
primary sources for the LIAN in the left inferior frontal gyrus and left temporal pole.

P3—The P3 or Late Positive Complex (LPC) to target stimuli was quantified as the average
amplitude between 300 and 700 ms after target onset, referenced to the average of the 400 ms
baseline (see Figure 5A). This was accomplished for left, midline, and right recording sites
(see Figure 2). The data were analyzed with a 2 (Accuracy: Error, Correct) × 2 (Pre-Learn,
Post-Learn) × 3 (Location: Left, Right, Midline) within-subjects ANOVA model. The results
revealed a significant main effect for Location, F(1,10) = 6.8, p < .03, indicating that P3
amplitude was largest at midline recording sites. Although Figure 5 shows that the error trials
are associated with the largest P300 amplitude and that correct trials after learning have larger
amplitudes than correct trials prior to learning, none of these differences reached statistical
significance.

Sources for the target-locked P3 were identified in the caudal aspects of the medial wall of the
hemispheres (including the PCC, precuneus, and cuneus), bilateral medial temporal lobes
(including the parahippocampal gyrus, see Figure 5B), and left temporal gyrus. These source
results are similar to those we obtained for target-locked P3 in previous research with this
paradigm (Luu et al., 2007).

Feedback-Locked ERP Findings
Feedback-Related Negativity—Except for the correct-post-learning condition, the
feedback-locked waveforms do not show a clear negative peak at FCz during the 270–350 ms
post stimulus interval (see Figure 6). This is unlike the target-locked data, which shows a clear
MFN at this time for all conditions. Rather, for the feedback-locked data the P2 peak appears
to be extended. However, at Fpz, a negative peak, preceded by a positive (P2) peak, can be
observed. Compared to the target-locked MFN, the latency of this negativity is slightly delayed.
We call this the Feedback-Related Negativity (FRN, Luu et al., 2003) because it behaves in a
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manner consistent with previous reports (i.e., it is most negative for error feedback, particularly
prior to learning, Müller, et al., 2005;Holroyd & Coles, 2002).

The FRN was defined as the difference between the most negative peak between 240–400 ms
after feedback onset and the P2 (140–280 ms after feedback onset) at four frontal polar channels
(see Figure 2). For each peak, data were averaged over a 44 ms interval around the peak
(inclusive) prior to obtaining the difference. This difference was averaged over the four
channels to provide one measure of the FRN. To explore this effect at more mediocentral sites,
we applied the same criteria to sites used for quantification of the MFN. A 2 (Accuracy: Correct,
Error) × 2 (Learning: Pre-Learn, Post-Learn) repeated-measures ANOVA model was used in
both analyses.

Results from frontopolar sites revealed significant main effect for Accuracy, F(1,10) = 17.4,
p < .01, and a trend for Learning, F(1,10) = 3.9, p < .08. The Accuracy main effect showed
that error feedback was associated with the largest FRN amplitude. The Learning main effect
showed that the FRN was reduced after learning. Means of the FRN for pre-learn error and
post-learn error trials reveal that the FRN is more negative for error pre trials (consistent with
previous findings, Müller, et al., 2005; Holroyd & Coles, 2002), although this difference was
not significant. At the mediocentral sites, the FRN only exhibited a significant learning effect,
F(1,10) = 14.6, p < .01, with post trials associated with a larger FRN.

Source estimate of the FRN was based on the difference between the pre-learned error and
post-learned correct conditions, based on prior observations that pre-learned error feedback
elicits the largest FRN amplitude and that the FRN amplitude decreases with learning (Müller,
et al., 2005; Holroyd & Coles, 2002). The results revealed that the major sources for the FRN
effect were surface-negative sources in the medial prefrontal cortex, including rostral and
subgenual aspects of the ACC (BA 32, 25) and orbital frontal cortex.

LIAN—The LIAN to feedback stimuli was defined in a similar manner as the LIAN to target
stimuli (see Figure 4B). A 2 (Feedback Type: Error, Correct) × 2 (Learning: Pre-Learn, Post-
Learn) × 2 (Laterality: Left, Right) within-subject ANOVA revealed main effects of Laterality,
F(1,10) = 15.46, p < .01, Feedback, F(1,10) = 14.8, p < .01, and Learning, F(1,10) = 6.1, p < .
04. As expected, the LIAN is larger over the left compared to the right hemisphere. The
Feedback effect showed that error feedback elicited a larger LIAN than correct feedback and
the Learning effect showed that the LIAN was reduced after learning. There was a significant
Accuracy × Laterality interaction, F(1,10) = 5.0, p < .05, consistent with the left-lateralization
of the LIAN (Luu, et al. 2007), and with the reduction after learning attributed to its left inferior
frontal sources. Source localization of the feedback LIAN was similar to that for the target,
with sources in left anterior temporal and left inferior frontal regions (Figure 4C and D).

P3—The feedback-locked P3 or LPC had a more dorsal and rostral distribution than the target-
locked P300 (see Figure 7B). Moreover, unlike the target-locked P3, there is a clear dip at
approximately 500 ms after feedback onset (see Figure 7A and Kotchobey et al., 1997).
Therefore, we defined the P3 at two time intervals: as the average amplitude between 300–500
(P31) ms and as the amplitude between 500–700 (P32) ms after feedback onset and referenced
to the average of the 400 ms baseline. A 2 (Feedback Type: Error, Correct) × 2 (Learning: Pre-
Learn, Post-Learn) × 4 (Location: Left, Right, Midline, Mediofrontal) within-subject ANOVA
was conducted for each P3 measure. Geisser-Greenhouse corrections were applied where
appropriate. The analysis revealed very similar results for both measures of the P3 (consistent
with findings by Kotchobey et al., 1997). Therefore, we only report the results for the P32
measure.
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Significant main effects for Location, (F(3,30) = 4.9, p < .03 (Geisser-Greenhouse epsilon = .
57), and Feedback Type, F(1,10) = 14.0, p < .01, were obtained. The Location main effect
showed that the P3 was largest at midline and mediofrontal sites. The Feedback Type main
effect was qualified by a significant two-way interaction involving Feedback Type and
Learning, F(1,10) = 7.1, p < .03. This interaction describes amplitude differences between error
and correct feedback as a function of learning. The interaction revealed that correct feedback
after learning elicited the smallest P3 response whereas error feedback elicited large P32
amplitudes, regardless of learning stage.

Although not significant, F(3,30) = 3.0, p < .1 (Geisser-Greenhouse epsilon = 4.0), a three-
way interaction involving Feedback Type, Learning, and Location suggested that the difference
between error and correct feedback after learning was largest along the midline and me-
diofrontal sites. Source estimates for the feedback-locked P3 were obtained at the peak of the
P32 (~680 ms). Similar sources as for the target-locked P3 were identified, plus additional
sources in the rostral aspects of the medial frontal lobes (including the ACC, see Figure 7C).

3. DISCUSSION
The behavioral and EEG data closely replicated our earlier findings on frontolimbic
components in response to the the target stimulus (Luu, et al., 2007). Neither study showed a
simple decline of frontolimbic activity as learning progressed. Activity in the left inferior
frontal gyrus and left ventral temporal lobe and pole (as indexed by the LIAN) was strong in
the early learning stage for both studies with the digit task. However, in neither study did this
activity decline significantly over time in processing the target digits, as we had originally
hypothesized (Luu, et al., 2007). In both the present and the previous study, the target-locked
MFN, localized to the ACC, was found to increase as subjects learned. Similarly, the amplitude
of the target-locked P3, indexing activity from the PCC, parietal lobe, and medial temporal
lobes, also increased as subjects learned. Examination of the target-locked MFN response to
error trials in the present study, we found that MFN was largest for error trials committed after
learning.

The evidence of neurophysiological activity in feedback processing was consistent with the
hypothesis that the frontolimbic responses to feedback, indexing the functions of the fast
learning system, would be strongest during early learning and would decline as subjects
consolidated the stimulus-response mappings during learning. Similarly, the index of activity
in the slow learning system (P3) supported the hypothesis that the slow learning system would
decrease its activity in response to correct feedback as learning progress, but would re-engage
in response to error feedback. In the following sections we discuss the potential functional
significance of each ERP component as it relates to the experimental conditions and the
estimated underlying neural sources.

The Medial Frontal Negativity and the Feedback-Related Negativity
In addition to replicating the target-locked MFN for correct trials, wherein the amplitude of
the MFN associated with correct responses becomes larger after learning, we were able to
examine the target-locked MFN to error trials in the present study. These data revealed that
errors after learning are associated with the largest MFN amplitudes, when monitoring
requirements are expected to be strongest. The cortical source of the MFN was estimated to
be in the medial prefrontal cortex (including dorsal ACC) and mid-cingulate cortex (see Figure
3). Previously, we proposed that the dorsal aspect of the ACC can be understood as tracking
task relevant parameters (including valence of feedback, conflicting task demands etc., Luu et
al., 2003). The present findings, as well as recent fMRI results, are consistent with this proposal.
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Elliot and Dolan (1998) found that generating hypotheses to guide response selection activated
the dorsal ACC. Similarly, Behrens et al., (2007) found dorsal ACC activation to be associated
with making a choice (as opposed to monitoring outcomes). Using an arbitrary visuomotor
association task, Eliassen et al. (2003) found that activity localized to the mid-cingulate cortex
increased with learning. These researchers proposed that this activity may reflect memory or
associative processes that support performance. Taken together, these findings suggest that the
dorsal ACC is involved in the early representation of action contexts. That is, as subjects learn
(either to make an appropriate stimulus-response mapping or to make a particular choice for a
reward), a context is formed. Increased MFN amplitudes during learning appear to reflect the
development of a representation of the action context that is maintained within the limbicmotor
pathway to guide the ongoing monitoring of behavior. This development of action context
produces the conditions necessary for conflicting response demands (see Botvitnik et al., 2004).

As actions become more automated, contextual representation appears to transfer to posterior
networks, such as the PCC (Gabriel et al., 2002). According to this reasoning, in a fully
automated stage of learning and action control, we would expect activity in the dorsal ACC to
decrease, unless an error is committed in which case there will be a strong ACC response. In
an fMRI study Toni et al. (1998) found that learning a sequence of motor responses was
associated with an initial rise in dorsal ACC activation followed by sustained activity and then
an eventual decline. Our hypothesis of dorsal ACC function is compatible with Rushworth et
al.’s (2004) proposal that the ACC is involved in the representation action values, with Holroyd
and Coles’s (2002) proposal that it acts as a motor control filter, and with the conflict monitoring
theory of ACC function (Botvitnik et al., 2004). By emphasizing the ACC’s role in representing
the context for action, we emphasize the theoretical links to the context representation
supported by other dorsal cortical networks, including the PCC and hippocampus.

In this study we identified a parallel frontal component in the feedback-locked averages, the
FRN. The FRN differed substantially from the MFN in terms of functional associations as well
as cortical generators. The FRN was sensitive to the nature of the feedback, being more negative
to error feedback, and its cortical generator was found to be in the rostroventral (subgenual)
ACC (rather than the dorsal ACC). This distinction may be important, given the ventral limbic
(amygdala, anterior temporal pole, and orbital frontal cortex) input to the subgenual ACC (in
contrast with the greater connectivity of the dorsal ACC with dorsolateral frontal cortex, PCC,
parietal lobe, and other regions of the dorsal corticolimbic pathway). Prior studies have reported
that the FRN is more negative in amplitude for error feedback (or loss, Gehring & Willoughby,
2002) and decreases with learning (Holroyd & Coles, 2002, Muller et al., 2005). We replicated
those functional findings, but observed that the scalp distribution in our study of the FRN is
considerably more anterior than previously reported. Holroyd and Coles reported the effect to
be at approximately FCz whereas Muller et al. showed that it extended to more posterior
recording sites.

Our task is a straightforward learning task, in which stimulus-response mappings are constant,
and all feedback stimuli are veridical. In the two previous studies mentioned, consistency of
stimulus-response mappings varied and feedback could be ambiguous. These differences may
explain why the FRN in the present study was localized specifically to the rostroventral ACC
whereas previous research observed more dorsal and mid-cingulate activity in the FRN. In the
present paradigm, because feedback provides veridical information about performance,
affective responses of the ventromedial prefrontal cortex (including the rostroventral ACC)
may be strongly engaged. In paradigms where stimulus-response mappings can change and/or
feedback may be ambiguous, participants may dismiss the feedback as being incorrect
feedback, leading to weaker affective responses to the feedback. Similarly, it is possible that
in paradigms where feedback varies in a probabilistic manner, context tracking requires
engagement of the dorsal ACC. This may also explain why we only find a significant learning
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effect when we analyzed the FRN at more dorsal recording sites. That is, post learning trials
were associated with the largest FRN because the feedback also constitutes part of the action
context.

Possibly consistent with this interpretation, results from fMRI studies examining brain
responses to negative feedback during probabilistic learning and estimation tasks have
identified activations in the dorsal ACC (Holroyd et al. 2004, Ullsperger & von Cramon,
2003). In fMRI studies that examined brain responses to commissions of errors, both dorsal
and rostroventral ACC regions were found to be active (Kiehl et al., 2000, Menon et al.,
2001). Recent fRMI studies that utilized decision making (Behrens et al., 2007) and social
evaluation (Somerville et al., 2006) tasks have identified rostroventral ACC activation during
feedback processing. Previously, we proposed that the rostroventral aspect of the ACC is
involved in the affective evaluation of action outcomes (Luu et al., 2003). The present finding
with localization of the FRN is consistent with this proposal.

The Lateralized Inferior Anterior Negativity
Consistent with our previous results for digit targets (Luu et al., 2007) the LIAN in the present
study was left-lateralized, and its amplitude did not differ as a function of learning. Based on
the dual-learning system model (Gabriel et al., 2002) and prior research showing a shift from
frontal to posterior networks with practice (Chien & Schneider, 2005), we first hypothesized
that the LIAN would decrease as learning occurs. In both the previous and present studies, this
was not observed as participants learned the digit-response mappings. A possible explanation
for the lack of reduction in activity is that even after 800 trials, subjects have not fully mastered
the task, at least to automated levels of performance. Examination of the CV data, however,
revealed that subjects did demonstrate an increase in skilled performance. Therefore, the results
are more consistent with Chein & Schneider’s (2005) finding that the left ventral prefrontal
cortex remains strongly active during practiced performance for word-pair tasks. These
researchers suggested that this cortical region is involved in representational functions rather
than cognitive control.

The functional significance of the LIAN in learning can be inferred from studies that have
examined the role of the inferior frontal gyrus, orbitofrontal cortex, and temporal lobe in
arbitrary visuomotor association learning tasks. Bussey et al. (2001, 2002) demonstrated that
lesions to the ventrolateral and orbital regions of the prefrontal cortex in monkeys disrupted
rapid acquisition of stimulus-response mappings; animals could still learn the task but they
required many more training sessions. The authors interpreted these findings to indicate that
the ventrolateral and orbitofrontal aspects of the prefrontal lobe are involved in acquiring and/
or application of response strategies or response rules. An example of a response strategy or
rule that can be used during visuomotor learning is lose-shift. Using this strategy, a learner
would make a different choice on the next trial if the present choice results in failure.

In humans, the role of frontal and temporal regions in visuomotor learning has been attributed
to memory operations, in which targets take on associative meaning (Bunge et al., 2003; Toni
et al., 2001;Brovelli et al., 2007). Results from memory studies suggest that the ventrolateral
prefrontal cortex is involved in memory retrieval through its interaction with temporal lobe
structures, including the hippocampus (Badre et al., 2005; Simons & Spiers, 2003). Passingham
et al. (2000) noted that the ventral aspects of the prefrontal lobe, including the inferior frontal
gyrus, has been shown to be involved in the representation of the stimulus, the responses made
to the stimulus, and the feedback (i.e., outcome) of the action. These representations are central
to the learning visuomotor associations.

If the LIAN does indeed reflect integrative encoding/retrieval processes during learning rather
than cognitive control, we would expect it to decrease in response to feedback presentation
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after the stimulus-response mappings are learned because feedback is no longer informative.
Prior to learning, feedback would be used to update and reinforce digit-response associations,
but after having learned the mappings feedback is no longer required. Behaviorally, we showed
that prior to learning the task, subjects viewed the feedback for an extended period of time,
and after having learned the stimulus-response mappings, subjects quickly removed the
feedback. In a corresponding manner, the feedback-locked LIAN declined significantly after
participants learned the task.

The P3
Gonzalves et al., (1999) have proposed a template-restoration model of the for the P3, which
is akin to the context-update model of Donchin and Coles (1988). In the template-restoration
model a template of a stimulus (the response-mapping rules in the present study) are restored
or reinforced on a trial-by-trial basis. The P3 is proposed to reflect this restoration-
reinforcement process. The larger P3 amplitudes observed after learning may be explained by
the findings that reductions in processing requirements are associated with enhancements of
P3 amplitudes(Gonzalves & Polich, 2002). Learning results in stable representations of action
context (i.e., the template). This stable representation reduces processing resource
requirements (perhaps through facilitation, as shown by the decreased CV measure associated
with learning), which results in larger P3 amplitudes (and enhancement of the context model)
after learning. Therefore, we take the observed increases in P3 amplitude to reflect the
operations of contextual maintenance processes during the later stages of learning by the
posterior, slow learning system. This interpretation is slightly different than that proposed by
Barceló et al. (2000) who interpreted the P3 amplitude increase with learning to reflect the
acquisition of a stable representation of response-rules. An alternative explanation is that a
stable representation of response-rules would decrease the latency variability of the P3 on
single-trials, which would be reflected as an increase in the stimulus-locked average.

In contrast to the target-locked P3 amplitudes, analysis of the feedback-locked P3 showed that
correct feedback after learning was associated with the smallest P3 amplitude, whereas error
feedback elicited the largest P3 amplitude, especially after learning. Moreover, source
estimation of the feedback-locked P3 revealed source generators within the medial prefrontal
cortex that were not evident in the target-locked P3. Kotchobey et al. (1997) examined an
informed guessing task and showed that unexpected outcomes were associated with large P3
amplitudes compared to expected outcomes (like we did, these authors found parallel results
for measures of the P3 or LPC at 350 and 550 ms). They also found that subjective expectancy
(i.e., participant’s prediction) was not associated with amplitude differences. Therefore, they
argued that processes indexed by P3 amplitude reflect rule-related expectancy violations
developed from estimations of the likelihood of an event (as opposed to to subjective, predictive
expectancies). This proposal is consistent with the present results. As participants learned the
task, representations of the task parameters (i.e., stimulus-response mappings, feedback
contingencies, etc.), which can be understood as forming rule-related expectancies, gradually
develop within the slow learning system (Keng & Gabriel, 1998) and violations of the context
(i.e., post learned errors) require template or contextual updating mechanisms (Donchin &
Coles, 1988;Gonzalvez et al., 1999), perhaps supported by additional engagement of control
processes (as reflected in the involvement of the medial prefrontal cortex).

An alternative explanation for the observed increase of the P3 amplitude for error feedback
after learning is that errors are rare after learning and thus error feedback is more salient. This
results in attention being allocated preferentially to error feedback, which would produce a
large P3 response. The template-restoration theory of the P3 proposed by Gonzalvez et al.
(1999), however, is also consistent with such an explanation. In fact, this theory has been
proposed to explain the relationship between stimulus probability and variations in P3
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amplitude. However, given that there was an additional medial prefrontal source associated
with the feedback-locked P3, there may be additional control processes that are engaged in the
update.

Limitations of the Study
We conducted this research with the first models of the HydroCel Geodesic Sensor Net design,
which were 128-channel versions. Technically, source localization with 128-channel
recordings is marginally accurate, compared to 256-channel recordings, even though the
HydroCel 128-channel design was extended to improve the sampling of inferior (face and neck)
head regions. Whereas separation of activity in frontal and posterior networks can be done with
confidence with highly approximate source analysis, separating the contributions of dorsal
versus ventral corticolimbic networks (Aggleton & Brown, 1999; Tucker & Luu, 2007) is
theoretically critical, and for certain essential regions will require more precise source
modeling. Furthermore, even though the source localizations were critical in identifying the
approximate regional sources of the major components responsive to learning (FRN, LIAN,
MFN, P3), the statistical analyses were conducted on the scalp reflections of these components,
which are often highly superposed and thus confused. An important future methodological
development will be to perform statistical analysis in source space. The present research relied
exclusively on the averaged evoked (event-related) potential, when several lines of evidence
suggest that important aspects of the coordination of neural networks is shown by a more
dynamic analysis of the ongoing (unaveraged) EEG (Luu, Tucker, & Makeig, 2004). Also,
because the EEG is generated by the cortex, which have the requisite laminar organization to
generate far-field potentials, we are only able to examine cortical sources involved in learning.
Yet, in many learning studies subcortical structures (such as the caudate nucleus) have been
shown to be strongly engaged during learning (e.g., Grol et al., 2006, 2003; Toni & Passingham,
1999).

Perhaps most importantly, although we were able to replicate previous findings for the target-
locked responses from Luu, et al. (2007), we view this line of research as still exploratory,
given the limited experimental control over what monitoring or self-regulation processes are
engaged at what point in the learning process. Further manipulations of motivation, learning
strategy, and learning progress will be required to test the theoretical model of learning as
achieved by strategic mechanisms of action regulation (Luu & Tucker, 2003).

Conclusions
The brain activity observed during the learning of a simple stimulus-response mapping
involved several corticolimbic networks with differing patterns, both in processing the target
stimulus that required a response and in the processing of the feedback stimulus that indicated
the correctness of that response. We began with the general hypothesis of a shift in activity
from frontal to posterior cortical regions as participants learned. As in our previous study, this
hypothesis was inadequate in its simple form for several reasons. First, the target-locked MFN
and LIAN showed increased strength as subjects gained knowledge of the task, possibly
reflecting the more effective frontolimbic self-regulation that was gained in the learning
process. Second, the FRN and feedback-locked LIAN did demonstrate decreases as learning
progressed. Third, the feedback-locked P3, reflecting activity of posterior cortical sources,
demonstrated attenuated activity in response to presentation of correct feedback and increased
activity upon presentation of error feedback as learning progressed.

These electrophysiological patterns provide intriguing clues with regards to the transition from
early to late learning. The results of this study emphasize that the involvement of both the early
and late learning systems must be considered relative to the events within a learning trial as
well as the stage of learning. For example, frontal monitoring of feedback information
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decreased during the time that internal representation and monitoring processes appeared to
come online. This suggests that intermediate stages of learning, as manifested by participants
in this study, are characterized by intense involvement of stimulus-response mapping (LIAN),
monitoring (MFN), and evaluative (FRN) functions, both as action contexts are developed
(such as represented within the ACC) and as enduring representations of these contexts (P3)
are formed.

EXPERIMENTAL PROCEDURES
Participants

Twenty-three undergraduates from the University of Oregon were recruited for participation.
All participants had normal or corrected-to-normal vision, and reported no current drug use or
medication. Only those participants who supplied at least 15 instances of each trial type (i.e.,
correct and error responses before and after learning occurred, see below) were included in the
present analyses. Data from these eleven participants (8 male, 10 right-handed) are reported
below (mean age: 23; SD= 2.7).

Trial and Error Learning Task
The participants in this study were told that they would perform a trial-and-error learning task
to map specific key presses to specific stimuli (digit codes) displayed on the computer screen.
This task is a variant of the go/no go discrimination task developed by Newman et al. (1990).
On each trial, one of sixteen two-digit codes (‘targets,’ e.g. 15, 23, 47) was presented on-screen
(1500 ms maximum duration). Targets were randomly presented, with the constraint that the
same target could not occur on consecutive trials. Half of these were pre-designated as ‘go’
stimuli; the other half was pre-designated as ‘nogo’ stimuli. On each trial, the participant had
the opportunity to press one of four buttons on the keyboard (each button was associated with
two unique two-digit numbers) mapped onto the index and middle fingers of their right and
left hands), or to withhold a button-press response. The target was terminated when participants
made a response or 1500 ms elapsed. After each response (or non-response), contingent
feedback was immediately provided to the participant, who was asked to use that feedback to
improve performance on future trials. The most important aspects of this task for the present
study are that 1) the relation between the visual stimulus and motor response (or lack thereof
for the no go trials) is arbitrary and causal (which defines arbitrary visuomotor association
tasks and have been used extensively to study learning, see Wise & Murray, 2000) and 2) that
the input (stimulus) to output mappings be consistent (for the development of expertise, see
Chein & Schneider, 2005).

The error feedback could be of two forms: ‘ErrorGo’ indicated to the participant that a response
was incorrectly performed on a ‘nogo’ trial, while ‘ErrorNG’ indicated that a response was not
made on a ‘go’ trial. Correct feedback could, in turn, be of four forms: ‘Correct’ indicated that
the response was correct (but with the wrong hand), ‘CorrectH’ indicated that the correct hand
was used (but not the correct finger), ‘CorrectF’ indicated that the response was completely
correct (hand and finger), and CorrectNG indicated that a response was correctly withheld on
a ‘nogo’ trial. The feedback was presented for a maximum duration of 10 seconds, unless
terminated by the subject with a button press. The inter-trial interval varied between 1500 and
2500 ms. There was a total of 800 trials and these were grouped into 100 trial blocks.

Participants were informed that correct feedback (CorrectNG and CorrectF) resulted in 8 points
earned, Error feedback (ErrorGo and ErrorNG) results in 8 points lost, and partial correct
feedback, Correct and CorrectH, result in loss of 4 and 2 points, respectively. Participants
started the study with zero points. To motivate participants to learn the task, they were informed
that their goal should be to earn as many points as possible because they will be paid a monetary
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bonus according to the amount of points they accumulate by the end of the study. Participants
were paid $15 for their participation and an additional amount, ranging between $25 and $45,
depending on task performance. On average they earned $40 each. Between blocks,
participants took a brief break and recorded their accumulated points on a form.

We used a ‘fixed-number of consecutive correct responses’ (FCCR) method for determining
an individual learning threshold for each participant. In this method, the learning threshold is
defined as the moment when participants made four consecutive correct responses (or
withholding of a response) for a particular target.

EEG Recordings
A 128-channel HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, OR) was
used to record the EEG. Impedances were maintained below 70 kΩ (Ferree et al., 2001) during
data acquisition. All recordings were sampled at 256 s/s (.1 to 100 Hz hardware filter) with a
16-bit analog-to-digital converter and referenced to Cz.

Procedure
Participants completed several mood questionnaires prior to the EEG recording not reported
here. Once fitted with the 128-channel Hydrocel Geodesic Sensor Net, participants were seated
55 cm in front of the computer monitor. A chin rest was used to minimize head movements,
and to maximize consistency of gaze alignment to the monitor. Prior to testing, participants
performed a 32-trial practice session, during which they learned to associate the hand/finger
mappings to 4 two-digit numbers. All showed proficiency at these finger mappings by the end
of this practice session.

EEG Processing
The continuous EEG data were digitally filtered with a 30Hz low pass (finite impulse response)
filter and then segmented relative to target and feedback onset. Each segment consisted of a
400 ms prestimulus baseline and extended for 1000 ms post stimulus. The segments were sorted
according to accuracy (correct: includes trials containing CorrectNG and CorrectG feedback,
error: includes trials containing ErrorGo and ErrorNG feedback) and whether they occurred
prior to, or after, learning had been established (2 levels). Go and nogo trials were collapsed
over accuracy and learning stage. Each segment of the EEG was excluded from signal
averaging if 10 or more channels contained data that exceeded a voltage threshold of 200μV
(absolute) or a transition threshold of 100 μV (sample to sample) or was contaminated by
blinks. After averaging, the data was re-referenced to the average reference.

Source Estimates
Source estimates, describing the neural sources of the measured scalp potentials, were
accomplished with the GeoSource electrial source imaging software (EGI, Eugene, OR,
www.egi.com). GeoSource uses a finite difference model (FDM) for accurate computation of
the lead field in relation to head tissues, where the primary resistive component is the skull.
The FDM allows accurate characterization of the cranial orifices, primarily the optical canals
and foramen magnum. Tissue compartments of the FDM were constructed from whole head
MRI and CT scans of a single subject whose head shape closely matches the Montreal
Neurologic Institute (MNI) average MRI. The MRI and CT images were co-registered prior
to segmentation of the brain and cerebral spinal fluid (identified from MRI data), and the skull
and scalp (identified from CT images), and the individual’s MRI and CT images were aligned
with the cortex volume from the MNI atlas with Talaraich registration. The tissue volumes
were parceled using 2 mm voxels to form the computational elements of the FDM.
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Conductivity values used in the FDM model are as follows: .25 S/m (Siemens/meter) for brain,
1.8 S/m for cerebral spinal fluid, .018 S/m for skull, and .44 S/m for scalp (see Ferree et al.,
2000). These values reflect recent evidence that the skull-to-brain conductivity ratio is about
1:14, compared to the 1:80 ratio traditionally assumed (Ryynanen et al, 2006; Ryynanen et al,
2004, Zhang et al., 2006). With these more accurate conductivity values, the EEG may provide
a spatial resolution equivalent to the magnetoencephalogram (MEG; Malmivuo & Suihko,
2004). Source locations were derived from the MNI probabilistic MRI (to which the typical
subject matches closely). Based on the probabilistic map, gray matter volume was parceled
into 7 mm voxels, each voxel served as a source location with three orthogonal orientations.
This resulted in a total of 2,394 sources whose anatomic identity was derived through use of
a Talaraich demon (Lancaster et al., 2000). The source locations were registered with the MRI
and CT volumes. Once the head model was constructed, an average of the 128-channel sensor
positions was registered to the scalp surface. To compute estimates of the sources, a minimum
norm solution with the LAURA (local autoregressive average) constraint (Grave de Peralta
Menendez et al., 2004) was used. All source estimates were performed on the grand-averaged
scalp data.
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Figure 1.
Reaction time (Accuracy × Learning interaction) and coefficient of variation (CV) graphs.
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Figure 2.
Layout of Hydrocel Geodesic Sensor Net and channel groups used for analysis. Orange: FRN;
Yellow: MFN; Green: LIAN; Black: Feedback-locked P3; Blue: Target-locked P3.
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Figure 3.
A. ERP waveforms at site FCz (left). Yellow box represents time window used for
quantification of the MFN. Accuracy × Learning interaction for MFN (right). B. Topographic
map of difference between post- and pre-error trials, at 300 ms. Orientation of map is top
looking down with nose at top of page. C. Source distribution for MFN, also at 300 ms.
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Figure 4.
A. ERP waveforms plot of target-locked LIAN. Yellow box represents time window used for
quantification of the LIAN. B. Source distribution for target-locked LIAN, at the maximum
amplitude point, using data from the condition with the largest response (pre-learning). C. ERP
waveform plot of feedback-locked LIAN. Yellow box represents time window used for
quantification of the LIAN. D. Source distribution for feedback-locked LIAN, also at the
maximum amplitude point, with data from the condition with the largest response (post-
learning).
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Figure 5.
A. ERP waveforms for target-locked P3 at site Pz. Yellow box represents time window used
for quantification of the P3. B. Source distribution of P3.
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Figure 6.
A. ERP waveform for FRN at sites FCz and Fpz. Yellow box represents time window used for
quantification of the FRN. B. Topographic map of difference between pre-error and post-
correct trials, at 350 ms. Orientation of map is top looking down with nose at top of page. C.
Source distribution for FRN, also at 350 ms.
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Figure 7.
ERP waveforms for feedback-locked P3 averaged over medioparietal sites (see Figure 3). Red
and yellow boxes represent time window used for quantification of P31 and P2, respectively.
B. Topographic map illustrating P32 distribution at 680 ms. Orientation of map is top looking
down with nose at top of page. C. Source distribution for P3s, also at 680 ms.
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