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Abstract
Recent studies consistently support a hypoxia response in the adipose tissue in obese animals. The
observations have led to formation of an exciting concept, adipose tissue hypoxia (ATH), in the
understanding of major disorders associated with obesity. ATH may provide cellular mechanisms
for chronic inflammation, macrophage infiltration, adiponectin reduction, leptin elevation, adipocyte
death, ER stress and mitochondrial dysfunction in white adipose tissue in obesity. The concept
suggests that inhibition of adipogenesis and triglyceride synthesis by hypoxia may be a new
mechanism for elevated free fatty acids in the circulation in obesity. ATH may represent a unified
cellular mechanism for variety of metabolic disorders, and insulin resistance in patients with
metabolic syndrome. It suggests a new mechanism of pathogenesis of insulin resistance and
inflammation in obstructive sleep apnea. Additionally, it may help us to understand the beneficial
effects of caloric restriction, physical exercise, and angiotensin II inhibitors in the improvement of
insulin sensitivity. In this review article, literatures are reviewed to summarize the evidence and
possible cellular mechanisms of ATH. The directions and road blocks in the future studies are
analyzed.

Introduction
Inflammation occurs in adipose tissue in obesity, and has a broad impact on glucose, lipids,
and energy metabolism (1–5). Several signaling pathways have been proposed to explain the
pathogenesis of obesity-associated inflammation, such as activation of toll-like receptor 4
(TLR4) by fatty acids (6–8), activation of Protein kinase C (PKC) or JNK (c-JUN n-terminal
kinase) by fatty acid derivatives (diaglyceride or Ceramide) (9–13), induction of ER
(endoplasmic reticulum) stress (14,15) or increased activities of reactive oxidative species
(ROS) (16,17), and activation of macrophages by adipocyte death (18,19). Although these
theories are able to explain some aspects of inflammation and metabolic disorders in obesity,
the linkage between obesity and these factors remains to be identified. It is not clear why free
fatty acid (FFA), ER stress, ROS and adipocyte death are increased in obesity. Additionally,
there is no unified theory for the metabolic and endocrinological dysfunctions of the white
adipose tissue under obesity. Recent reports suggest that hypoxia is a new potential risk factor
for the chronic inflammation in obesity (20,21). The emerging role of adipose tissue hypoxia
(ATH) suggests new insights into the mechanisms of pathogenesis of metabolic syndrome.

Obesity-associated inflammation is characterized by increased levels of inflammatory
mediators in plasma and in adipose tissue (1,22–25). Macrophage infiltration and activation in
the adipose tissue has provided a link between adipose tissue and inflammation (26–28).
Inflammation leads to insulin resistance by inhibition of post-receptor signal transduction (Fig.
1), especially inhibition of insulin receptor substrate (IRS) 1 or 2 (IRS-1/2) functions in the
insulin signaling pathway (1,29,30). Alternatively, inflammation may impair insulin action
systemically through increasing FFA and decreasing adiponectin in the blood. Both
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inflammatory cytokine and FFAs are able to target IRSs proteins for insulin resistance (31–
33).

Serine kinases including IKK (inhibitor kappaB kinase) (34), JNK, PKC and S6K (ribosomal
protein S6 kinase) are major signal mediators for inflammation and FFAs in the inhibition of
insulin signaling pathway (3,34–37) (Fig. 1). In addition to IRS proteins, nuclear receptor
PPARγ (peroxisome proliferator-activated receptor gamma) is also targeted by inflammation
signals for insulin resistance (38–40). The transcriptional activity of PPARγ is required for the
maintenance of insulin sensitivity and lipid metabolism (41–43). The insulin-sensitization
activity of TZDs (thiazolidinediones) suggests that deficiency in the transcriptional activity of
PPARγ may contribute to insulin resistance in obesity. It was reported that IKK/NF-kB (nuclear
factor kappa B) signaling pathway might mediate TNF-α (tumor necrosis factor alpha) or IL-1
(interleukine 1) signal in the inhibition of PPARγ function (38,39). However, the mechanism
of IKK/NF-kB action was not clear. A recent study suggests that IKK/NF-kB inhibited
PPARγ function by increasing the nuclear corepressor function (Fig. 1) (40). The inhibition
involves activation of the histone deacetylase 3 (HDAC3), a component in the nuclear
corepresor for PPARg. Therefore, understanding of the events that leads to inflammation or
FFA elevation is important in obesity research.

Demonstration of hypoxia in adipose tissue in obesity
Although it is known that hypoxia inhibits differentiation of preadipocytes, and stimulates
secretion of leptin and vascular epithelial growth factor (VEGF) from mature adipocytes in
vitro (20,21,44–47), the biological significance of hypoxia was not clear in the adipose tissue
until 2007 (48). Hypoxia was first proposed as a possible cause of inflammation in obesity in
2004 (49). However, the direct evidence for hypoxia in adipose tissue remained missing for
three years (48). One reason is that there was no established method for detection of oxygen
level in the adipose tissue. Here, four different assays are reviewed for study of ATH (20,21,
50). Data from these assays provide a strong support to the hypoxia concept (20,21,50).

The first is the interstitial partial pressure of oxygen (pO2). In the three recent reports about
ATH (20,21,50), pO2 was determined in the adipose tissue in two of the studies (20,50). In
our study, pO2 was measured in the epididymal fat with an oxygen meter (20). In ob/ob mice,
the interstitial pO2 is about one third of that in the control mice at 12 weeks in age (15.2 mmHg
in ob/ob versus 47.9 mmHg in the lean control mice) (20). The 70% reduction in the interstitial
pO2 brings the oxygen level to about 2 % in the adipose tissue. In the air, oxygen is 21%. This
low level of oxygen concentration suggests hypoxia in the adipose tissue. pO2 in the vein blood
at about 23 mmHg (or 3% oxygen) was not reduced in the obese mice, suggesting that there
was no systemic hypoxia in the ob/ob mice. The pO2 assay is able to provide definite
information about oxygen level in the tissue, but the assay requires special equipment (oxygen
meter) and involves surgical operation. The cost is relative high as the optical oxygen probe is
fragile and needs to be replaced frequently. Additionally, the assay is dependent on the
sensitivity of the oxygen meter and operation skill of the investigator. The observation in mice
is consistent with reduced oxygen tension in the adipose tissue in human obesity (51,52). The
studies demonstrated that oxygen tension was reduced in the subcutaneous tissue in the obese
patients.

The adipose hypoxia was also detected with a chemical hypoxic probe, pimonidazole
hydrochloride. This approach was used in two of the three studies (20,21). The hypoxiaprobe
(pimonidazole hydrochloride) reacts with proteins in a low oxygen environment (pO2 < 10
mmHg) leading to generation of new protein adducts (53). The hypoxiaprobe has high water
solubility (400 mM; 116 mg/ml) that facilitates intravenous infusion. Hypoxyprobe™-1
diffuses readily into tumors and normal tissues including brain. Pimonidazole concentration
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is approximately 3 fold above plasma levels in tumors and normal tissues in vivo. The probe
was often used to determine tissue hypoxia in immunohistostaining. However, such application
is hard to give a precise quantification for comparison of hypoxia. In our study, the probe was
used in tissue staining as well as in the Western blot assay for quantification of hypoxia (20).
In the Western, the adipose tissue lysate was blotted on the membrane with a monoclonal
antibody to the hypoxia probe. The signal was quantified by the strength of signal. The result
demonstrated a significant increase in hypoxia in the epididymal fat of ob/ob mice. The
advantage of this approach is that the assay does not need any special equipment and can be
done in most laboratories. The weakness of this approach is that the chemical probe cannot
give a precise number about the degree of oxygen pressure. The probe can be used as an indirect
indicator of hypoxia that facilitates diagnosis of hypoxia. Without pO2 data, this assay is
limited in the demonstration of hypoxia.

In the third assay, a group of widely-accepted genes for hypoxia response were used to detect
the hypoxia (20,50). The hypoxia response genes are widely used to determine tissue hypoxia
in the study of oxygen-sensing in cancer and ischemia (54). These genes include HIF-1α
(hypoxia inducible factor 1alpha), VEGF (vascular endothelial growth factor), GLUT1
(glucose transporter 1), Hemox (Heme oxygenase 1) and PDK1 (pyruvate dehydrogenase
kinase 1) (54,55). HIF-1α is a transcription factor that controls expression of the other four
genes in response to hypoxia (54). In the epididymal fat, expression of these genes was
examined with western blot, and real time quantative RT-PCR (qRT-PCR) in our study (20).
In ob/ob mice, HIF-1α and GLUT1 were significantly increased in proteins in comparison to
the age- and gender-matched wild type littermates. All of the hypoxia response genes were
increased in mRNA except VEGF. The increase was only observed in the adipose tissue, but
not in the skeletal muscle of the ob/ob mice, suggesting that hypoxia is specific to the fat tissue
in obese mice. Although plasma insulin is increased in the obese mice, the fat-specific
expression of hypoxia response genes does not suggest a role of insulin in the induction of
HIF-1α and its target genes. Insulin was reported to induce HIF-1α and hypoxia gene expression
in cell cultures (56). Our data suggests that insulin may not have the same activity in vivo.

The fourth is lactate assay in the adipose tissue (21). Lactate is a product of oxygen-independent
glucose metabolism or glycolysis in cells. In normal condition, ATP is produced in
mitochondria through consumption of oxygen. In the cytosol, ATP production is done through
glycolic reaction. With oxygen supply, both pathways are active in ATP production. In the
hypoxic condition, mitochondrial respiration is reduced and the glycolytic activity is increased
in compensation for the mitochondria inhibition (57,58). As a result, the lactate production is
increased, which may lead to a decrease in the interstitial pH. Therefore, lactate concentration
in the tissue may be used as an indicator of tissue hypoxia. In obese mice (DOI or KKAy mice),
the lactate concentrations were 1.7- and 1.5-fold higher in the adipose tissue than those of lean
control mice, respectively (21). In the muscle, lactate concentration was not increased in these
obese mice. Since lactate production is also induced by many other factors, such as insulin, a
proper control is required to determine the relationship of lactate and hypoxia.

Hypoxia signal transduction in adipose tissue
HIF-1α is a master signal mediator of hypoxia signal (54). In 2005, HIF-1α was shown to be
increased in adipose tissue of obese patient and its expression was reduced after surgery-
induced weight loss (59). In 2006, the increase in HIF-1α expression was confirmed in adipose
tissue by microarray and immunohistostaining (60). In the primary cell culture, HIF-1α protein
was induced in human adipocytes by hypoxia (47). However, the role of hypoxia in the
induction of HIF-1α was not identified in the adipose tissue until the protein increase was
associated with hypoxia in the adipose tissue in obese mice (20). In addition to HIF-1α, NF-
kB is also activated by hypoxia (20).
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Regulation of HIF-1α activity has been well documented (54). HIF-1α was cloned in 1995
(61,62). HIF-1α stays in the nucleus and is not detectable in the cytoplasm. The regulation of
HIF-1 activity occurs at multiple levels (63). Whereas HIF-1α mRNA is not changed by
hypoxia in cultured cells, it is remarkably induced by hypoxia or ischemia in tissues (64,65).
Under hypoxic conditions, HIF-1α protein levels increase dramatically through inhibition of
ubiquitination-proteasome mediated degradation of HIF-1α. HIF-1α protein peaks at 4–8 hour
in response to hypoxia and returns to the basal level after overnight in hypoxia condition. Under
normal oxygen conditions, HIF-1 is targeted for ubiquitination and rapid degradation in the
proteasome (54,66). The half-life of HIF-1a protein is <5 min under normoxia. An increase in
HIF-1 activity is resulted from reduced degradation of HIF-1α protein. This process is induced
by PI3K–AKT and MAPK-ERK (MEKK) pathways by growth factors including insulin, IGF,
and EGF (56,67–69). After activation, HIF-1a translocates to the nucleus and dimerizes with
HIF-1β [hydrocarbon receptor nuclear translocator (ARNT)] to bind to the promoter DNA of
target genes, such as VEGF (54,66). The core DNA sequence of HIF-1 element is 5’-
RCGTG-3’ (70). HIF-1a is also up-regulated by certain transition metals (Co2+, Ni2+, Mn2
+) and by iron chelation. Nuclear localization of HIF-1a may also be induced by hypoxia.
HIF-1α expression is required for embryonic survival in mice [Iyer, 1998 #4074; Kotch, 1999
#6379].

ATH and inflammation response
ATH may provide an answer to the question about the cause of chronic inflammation in adipose
tissue in obesity. It may also explain the impact of ischemia/reperfusion in the adipose tissue
(71). The hypoxia is able to induce inflammation in adipose tissue by induction of gene
expression in adipocytes and macrophages. This possibility was demonstrated using primary
cells and cell lines (20,21). The induced genes include TNF-α, IL-1, IL-6, MCP-1 (Monocyte
chemoattractant protein-1), PAI-1 (plasminogen activator inhibitor-1), MIF (macrophage
migration inhibition factor), iNOS (inducible nitric oxide synthase), MMP9 (matrix
metalloproteinases 9), and MMP2. The molecular mechanism of gene expression is related to
activation of NF-kB and HIF-1α. All of these genes are targets of NF-kB, and some of them
are also targets of HIF-1 (PAI-1, MIF, and iNOS) (63).

Activation of NF-kB by hypoxia is well-established in the fields of cancer biology,
immunology, and cardiovascular research as being reviewed (72–77). In cancer research, it is
proposed that activation of NF-kB is responsible for tumor resistance to radiotherapy or
chemotherapy in cancer patients (75). NF-kB increases tumor survival through anti-apoptosis
effects. In cardiovascular study, activation of NF-kB by hypoxia is proposed to mediate
inflammation for lung injury, and tissue damage in ischemia-reperfusion (76). It is known that
hypoxia activates NF-kB through IKK-independent pathway as being reviewed (72,78). In
response to hypoxia, NF-kB is disassociated from IkBa in the absence of IkBa degradation.
The disassociation leads to nuclear translocation and transcriptional activation of inflammatory
cytokines.

Transcription factor NF-kB is a master regulator of inflammation response (78–80). It is formed
by two proteins of the Rel family, p65 and p50 (78). NF-kB controls transcription of many
pro-inflammatory cytokines (such as TNF-α, IL-1, and IL-6) or inflammation mediator (such
as iNOS, and VACM). The signaling pathway for NF-kB activation has been well documented
in reviews (81,82). In the absence of activation, NF-kB is associated with IkBα (inhibitor) and
retained in the cytoplasm. When cells are stimulated by extracellular signal, such as TNF-α or
LPS, activation of IKK2 leads to phosphorylation, ubiquitination and degradation of IkBα
protein in proteasome. In the absence of IkBα, NF-kB will be activated and translocated into
the nucleus to initiate transcription of target genes, which include IkBa, TNF-α, IL-1 and IL-6.
After the IkBα protein level is restored from this transcription-based process, NF-kB will be

Ye Page 4

Int J Obes (Lond). Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



associated with IkBα and then excluded from the nucleus. In this classical signaling pathway,
activation of NF-kB is dependent on activation of IKK2. In general, inhibition of IKK2 leads
to suppression of the transcriptional activity of NF-kB.

ATH in macrophage infiltration into adipose tissue
The discovery of macrophage infiltration into the adipose tissue in obesity has significantly
modified our view of chronic inflammation in the fat tissues (26,27). This finding provided an
excellent explanation for some controversy about TNF-α and resistin production by adipose
tissue. In vivo, it is clear that macrophages (not adipocytes) in the adipose tissue are the primary
source of these cytokines (83). Macrophage infiltration is a new marker of chronic
inflammation of adipose tissue (26,27). The finding led to progress in the mechanistic study
of insulin sensitization by TZDs. Macrophage is found as a TZD target for insulin sensitization
(84,85).

The mechanism of macrophage infiltration remains unknown in adipose tissue. It is generally
accepted that MCP-1 attracts macrophage to adipose tissue. MCP-1 is produced predominantly
by macrophages and endothelial cells, and is a potent chemotactic factor for monocytes
(precursor of macrophage). MCP-1, also known as CCL2, belongs to pro-inflammatory
cytokine. The role of MCP-1 in macrophage infiltration is supported by several studies using
transgenic mice with either global MCP-1 knockout or fat-specific over-expression of MCP-1
(27,86,87). However, it has recently been reported that macrophage infiltration was not
associated with MCP-1 in both lean and obese mice (88,89).

Expression of MIF (macrophage migration inhibition factor) in response to hypoxia may
provide a clue to a new mechanism of macrophage infiltration (20). Tissue macrophage
infiltration is a result of increased arrival or reduced departure of macrophages. Hypoxia is
known to inhibit macrophage departure from the hypoxic region in tissue (90). MIF is one of
the factors mediating the hypoxia signal in the inhibition of macrophage departure. These facts
suggest that in obesity, macrophage infiltration into the adipose tissue may be related to the
MIF-mediated inhibition of out-bond migration of macrophages. MIF is a 114 amino acid
protein that circulates in homotrimeric, dimeric and monomeric forms (91). MIF expression is
increased by hypoxia and glucocorticoids (92,93). Study of MIF knockout mice suggests that
MIF is required for normal function of macrophage (94). MIF is a target gene of HIF-1α that
is required for macrophage infiltration into tissues (95). MIF is produced by many types of
cells including adipocytes, monocytes/macrophages, and lymphocytes (96,97). In human
adipocytes, MIF expression is increased with BMI, and negatively associated with insulin
sensitivity (96,98). It remains to be understood how MIF is linked to insulin resistance. Our
study suggests that MIF may contribute to insulin resistance by promoting inflammation in
adipose tissue (20).

Adipocyte death has been proposed to induce macrophage infiltration into adipose tissue
(18). This possibility is supported by observations that macrophages are located around dead
adipocytes in the adipose tissue (19). A new study suggests that macrophages were
predominantly found in hypoxic areas in adipose tissue of obese mice (50). There are two
possibilities to explain the association of macrophage and dead cells in the adipose tissue. One
is that macrophages act to clean the dead adipocytes. The other is that macrophage is trapped
in the hypoxic area by MIF. MIF expression should be very high in the hypoxic area. If cell
death contribute to the macrophage infiltration, it is not clear what induces the adipocytes death.
Our study suggests that the cell death is likely a result of hypoxia response (99). In vitro,
hypoxia induced cell necrosis in 3T3-L1 adipocytes.
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ATH inhibits adiponectin expression
Adiponectin is a cytokine produced by adipocytes (100–103). Serum levels of adiponectin
protein correlate with systemic insulin sensitivity (104). A reduction in adiponectin expression
contributes to insulin resistance in obesity (105–109). However, it was not clear what causes
adiponectin reduction in obesity. Inflammation was proposed to inhibit adiponectin expression,
but controversy remains (110). It was hypothesized that chronic inflammation associated with
visceral obesity may inhibit production of adiponectin. However, adiponectin levels are
elevated rather than decreased in classic chronic inflammatory/autoimmune diseases, such as
rheumatoid arthritis, SLE, inflammatory bowel disease, type 1 diabetes, and cystic fibrosis.
Adipose tissue hypoxia may provide a new answer to the controversy (20,21).

Hypoxia was shown to reduce adiponectin expression in adipocytes by several independent
labs (20,21,46,47). In the adipose tissue, the hypoxia may inhibit adiponectin mRNA, and
induce expression of inflammatory cytokines (20,21). TNF-α is known to inhibit mRNA
expression of adiponectin in adipocytes (111). Therefore, the hypoxia may directly inhibit
adiponectin expression or indirectly act through TNF-α (20). This may occur locally in the
adipose tissue. This may not apply to the systemic inflammation, in which a high level of
adiponectin was observed with chronic systemic inflammatory (110).

The molecular mechanism of adiponectin inhibition by hypoxia and inflammation remains to
be investigated. The gene promoter activity of adiponectin was reduced by hypoxia and TNF-
α (20,21,46). It remains to be investigated how the promoter was down-regulated by hypoxia.
The promoter contains response elements for several transcriptional activators, such as
PPARγ, SREBP (sterol regulatory element-binding protein), FOXO1 (Forkhead bOX-
containing protein, O subfamily) and C/EBP (CCAAT/enhancer-binding proteins) (112–
114). Hypoxia is known to inhibit PPARγ function in an HIF-1 dependent manner (44).
Hypoxia activates PI3K/Akt (115), and this may lead to inhibition of the transcriptional activity
of FOXO1 through nuclear exclusion (116). Therefore, inhibition of both PPARγ and FOXO1
by hypoxia may contribute to the molecular mechanism of adiponectin inhibition. HIF-1 may
contribute to the adiponectin inhibition through suppression of PPARg expression. It is not
clear if there is a HIF-1 binding site in the adiponectin gene promoter. Inhibition of C/EBPβ
was proposed to be responsible for the hypoxia-mediated adiponectin reduction (21). However,
this possibility is challenged by the fact of C/EBP activation by hypoxia. The transcriptional
activity of C/EBP was enhanced by hypoxia (117,118).

Hypoxia and leptin expression
Leptin is a primary hormone secreted by adipose tissue and has a well-established function in
the control of energy balance (119). Expression of leptin from adipocytes is regulated by body
weight (or adiposity), food intake, hormones and hypoxia (119–121). At whole body level,
leptin is increased in plasma by obesity, and the increase is dependent on mRNA expression.
Loss of adiposity leads to a reduction in leptin mRNA in adipose tissue (119). This may explain
leptin reduction in response to the high altitude in some studies [Sierra-Johnson, 2008 #6374].
In the environment of high altitude, lack of oxygen induces a high altitude response that
includes loss of appetite, less food intake, and reduction in body weight. The hypoxia and
reduction in body weight may contribute to elevation of leptin in the plasma [Cabrera de Leon,
2004 #5944; Tschop, 2000 #5943; Vats, 2004 #5942; Zaccaria, 2004 #5941; Sierra-Johnson,
2008 #6374].

ATH may provide a new explanation to the up-regulated leptin expression in obesity. Leptin
was reported as a hypoxia response gene whose transcription is induced by transcription factor
HIF-1α (hypoxia inducible factor 1 alpha) (121–124). At mRNA level, leptin expression is
increased by insulin, and decreased by beta 3-adrenergic receptor signal that activates cAMP
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signaling pathway (120,125). Insulin may mediate food intake signal in the induction of leptin.
cAMP may mediate physical excise signal in the inhibition of leptin. In obesity, ATH is
associated with leptin elevation (20,21,50), suggesting a role of hypoxia. In cell culture, leptin
expression was induced by hypoxia (1% oxygen) in human preadipocytes (126). However, this
activity of hypoxia is controversial as it was not observed when classical hypoxia response
genes were induced by hypoxia in adipocytes (127). Therefore, it is subject to debate that
hypoxia directly induces leptin gene expression.

ATH in adipocyte cell death and plasma FFA elevation
Hypoxia may be a potential risk factor for adipocyte death in adipose tissue of obese subjects.
An increase in adipocyte death was reported in adipose tissue of obese subjects, and was
proposed to induce macrophage infiltration (18). In dietary obese mice, adipocyte death was
increased with growth of fat pads (19). However, the reason of adipocyte death is not clear.
Our study suggests that hypoxia induces necrosis in 3T3-L1 adipocytes (99). This observation
provides an underlying mechanism of cell death in adipose tissue. The cell death may promote
lipolysis and release of FFA into blood stream under insulin resistance. This will explain the
increase in plasma FFA in obesity. In adult rats, plasma FFA in the vein blood is induced by
acute hypoxia in an ischemia model (99). In the newborn mice, plasma FFA is induced by
systemic hypoxia (128). In ischemia research, hypoxia has been well-documented in the
induction of cell death in heart and brain (129). In adipose tissue, ischemia induces damages
in several forms, such as edema congestion and bleeding (71).

Elevation of plasma FFAs is associated with increased lipolysis in obese condition (130,131).
The lipolysis was attributed to reduced insulin sensitivity in WAT (132,133). Hypoxia may
contribute to the lipolysis through induction of insulin resistance and stress responses (99).
Insulin signaling activity was inhibited by hypoxia (99,134). Since insulin inhibits lipolysis
and stimulates fatty acid synthesis (135), the loss of insulin signal will promote lipolysis.
Inhibition of PPARγ activity by hypoxia may be another mechanism of lipolysis. PPARγ
activity is inhibited by hypoxia in the model of adipogenesis (44). PPARγ is a master
transcription factor for expression of proteins involved in fatty acid uptake, synthesis, and
storage (42,136). In fatty acid uptake, FATP (fatty acid transporter protein) and CD36 are target
genes of PPARγ. In triglyceride synthesis, PPARγ controls glycerol synthesis through PEPCK
expression. In fatty acid storage, PPARγ induces FABP4 (fatty acid binding protein 4, aP2)
expression. A reduced expression in these genes may contribute to the elevation of plasma
FFA. Additionally, Activation of AMPK (AMP-activated protein kinase) by hypoxia may
promote lipolysis as well. AMPK is a serine kinase that serves as a sensor for energy supply
in cells (137). It is known that hypoxia activates AMPK through inhibition of mitochondrial
respiration or oxidative stress (138). Activation of AMPK leads to lipolysis in adipocytes and
skeletal muscle (137).

Hypoxia and ER stress
ER stress was first observed in adipose tissue of obese mice in 2004 and proposed as a risk
factor for insulin resistance (14). JNK (c-JUN N-terminal Kinase) is activated in obese
condition (35,139,140), and is shown to inhibit IRS-1 function for insulin resistance (31,
141). In search for the mechanism of obesity-associated JNK activation, ER stress was found
in the adipose tissue and liver in obese mice (14,15). Inhibition of ER stress by transgene or
chemical inhibitors was found to protect the mice from insulin resistance in obesity (14,142,
143). However, it is not clear why ER stress occurs in obesity. Hypoxia is known to induce
ER stress (144,145). To test this activity of hypoxia in adipocytes, Hosogai et al treated 3T3-
L1 adipocytes with hypoxia (21). They found that ER stress was induced by hypoxia in
induction of mRNA expression of CHOP and GRP78, which are ER stress genes. eIF2a
phosphorylation is another marker of ER stress. It was induced in 3T3-L1 adipocytes after 2–
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6 h hypoxia treatment (21). The study supports that ATH may be involved in induction of ER
stress in obesity.

Hypoxia and mitochondrial dysfunction
White adipose tissue (WAT) has much less mitochondrial activity compared to the brown
adipose tissue (BAT). However, mitochondrial dysfunction may contribute to malfunction in
white adipose tissue (146). This possibility is supported by the reduced number of mitochondria
in adipose tissue of obese people (146). However, it is not clear why and how the mitochondrial
number is reduced in the adipose tissue. ATH may provide an explanation. It is known that
mitochondria respiration and biogenesis are inhibited by hypoxia (147,148). In obese
condition, mitochondrial number and function in adipocytes may be decreased gradually by
the hypoxia response in adipose tissue. HIF-1α is a major mediator of the hypoxia signal in the
inhibition of mitochondrial function (147,148).

Possible causes of adipose tissue hypoxia
The physiological basis of ATH might be related to reduction in adipose tissue blood flow
(ATBF) (ml/min/100g tissue) and capillary density. Reduction in ATBF has been reported in
obesity in both humans (149–151) and animals (152–154). The reduction means that blood
perfusion is reduced in each unit of adipose tissue in obesity. In obese people, the ATBF rate
was 30–40% lower (P < 0.02–0.05) than that of non-obese subjects (153). Although an earlier
study suggests that ATBF was not reduced in obesity (155), all of later studies consistently
support the reduction of ATBF (149–154). The ATBF reduction was observed only in the obese
diabetic rats (obese Zucker rat), but not in the non-obese diabetic GK rats (154), suggesting a
role of adipose tissue mass in the control of blood flow. Insulin resistance may not lead to the
ATBF reduction since it occurs in both obese Zucker rats and non-obese GK rats. The ATBF
reduction is associated with insulin resistance in obesity (150,151). Although the association
has been known in obesity for years, the intermediate events linking the two conditions remains
unknown. The adipose tissue hypoxia may be a potential link.

A reduction in capillary density may contribute to the adipose tissue hypoxia (156). Capillary
density is determined by angiogenesis that requires proliferation and tube formation of
endothelial cells. Endothelial proliferation was driven by growth factors including VEGF, and
FGF2. The tube formation and capillary maturation are controlled by a different set of cytokines
including PDGF, TGF-β and Angiopoietin. We observed that VEGF expression was not
increased in response to hypoxia in the adipose tissue of ob/ob mice although expression of
other hypoxia response genes was up-regulated (20). This defect was associated with a reduced
endothelial density in the tissue (156). The evidence suggests that angiogenesis is deficient in
the adipose tissue of obese mice, and this defect may account for the reduction in adipose tissue
blood flow in obesity. The detail molecular events underlying the angiogenic defect remain to
be investigated in obese condition.

Blood perfusion is reduced from a decrease in vasodilation or increase in vasoconstriction. An
increase in vasoconstriction in obesity is supported by literature. Angiotensin II (Ang II) is a
serum peptide with known function to increase vasoconstriction. Ang II is a component in the
renin-angiotensin system (RAS), and produced after hydrolysis of Ang I by angiotensin-
converting enzyme (ACE). Ang II acts on both the type 1 (AT1) and type 2 (AT2) receptors
(157,158). In obesity, the Ang II activity is increased in adipose tissue and in circulation
(159–161). This may contribute to the ATBF reduction through an increase in vasoconstriction
(162). Additionally, the Ang II inhibitors are known to enhance blood perfusion in adipose
tissue (161). The inhibitors also decrease inflammation in adipose tissue, and increase systemic
insulin sensitivity (163,164). It remains to be tested if the pharmacological inhibitors for Ang
II improve oxygen supply in the adipose tissue in obesity.
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In addition to the ATBF reduction, the increase in adipocyte size may contribute to the
interstitial hypoxia. In tissue, oxygen can only defuse about 120 micron (165,166). When
adipocyte diameter increases to (or above) 120 micron, oxygen will not be able to reach the
cells beyond 120 micron from the capillary. The diameter of a large adipocyte can be over 150
micron (167). This distance effect remains to be tested in the adipose tissue in obesity.

Inflammation may serve to stimulate angiogenesis
Although inflammation is induced locally by hypoxia in adipose tissue, the biological
significance remains to be established for the inflammation except the side effects on
adipocytes. We believe that inflammation may serve as a physiological signal for angiogenesis,
and remodeling of extra-cellular matrix in adipose tissue (Fig. 2). This is supported by several
recent studies about macrophage function in the adipose tissue (89,156,168). Many pro-
inflammatory cytokines have angiogenic activity (Fig. 3) (169,170). The side effects of
inflammation may happen in extreme conditions, such as obesity and infections.

Angiogenesis (growth of blood vessel) is a physiological response in tissue growth and
development (171). It has been extensively studied in cancer biology and developmental
biology (171–173). Pathogenic angiogenesis is closely related to cancer and diabetic
retinopathy (169,171). Hypoxia is a primary physiological signal for angiogenesis in both
physiological and pathological conditions (174,175). In the fat tissue, angiogenesis is required
for adipocyte differentiation and tissue growth as reviewed (170,176,177). Many cytokines
produced by adipose tissue have angiogenic activities (23,160,169,170). As shown in Fig. 3,
these cytokines include leptin (178), adiponectin (179), VEGF (vascular endothelial growth
factor), TNF-α, MIF-1 (macrophage migration inhibitory factor 1), IL-6 (interleukin-6), IL-8,
PDGF (platelet-derived growth factor) (180), TGF-β (transforming growth factor beta), and
angiopoietin.

Angiogenesis is required for adipose tissue formation. This concept is supported by studies
using adipose tissue transplantation (181) and angiogenic inhibitors (168,177,182,183).
Inhibition of angiogenesis reduces adipose tissue growth and prevents obesity (168,177,182,
183). VEGF is a powerful angiogenic factor and was shown to stimulate adipogenesis in a
paracrine manner (177). In the visceral fat, adipocytes have the highest expression of VEGF
in a comparative study of multiple cell types (184). The high level expression is pad- or
location-specific (185,186). However, it was not clear how VEGF acts to promote
adipogenesis.

Macrophages are much more active than adipocytes in secretion of inflammatory cytokines
and pro-angiogenic factors. Angiogenesis is tightly controlled by pro-angiogenic and anti-
angiogenic factors. In response to hypoxia, macrophage is able to secrete almost all of the pro-
angiogenic factors (73). PDGF is a good example for this activity of macrophages. Although
adipocytes have a high basal level of VEGF production (184), it can not produce much PDGF
(156). Our data suggests that differentiated 3T3-L1 cells lost its ability in expression of PDGF
(156), and gained capacity in VEGF expression. VEGF mainly induces proliferation of
endothelial cells. It does not stimulate maturation of capillary. PDGF is able to induce tube
formation and recruitment of pericytes for capillary maturation. Therefore, in adipose tissue,
pro-angiogenic factors made by adipocytes may not be sufficient for expansion of functional
vasculature. Macrophages may facilitate the neovascularation. Without macrophages,
angiogenesis was significantly reduced in adipose tissue in lean mice (89).

Hypoxia and insulin resistance
In clinic, obstructive sleep apnoea (OSA) is associated with insulin resistance (187–190). The
syndrome of OSA is characterized by recurrent collapse of the upper airway during sleep
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leading to periods of intermittent hypoxia (IH) and fragmentation of sleep (191). The
prevalence of OSA is 40 % to 60 % in obese subjects. OSA increases risk of hypertension,
coronary artery disease and stroke. Since systemic hypoxia is associated with insulin resistance
and glucose intolerance (192–196), hypoxia was proposed as a risk factor for OSA-associated
insulin resistance (187–190,194).

In a recent study, systemic hypoxia was shown to induce insulin resistance in lean mice
(197). The insulin resistance was examined with the hyperinsulinemic euglycemic clamp. The
result suggests that hypoxia induced systemic insulin resistance as glucose infusion rate was
decreased. A reduction in glucose utilization in the oxidative muscle fibers was observed,
suggesting that muscle developed insulin resistance. The role of liver was excluded since
hepatic glucose output was not changed by the hypoxia treatment. A role of autonomic nervous
system (ANS) was excluded as ANS blocker did not improve the insulin resistance. This study
can not exclude the role of adipose tissue response in the muscle insulin resistance as the
adipose tissue function and blood FFA were not examined.

Application of ATH
In addition to the role in pathogenesis of insulin resistance, ATH may provide an alternative
mechanism for insulin sensitization by several factors, such as physical exercise, fasting,
weight loss and Ang II inhibitors. ATBF is increased in response to stress such as exercise
(198–200), mental stress (201), fasting (202) and nutrient intake (149,203–205). ATBF is
increased by the Ang II inhibitor (161), epinephrine (206–208), insulin and NO (nitric oxide)
(209). Insulin sensitivity is improved by physical exercise, fasting, and the Ang II inhibitors,
and ATBF is increased in all of these conditions. An improvement in oxygen supply may
contribute to the mechanism of insulin sensitization under these conditions. This possibility
needs to be tested in experiment.

Summary
Recent studies have provided compelling evidence for the biological roles of hypoxia response
in the control of development, growth and remodeling of adipose tissue. These studies are
leading us to test a new hypothesis for the pathogenesis of obesity, type 2 diabetes, and
metabolic syndrome. The advance is due to the development of methods for hypoxia detection
in adipose tissue, and progress in basic research of oxygen sensing system. The ATH concept
may explain many disorders in the adipose tissue in obesity. The biological basis of ATH may
be related to reduction in adipose tissue blood flow, which is resulted from over growth of
adipose tissue. A failure in compensatory angiogenesis or vasodilation may be the cellular basis
of the blood flow reduction. Although these possibilities are supported by increasing number
of related studies, they remain to be approved by experiments in vivo. It is expected that
transgenic studies in animals, and translational studies in humans will provide more direct
evidence in support of the ATH concept.
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Fig. 1. Mechanisms of inflammation-mediated alteration of insulin signaling
Hypoxia and FFAs in obesity lead to activation of NF-kB pathway, which induces expression
of inflammatory cytokines (TNF-a, IL-1, IL-6, et al) in adipose tissue. Through receptor-
mediated signal transduction, these cytokines activates serine kinases including IKK, JNK,
PKC and p70S6K to inhibit IRS-1 function. NF-kB inhibits PPARγ function through nuclear
corepressor and results in suppression of the gene transcription of CAP and IRS-2, which are
signaling molecules in PI(3)K-independent and -dependent signaling pathways for insulin-
induced GLUT4 translocation. Hypoxia also induces FFA level through lipolysis.
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Fig. 2. Up- and down-stream of ATH
Rapid growth of adipose tissue leads to quick expansion of adipose tissue. When angiogenesis
or vessel dilation can not meet the demand for blood supply, reduction in adipose tissue blood
flow (ATBF) will happen leading to adipose tissue hypoxia (ATH). ATH will induce
angiogenesis and trigger inflammation. Inflammation will promote angiogenesis and
vasodilation. When inflammation is out of control, it will promote insulin resistance locally
and systemically. ATH is a signal for remodeling of extra-cellular matrix in the adipose tissue.
Please refer to Fig. 1 for mechanism of inflammation in insulin resistance.
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Fig. 3. Cytokines/hormones in angiogenesis
Cytokines or hormones from adipocytes and macrophages are able to regulate angiogenesis.
These include leptin, adiponectin, VEGF (vascular endothelial growth factor), TNF-α (tumor
necrosis factor-alpha), MIF (macrophage migration inhibitory factor), IL-6 (interleukin-6),
IL-8, PDGF (platelet-derived growth factor), TGF-β (transforming growth factor beta), and
angiopoietin.
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