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Abstract
Linear mixed effects (LME) models are useful for longitudinal data/repeated measurements. We
propose a new class of covariate-adjusted LME models for longitudinal data that
nonparametrically adjusts for a normalizing covariate. The proposed approach involves fitting a
parametric LME model to the data after adjusting for the nonparametric effects of a baseline
confounding covariate. In particular, the effect of the observable covariate on the response and
predictors of the LME model is modeled nonparametrically via smooth unknown functions. In
addition to covariate-adjusted estimation of fixed/population parameters and random effects, an
estimation procedure for the variance components is also developed. Numerical properties of the
proposed estimators are investigated with simulation studies. The consistency and convergence
rates of the proposed estimators are also established. An application to a longitudinal data set on
calcium absorption, accounting for baseline distortion from body mass index, illustrates the
proposed methodology.
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1 Introduction
Longitudinal data are common in biomedical and health sciences research, where repeated
measurements are obtained over time for each individual. Linear (and nonlinear) mixed
effects models are useful for analyzing longitudinal data, providing a simple and effective
way to incorporate within-subject and between-subject variation and the correlation
structure of longitudinal data. Comprehensive overviews of mixed effects models for
analyzing longitudinal data include [1,2,3], among others.

When the response and predictors are observed under possibly nonparametric effects of a
confounding covariate, a direct application of linear mixed effects (LME) models may lead
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to biased estimates of the regression relationship of interest. As an example, we consider the
relationship between calcium intake and calcium absorption. Insufficient calcium intake has
an important influence on bone heath and the risk of osteoporosis [4], especially in women,
who comprise ~80% of cases. More recently, low intake has also been associated with the
risk of colorectal cancer [5], hypertension [6] and obesity [7]. The resulting health benefits
of calcium depend on the body’s ability to absorb the ingested calcium, which is partly
affected by body composition, e.g., underweight, overweight, obese. Thus, it is of interest to
examine the effect of calcium intake levels on absorption, where the response measurements
and the effect of the predictor are both potentially modulated by a common observable
confounding factor, body mass index (BMI). BMI is a standard measurement that
characterizes body composition taking into account both height and weight (BMI = kg/m2;
e.g. overweight: 25.0 to 29.9, obese: 30+). The dual confounding effects of BMI on both the
response and the predictor coupled with the uncertainty of the exact form of these effects
motivate our proposed approach, which involves a LME model combined with
nonparametric modeling of the confounder effects.

More specifically, for the true underlying relationship between repeatedly measured calcium
intake (X) and absorption (Y), we assume/postulate an (unobserved) latent linear mixed
effects model with random intercept and/or slope parameters to accommodate subject-
specific variation. The response and predictor modulating factor, namely U = BMI, is
referred to as the “distorting” or confounding covariate. The distorting effects of BMI on
both the response and predictor are modeled flexibly through the unknown, unspecified
smooth distorting functions ψ(U) and φ(U) as

(1)

where Ỹ and X̃ denote the observed response and predictor variables, respectively. The
above multiplicative distortion modeling framework was previously proposed for covariate-
adjusted regression (CAR) in the context of linear regression models for cross-sectional data
[8]. Note that the formulation in (1) allows for the flexibility of nonparametric modeling of
the distortion due to U = BMI on absorption and effects of intake, using the general
unknown smooth functions ψ(·) and φ(·), because one does not have a priori knowledge of
these functional dependencies.

The motivation for the multiplicative distortion form (1) was based on studies that involve
adjustment for body configuration measures, such as U = BMI, through division of the main
variables of interest by U, i.e. ψ(U) = φ(U) = U so that Y = Ỹ/U and X = X̃/U. For many
applications, the multiplicative distortion model (1) can be justified, but alternative
distortion models, including additive (Ỹ = ψ(U) + Y, X̃ = φ(U)+X) and no distortion (Ỹ = Y, X̃
= X), can be considered. See [8] for a more extended discussion. Although formulated in
terms of general multiplicative distortion (1), the CAR estimation method from [8] is
actually adaptive to all three distortion cases (multiplicative, additive and no distortion) in
that it yields consistent regression coefficient estimates in all these distortion settings. This
flexibility to accommodate a variety of distortion models also generalizes to the method
proposed in this paper. This is further discussed in Section 3.2.

The latent LME model for the underlying response and predictor coupled with their
nonparametric distortion models described above is referred to as the covariate-adjusted
linear mixed effects (CA-LME) model. The main objective of this paper is estimation of the
underlying latent relationship between the response and predictor based on the observed
(distorted) longitudinal data {Ỹ, X̃, U}. This involves estimation of fixed parameters, random
effects and variance components of the model. The previous work of [8] involves estimation
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of fixed parameters in regression models for cross-sectional data. In the current work we
account for correlation between repeated measurements in the estimation of fixed
parameters and propose estimation methods for variance components and subject-specific
effects, adjusted for the distorting effects.

We note that the above framework has similarities with measurement error modeling [9] if
one views ψ(U) and φ(U) as unobserved errors affecting the response and predictor. The
proposed modeling can then be viewed as a multiplicative measurement error model where
the error is in both the response and predictor. There is a large literature on additive
measurement error modeling, although work on multiplicative measurement error models is
limited to multiplicative errors only in the predictors [10,11]. Also, a key difference with the
errors in variables setting is that a part of the error, namely U, is observed in the CA-LME
model. This additional information from U is utilized in our proposed estimation method.

The paper is organized as follows. We describe the main ideas of the CA-LME models with
a single predictor in Section 2. Estimation of the fixed effects, subject-specific effects and
variance components and the adjustments to eliminate the distortion effects are described in
Section 3. In Section 4, we discuss generalizations of the CA-LME model that allow for (1)
multiple predictors under general fixed and random effects structures, as in standard LME
modeling of directly observed longitudinal data, and (2) combination of predictors with and/
or without distortion in the model. The asymptotic results for the proposed CA-LME
estimators are also given in Section 4. An illustration of the proposed CA-LME
methodology to longitudinal data on the effects of calcium intake on absorption, as
introduced above, is summarized in Section 5. Numerical properties are investigated in
Section 6 and technical details are deferred to an appendix.

2 Covariate-Adjusted Linear Mixed Effects Models
To present the main ideas of covariate-adjusted linear mixed models, we first consider the
case of a single, possibly time-varying, predictor. Suppose that we have repeated
measurements from a longitudinal study. Denote the unobserved true response variable of
the ith subject by Yij (i = 1, …, n) at the jth time point (j = 1, …, ni) and the unobserved true
predictor variable by Xij. A simple LME model for the outcome Yij is

(2)

where eij denotes the mean zero random measurement error term for subject i at occasion j.
For convenience we may write model (2) using matrix notation as Yi = i(γ + γi)+ ei, where
the vector of fixed effects or population parameters is γ = (γ0, γ1)T, the vector of subject-
specific random effects is γi = (γ0i, γ1i)T, the vector of response values for subject i is Yi =
(Yi1, …, Yini)

T, and the corresponding matrix of predictor values is i with the jth row given

by . The error term, ei = (ei1, …, eini)
T, is assumed to be ei ~ (0, Ri) and the

random effects γi ~ (0, D), where Ri and D = (Dkl) (k, l = 1, 2) denote the covariance
matrices of ei and γi, respectively. For simplicity, we may assume that Ri = σ2Ini and define
the collection of parameters of interest as θi = (γ, γi, σ2, D).

The standard LME model (2) provides a reasonable approximation in many longitudinal
data settings, given that the underlying observations {Yij, Xij} are observable. In this case,
standard estimation of the model parameters, namely the fixed effects (γ), random effects
(γi), and variance components (σ2 and D), can be based on maximum likelihood (ML) or
restricted maximum likelihood (REML) methods (see e.g. [1]). However, these standard
estimation approaches are no longer applicable for distortion-prone response and predictors.
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We consider estimation in model (2) under the following longitudinal data distortion
framework, where only distorted versions of Yij and Xij are available. More precisely, the
estimation must be based on the available distorted response and predictor data,

(3)

The unknown distorting functions {ψ(Ui), φ(Ui)} are assumed to be smooth functions of the
observable confounder U. The distorted data available for estimation is the collection

 for n subjects, where the ni-vector Ỹi and matrix of predictors ˜i are defined
analogously to Yi and i above. Also, we let T denote the number of distinct observation
times, t1, …, tT.

There are some important consequences of distortion-prone data on the standard ML or
REML estimation methods for the LME model (2). As will be illustrated subsequently, the
estimates for γ can be severely biased and variance components estimates will also be off-
target. Additionally, efficiency considerations, such as incorporating an estimate of the
covariance structure between repeated measurements into the standard estimation procedure,
do not reduce the apparent bias resulting from the distortion. Because of the data
contamination, common methods for estimating the covariance structure in longitudinal
data, including parametric and nonparametric approaches (e.g., [12]), can-not capture the
true covariance structure of the response, , due to biases in variance
components estimation. We will propose an estimation method to resolve these problems
due to the data distortion in Section 3.

Some constraints on the unknown distortion functions are needed for the identifiability of
the estimation problem. Similar to the identifiability condition used for covariate-adjusted
regression for cross-sectional data, we use the condition that the distortion is mean
preserving, i.e., the means of the observed variables E(Ỹij) and E(X̃rij) are the same as that of
the underlying variables, E(Yij) and E(Xrij), respectively. This identifiability condition (IC) is
equivalent to the following constraint on the distorting functions [8]:

(4)

Note that since the mean preserving distortion is an identifiability condition, it is not
testable. This is analogous to the zero mean errors for additive distortion in the measurement
error literature. That is, the IC for multiplicative distortion on X is E(X̃) = E(Xφ(U)) = E(X)
since E(φ(U)) = 1 and for additive distortion, it is E(X̃*) = E(X + φ*(U)) = E(X) since
E(φ*(U)) = 0.

3 Estimation Procedure
3.1 Observable Mixed Effects Varying Coefficient Model

To motivate the proposed estimation method, we first note that the conditional mean of the
observable response variable Ỹij, given the subject-specific effects γi and data  ≡ { ˜i, Ui;
i = 1, …, n} is,

(5)

where the fixed and subject-specific coefficient functions in (5) are
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(6)

(7)

respectively. Thus, the above relationship (5) suggests that the regression of the available
distorted data {Ỹij, X̃ij, Ui} leads to the following observable varying coefficient model with
both fixed and random coefficient functions,

(8)

where εij ≡ eijψ(Ui). Model (8), written more succinctly in matrix notation, is

(9)

with the vectors of functions β(Ui) = {β0(Ui), β1(Ui)}T and bi(Ui) = {b0i(Ui), b1i(Ui)}T,
where εi = (εi1, …, εini)

T. Also note that given Ui = u, bi(u) = {b0i(u), b1i(u)}T ~ (0, D ̃(u))
and εi ~ (0, R ̃i(u)), where R ̃i(u) ≡ Var(εi) and D ̃ (u) ≡ Var{bi(u)}.

We note that the above observable mixed varying coefficient model shares some common
features with the class of “random varying coefficient” models [13], where the index of the
fixed and subject-specific coefficient functions is the observation time, tij, instead of Ui. The
observation that model (8) is a varying coefficient model is useful for developing the
estimation technique proposed to target γ and γi. More specifically, we will first use a
computationally efficient method based on binning to target the varying coefficient
functions in (8). Our proposed estimators for γ and γi will then be derived using the relations
between the varying coefficient functions and the underlying parameters given in (6) and
(7).

Note that even though the connection between the CA-LME model in (2) and the varying
coefficient model (VCM) in (8) facilitates estimation in the CA-LME model, the proposed
CA-LME model is distinct from the VCM in that it is free from or adjusted for the effects of
U. The VCM can be viewed as a stratified analysis (with respect to U) and such a model
aims to address the question, “What is the relationship between Ỹ and X̃ at varying levels of
U?” This is an important question in itself, however this is not the object of inference of
interest with respect to the proposed CA-LME model. The object of inference in the CA-
LME model is the relationship between X and Y (not directly observed). This relationship
corresponds to the relation between Ỹ and X̃ with the effects of U removed, i.e. free of U,
which is quite different than the target relationship of interest in the VCM. We discuss in
further detail the distinction between CA-LME and VCM as well as their limitations,
advantages and disadvantages in the Discussion Section.

Thus, the main contribution of this paper (given in Sections 3.2, 3.3. and 3.4) is the proposal
of and the estimation and inference procedures for a latent variable model that explains the
regression relation between the variables of primary interest adjusted for U in the context of
repeated (correlated) measurements. Previous work in covariate adjusted modelling
considers a linear regression model for cross-sectional/uncorrelated data, whereas the CA-
LME model is designed for correlated data. The proposed estimation procedure is also new
where the specific contributions include developing consistent point estimates for fixed

Nguyen et al. Page 5

J Nonparametr Stat. Author manuscript; available in PMC 2009 March 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



effects, estimation of random effects and (within and between subject) variance components
from distorted data.

3.2 CA-LME Parameter Estimation
Estimation of the underlying parameters of interest, namely θi = (γ, γi, σ2, D), requires (a)
estimation of the fixed and random varying coefficient functions in the mixed effects
varying coefficient model (8), (b) estimation and incorporation of the covariance structure
among repeated measurements (distinguishing within- and between-subject variation) and
(c) adjustment for the distortion effects. The estimation method has three main steps: (1)
binning (or “stratification”) of the data with respect to the confounding variable U, (2) fitting
a LME model within each bin to obtain bin-specific estimates and (3) aggregating or
averaging bin-specific estimates to obtain the covariate-adjusted LME estimators of θi. The
basic approach to eliminating the distorting effects of U is to localize the model fitting by
using data in each bin only. Details of each step are provided next.

The observable data available for estimation is the collection . Assuming that
the confounding covariate U is bounded, a ≤ U ≤ b where a < b are real numbers, the initial
step of the estimation procedure divides the interval [a, b] into H equidistant intervals,
denoted B1, …, BH and referred to as bins. Let Lv be the number of subjects falling into bin
v, for v = 1, …, H. To track the data corresponding to subjects falling into a given bin,
observations in any given bin are marked by a prime. More specifically, the data for which

Ui ∈ Bv, for i = 1, …, n, is given by the collection { , k = 1, …, Lv,}. Let 
denote the number of repeated measurements for subject k in bin v, then the data

corresponding to the kth subject falling in bin v is , where

 is the  × 2 matrix of predictor values, and  is the
confounder. For example, if subjects 2 and 3 fall into the bin v = 7, then k = 1, 2, L7 = 2 and

 with , and . Similarly,  and

.

After binning the data, we approximate the mixed effects varying coefficient model (9),
specifically Ỹi = ˜i {β(Ui) + bi(Ui)} + εi, for i = 1, …, n, local to bin v (v = 1, …, H). This
is achieved by fitting a LME model using the data within each bin. More precisely, for each
bin v = 1, …, H, we fit the following LME model,

(10)

where βv = (β0v, β1v)T, bvk = (b0vk, b1vk)T and  denote bin-specific
vectors of fixed effects, subject-specific effects and errors for subject k in bin v. Also, denote
the bin-specific covariance matrices by D ̃v ≡ Var(bvk) and .

Model (10) can be interpreted as an approximation to model (9) “local” to bin v. Note that
because model (10) is based on data local/specific to bin v, the resulting fixed effects and

variance components estimates in model (10), denoted β ̂v,  and  target β(·), D ̃(·)and
R ̃k(·) evaluated in the specific neighborhood associated with bin Bv. It follows from standard
LME model theory that the estimator of βv and bvk are
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(11)

(12)

where  and . When D ̃v and R ̃vk are
unknown, they can be estimated using the REML (or ML) method [3]. The REML

estimators of D ̃v and R ̃vk, denoted  and , are substituted into (11) and (12).

The covariate-adjusted linear mixed effects estimators of the fixed effects, γ0 and γ1, involve

averaging of the bin-specific estimated fixed varying coefficient functions, namely , to
eliminate the distortion across U. The CA-LME estimators are given by

(13)

where  is the overall mean of the predictor variable (with X0ij ≡
1, X1ij = Xij). Here mj denotes the number of subjects observed at time tj. Also, Ij denotes the
set of indices of subjects that are observed at time tj. Similarly, Ivj is the set of indices of
subjects in bin Bv observed at time tj. Note that the distortion effects of U cancel in the CA-
LME estimators given in (13) and γ ̂r targets the fixed effect parameter γr, since E{βr(U)X̃rj}
= γrE{ψ(U)Xrj} = γrE(Xrj) = γrE(X̃rj), for all j = 1, …, T and r = 0, 1. The CA-LME
estimators, γ ̂r, can be interpreted as method of moments estimators, because  targets E(X̃r)

and  targets E{βr(U)X̃r}.

We note here that the proposed estimators in (13) are consistent under multiplicative
distortion (Theorem 1). Note also that an alternative way to handle multiplicative distortion
in practice would be to transform it into additive distortion by taking logarithms where the
underlying latent model would then be holding between the logarithm of the underlying
variables. However, if the distortion is in fact additive taking logarithms would not deal with
the problem. Even though the proposed estimators are formulated for multiplicative
distortion, they are also consistent under additive distortion (Ỹ = ψ(U) + Y and X̃r = φr(U) +
Xr) as well as the trivial case of no distortion as is shown next. The fact that the proposed
estimators are consistent under different types of distortion and no distortion is an advantage
of the proposed method over taking logarithms, since it is difficult (and more typically not
possible) to justify one type of distortion over another a priori.

The consistency of the estimators given in (13) for the additive distortion and no distortion
cases follows from the fact that both of these cases also lead to a mixed varying coefficient
model between the observed variables, as described for the multiplicative distortion in
Section 3.1 above. More precisely, in the mixed varying coefficient models derived from
these two cases, β1(U) = γ1 (in both models), β0(U) = γ0 for the no distortion case and β0(U)
= γ0 − γ1φ(U) + ψ(U) for the additive distortion case. Hence, it is follows that E{βr(U)X̃rj} =
γrE(X̃rj) holds for all cases, because E{φ(U)} = E{ψ(U)} = 0 under additive effects
guaranteeing no distortion on average, i.e. E(X̃) = E(X) and E(Ỹ) = E(Y). Using this
information Sentürk and Müller (2005) proposed a diagnostic tool to check whether the
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underlying distortion is additive by checking whether the slope function of the fitted varying
coefficient model is equal to a constant. Similarly, for the case of no-distortion, one can
check whether the slope and the y-intercept functions are both constant functions. This
diagnostic tool provides information on the type of distortion based on the data and is
implemented in Section 5 via the proposed bootstrap hypothesis test of Sentürk and Müller.
This is helpful in identifying cases where a simpler estimation approach can be adopted
when the model reduces to additive or no distortion.

Next, we consider the estimators (predictors) of the subject-specific effects for the CA-LME
model, namely γri for the ith individual. Recall from (7) that we have

where the last equality above follows directly from equation (6). Assume without loss of
generality that the ith subject is the kth individual in bin v. Then the estimator of the random
effect coefficient function, bri(·), is targeted by the subject-specific estimator b̂rvk from bin v,
given by (12). Targeting βr(Ui) and γr by β ̂rv and γ ̂r, we arrive at the following plug-in
estimator of γri for individual k in bin v

(14)

3.3 Covariate-Adjusted Estimators of Variance Components
Similar to the estimation of the fixed and random effects, adjustments are also needed for
the estimation of the variance components. The effects of the data distortion on the variance
components estimation can be seen from the mixed effects varying coefficient model (8).
Thus, given Ui = u, the within-subject covariance matrix is R ̃i(u) ≡ Var(εi) = ψ2(u)σ2Ini and
the between-subject covariance matrix is

The above calculation shows the direct relationship between the variance components of the
true unobserved LME model (i.e. σ2 and D) and the corresponding ones in the mixed effects
varying coefficient model (8), at Ui = u. Thus, the bin-specific (REML) estimators of the

variance components, namely  and , target D ̃(·) and R ̃i(·) evaluated in the specific
neighborhood of U, respectively.

Consider the average of the unadjusted bin-specific between-subject variance components

estimators, i.e.  for l, l′ = 1, 2, which target
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where λ11 = E{ψ2(U)}, λ12 = E{ψ2(U)/φ(U)} and λ22 = E{ψ2(U)/φ2(U)}. To obtain the
underlying between-subject variance components, Dll′, we estimate the coefficients λll′ and
make the required adjustments. The estimated adjustment coefficients are

where  and . Hence, the covariate-

adjusted between-subject variance and covariance estimators are obtained as ,
for l, l′ = 1, 2. Similarly, for the within-subject variance, averaging the bin-specific within-

subject variances, namely , will target λ11σ2, where  is the bin-specific
within-subject variance estimate obtained from bin v. Therefore, the adjusted within-subject

variance estimator that targets σ2 is .

Finally, we note that it is not difficult to see that the estimators of the required adjustment
factors, namely {λ ̂11, λ ̂22, λ ̂12} given above, are sample averages/moments corresponding to
the expectations {λ11, λ22, λ12}, which follows from (6). That is, we have from (6) that

 and . We note that showing
the consistency of λ ̂ll′ for λll′ involves similar arguments as in the proof of Theorem 2 in [14]
and, therefore, is omitted in this work.

4 Model Generalization and Consistency
For simplicity of exposition, we have considered a LME model with a random intercept and
slope and one predictor variable as the underlying model (2). Generalization to a model
containing (a) multiple predictors, (b) a mixture of distorted and undistorted predictors, and/
or (c) more complex random effects and covariance structures would broaden the
applicability of the proposed method. We now consider a more general CA-LME model that
incorporates extensions (a), (b) and (c). Denote p distorted predictors by X̃rij, for r = 1, …, p,
where X̃rij = φr(Ui)Xrij. Note that the distortion on each predictor is modeled flexibly by
allowing a different distorting function, φr(·), corresponding to the rth predictor.
Furthermore, to accommodate undistorted predictors in the regression model, such as age or
time, let Wrij, r = 1, …, q, be a set of q undistorted predictors. For instance, descriptive and

graphical analysis may suggest a model with baseline age and a quadratic trend in time, .

In such a case, one may choose to include the terms  and W2ij = agei in the model as
undistorted predictors.

Without loss of generality, we may assume that random effects are associated with the first
p1 distorted predictors (p1 ≤ p) and the first q1 (q1 ≤ q) undistorted predictors. Then the
underlying linear mixed effects model for individual i at time tj is

or equivalently
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(15)

where i is a ni ×(p+q+1) predictor matrix for the fixed effects with the jth row given by (1,
X1ij, …, Xpij, W1ij, …, Wqij), i is and ni×(p1+q1+1) predictor matrix corresponding to the
random effects with the jth row given by (1, X1ij, …, Xp1ij, W1ij, …, Wq1ij), γ = (γ0, γ1, …, γp,
δ1, …, δq)T and γi = (γ0i, γ1i, …, γp1i, δ1i, …, δq1i)T. The corresponding observable mixed
effects varying coefficient model, generalizing (8), is

(16)

where X̃0ij ≡ 1 and the fixed and random varying coefficient functions are

with φ0(Ui) ≡ 1. The LME model local to bin v, approximating model (16) is

(17)

where βv = (β0v, β1v, …, βpv, η1v, …, ηqv)T and bvk = (b0vk, b1vk, …, bp1vk, g1vk, …, gq1vk)T

are coefficient vectors,  is the vector of bin-specific errors, and 

and  are the fixed and random predictor matrix for individual k in bin v analogous to the
predictor matrices i and i defined above. The coefficients β’s and η’s correspond to the
distorted and undistorted fixed effects and the b’s and g’s correspond to distorted and
undistorted random effects.

The solution to (17) is similar to the single-predictor case given by (11)–(12) in Section 3.2.

More specifically, the estimator of βv is as given by (11), except that the matrix  is
replaced by the one defined above for the more general fixed and random effects structure
(after equation 15). The estimator for the subject-specific effects given by (12) is modified

accordingly as , where  and . As

before, we replace the unknown D ̃v and with their R ̃vk REML estimators,  and , based
on data within bin v. Note that the implementation requires no new ideas from the simple
case because the fitting can be achieved by common software packages (e.g. R, SPLUS,
SAS) as in the simple case. One only needs to specify the additional columns of data

corresponding to the predictors in  and .

The CA-LME estimators of the fixed and subject-specific effects are computed similar to
(13) and (14), respectively, as
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The covariate-adjusted estimation of the variance components proceeds similarly as
described in Section 3.3 and details for the more general case are in Appendix A.

We state the consistency result of the proposed CA-LME model estimators, γ ̂0, …, γ ̂p, δ̂1, …,
δ̂q, when the total number of subjects n and the number of subjects observed at time j, mj (j =
1, …, T) tend to infinity for a fixed number of total time points T. The proof is deferred to
Appendix B. Consistency is established for data missing completely at random (unbalanced
data). For m0 = infj mj, assume that m0 → ∞. As is typical for smoothing, the total number
of bins H satisfies H → ∞ and m0/{H log(m0)}→ ∞ as m0 → ∞. The CA-LME model
estimators are averages of the bin-specific varying coefficient function estimators:

, v = 1, …, H. These estimators for

the varying coefficient functions and therefore  must exist for each bin in order for
the proposed estimators to be well-defined Therefore, it is required that Mv and Ṽvk be
nonsingular.

Theorem 1
Under the technical conditions given in Appendix B,

5 CA-LME Model of Calcium Absorption and Intake
The relationship between the effects of calcium intake and absorption is important for a
variety of human health issues and disease prevention. For example, adequate calcium
intake is important in preventing osteoporosis, a condition characterized by porous and
fragile bones associated with increased risks of bone fractures especially in women. More
recent studies, although preliminary, have linked increased calcium intake to lowered blood
pressure, decreased risk of colon adenomas, and reduced weight gain over time. Although
the outcome of complex diseases are typically multifactorial in nature, one relationship of
interest is between calcium intake and absorption, which we explore in this section.

In particular, we are interested in examining the relationship between the effect of calcium
intake levels on calcium absorption, where the response measurements and the effect of the
predictor are both potentially modulated by body mass index (BMI). Because different body
compositions (e.g. underweight, overweight, obese) may partly influence individuals’ ability
to absorb the ingested calcium, BMI is a suitable marker for body composition that accounts
for both height and weight (BMI = kg/m2). Also, because absorption continually declines
with age our underlying LME model for calcium absorption for individual i at measurement
occasion j is
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where the parameters of interest include γ = (γ0, γ1)T, γi = (γ0i, γ1i)T, δ1, σ2 = Var(eij) and D
= Cov(γi) as previously described in Section 2. Estimation is based on the observed data,

denoted { , ageij} and body mass index for each subject (bmii). Note that age
is incorporated as an undistorted fixed effect. The data is from a longitudinal study on n =
188 female subjects [15], between age 35 and 45 at the beginning of the study and repeated
measurements were taken every 5-year intervals for a total of four occasions (1 ≤ ni ≤ 4, j =
1, …, ni). The number of subjects with 1, 2, 3 and 4 repeated measurements were 31, 41, 50
and 66, respectively.

Figure 1 displays the varying coefficient estimates utilized in arriving at the parameter
estimates of the CA-LME model. The observed calcium intake and age both have a negative
relationship with the observed calcium absorption, while the effect of the observed intake
seem to decline with increased body mass index. The y-intercept and slope varying
coefficient functions for observed calcium intake are both found to be different than a
constant function using the bootstrap test of ªentürk and Müller (2005) (p-values: 0.0239,
0.0153, respectively). This implies that the distortion does not reduce to the additive or the
no distortion case from the goodness of fit discussion outlined in Section 3.2.

Table 1(A) summarizes the parameter estimates for the CA-LME model, γ ̂0, γ ̂1 and δ̂1. As a
baseline comparison, Table 1(A) also displays the estimates of the underlying regression
parameters using a standard LME (restricted maximum likelihood; REML estimation) with
the same fixed and random effects structure as the the CA-LME model. The only difference
is that the effects of BMI are ignored and estimates are obtained from an unadjusted LME
model. We first note that given calcium intake, there is a significant natural decline in
absorption with age that is consistent between the CA-LME analysis (δ̂1 = −0.0035) and the
unadjusted-LME analysis (age slope estimate also −0.0035), where the ratios of estimates to
standard errors (S.E.) are approximately −4.807 and −5.151, respectively. The significant,
but small, absolute magnitude in the estimated coefficient for age reflects the age range of
the study subjects (between 35 and 64 across all measurement occasions), unlike in young
adulthood where there is typically a rapid decline in absorption after reaching peak bone
mass and density for skeletal development (e.g., see [16]). Our main parameter of interest is
γ1 for calcium intake and the unadjusted-LME model yields a significant estimate of
−0.1489 (S.E., 0.0114). Similarly, the CA-LME model which accounts for the possible
distortion effects of body mass index, yields the estimate of γ ̂1 = −0.1705. Although both
estimates of the effect of calcium intake on calcium absorption is clearly significant and in
the same direction, the estimate from the CA-LME model is approximately 1.89 standard
errors lower, relative to the unadjusted estimate. Thus, the CA-LME model analysis suggests
a stronger inverse (negative) relationship between calcium intake and absorption after
adjusting for body configuration, BMI. We note that this inverse relationship between
calcium intake and absorption is consistent with previous studies (e.g., see [17]). Since bin
specific estimators given in (11) are heteroskedastic, we use the wild bootstrap method with
400 boostrap replications to obtain the standard errors for the CA-LME estimates (Table 1).
Details of the boostrap implementation are provided in Appendix C.) For this data we note
that the precision did not improve with increased replication beyond ~100.

The within- and between-subject variance parameter estimates are given in Table 1(B). The
estimate of within-subject variance is smaller than the variation in the calcium intake slope
parameter among individuals (as well as the intercept) for the CA-LME model. Both CA-
LME and the unadjusted-LME models suggest a strong correlation between subject-specific
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intake slopes and intercepts  and −0.92, respectively). The within-
subject variance estimates are similar for both models (σ ̂2 ≈ 0.004), although variation in the
calcium intake slope is appreciably lower when not adjusting for BMI. Also, the number of
bins used in the analysis of the calcium data was 15 for a sample size of n = 188. The
coefficients estimates are similar for different number of bins used and this is further
explored in the simulation study given in the next section.

6 Numerical Properties
To evaluate the performance of the proposed method, we consider a model with a mixture of
fixed and random effects and distorted and undistorted predictors. The underlying LME
model, analogous to the model used for calcium absorption is

(18)

where (γ0, γ1, δ1) = (1.5, 2.0, 0.75) and the subject-specific effects are obtained as bivariate
normal random variates: γi ~ Normal(0, D) with D11 = Var(γ0i) = 0.5625, D22 = Var(γ1i) =
1.0, and D12 = Cov(γ0i, γ1i) = 0.375; thus, Corr(γ0i, γ1i) = 0.5. The undistorted predictor, Wij,
is taken to be the time points tij. The within-subject covariance matrix is Ri = 0.52Ini. The
predictor values are obtained as Xij ~ Normal[1.5(tij +1)2, 1], where the sequence of time
points are tij = j/(T + 1), for j = 1, …, T = 6.

To mimic unbalanced data, a common feature in longitudinal data, we randomly removed a
proportion, π, of observations from the complete data. We implemented the simulation study
for different configurations of sample size and missing rate, (n, π), with n ranging from 100
to 800 and π from 0.1 to 0.4. Each simulation configuration was replicated 1000 times. The
distorted data are Ỹij = ψ(Ui)Yij and X̃ij = φ(Ui)Xij with ψ(u) = u(u/4 + 3)/v1 and φ(u) = (3u −
1)2/v2. The constants v1 and v2 are normalizing constants so that the distorting functions
satisfy the identifiability condition (4). The confounding variable Ui was obtained as Ui ~
Uniform[2,6].

The main CA-LME estimation results are summarized in Table 2 for the fixed effects (γ)
and Table 3 for the variance components. Given are estimates based on the CALME
analysis, the unadjusted analysis which is the standard LME model fitted to the observed
data, and the benchmark (optimal) analysis which is the latent LME model (18) fitted to the
underlying (unobserved) data (Yij, Xij, Wij). The last approach is clearly the optimal one, but
these estimates would not be available in practice since (Yij, Xij) are not directly observable.
However, for simulation studies they can be used as the benchmark to compare the proposed
CA-LME model analysis and the unadjusted analysis. Generally, as expected, unadjusted
LME estimates are biased, whereas the CA-LME estimates target the true parameters. More
specifically, the fixed effects estimates in Table 2 suggest that the CA-LME estimates are
close to the benchmark LME estimates (LME-benchmark, Table 2) and the bias decreases as
sample size increases. Furthermore, the standard unadjusted LME estimates can be severely
biased for all sample size configurations.

Similarly, the unadjusted LME estimates of the true variance components (σ2 and D) are
generally off-target and the absolute biases are many folds larger relative to the CA-LME
and benchmark estimates (Table 3). Also, similar to the fixed effects parameter estimates,
the variance components estimates for CA-LME track closely the benchmark estimates. In
evaluating the performance of the proposed estimators, we also examined the variance and
mean square error (MSE) in estimating the fixed effects and variance components. From the
fixed effects results displayed in Figure 2, we make the following observations regarding
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this specific simulation study. (1) The variability in the proposed CA-LME estimators is
much lower in the estimation of γ1 (X-slope) and is similar for γ0 (intercept) and η1 (W-
slope) compared to the unadjusted LME analysis. (2) Lower variance combined with the
small bias (Table 2) result in substantially reduced MSE for the CA-LME estimators, where
the estimated MSE tracks the optimal MSE closely as n increases. These results also hold
for the covariate-adjusted variance components (results not shown).

The general pattern of results described above for 20% missing data is similar to the cases
with 10%, 30% and 40% missing data. The implementation of the binning algorithm require
specification of the number of bins H. There are some practical restrictions on the choice of
the number of bins, H. From the practical point of view, H should be chosen such that there
are enough points to fit the corresponding mixed effects models in each bin. From a
theoretical point of view, H → ∞and m0/(H log(m0)) → ∞. This means that the number of
bins and the number of points within each bin both increase with sample size. Thus, we
performed a sensitivity analysis to analyze the effects of the number of bins on the proposed
estimators. For the current longitudinal data setting, our study suggests that given the
minimal requirement that there are enough data to fit the LME model within each bin, the
CA-LME estimates are fairly robust to the bin choice H. This was also reported in the case
of linear regression models for cross-sectional data (ªentürk and Müller 2006). For the
simulation results reported, the average number of bins were 10, 19, 29 and 45
corresponding to sample size n = 100, 200, 400 and 800, respectively. For each of these
sample sizes, Monte Carlo simulation suggests that the correponding range of bins where the
estimates are robust are (8, 14), (10, 21), (20, 33) and (30, 54), respectively. For example,
Table 4 illustrates the robustness of the proposed estimators for n = 200 for the number of
bins ranging from 10 to 21. Given are the bias and MSE for each parameter of the model.

Next, to assess the subject-specific estimators {γ ̂0i, γ ̂1i}, we define the following average
residual sum of squares error (ARSSE) quantities of prediction error,

where  is the population fitted values and

 is the fitted values with the addition of subject-specific
random effects. We examine the proportionate reduction in error (PRE) due to the addition
of the random effects, namely PRE = (ARSSE1 − ARSSE2)/ARSSE1. For example, with n =
200 subjects, the minimum, mean, and maximum PRE among the 1000 simulation
replications are 0.56, 0.87, and 0.96 with a standard deviation of 0.04. Thus, the addition of
the CA-LME predicted subject-specific effects reduce, on average, about 87% reduction in
prediction error. Note that this is a substantial reduction, especially given that we have
demonstrated that the bias in the population estimates (γ ̂0, γ ̂1, δ̂1) is very small (Table 2). The
distribution of the PREs, for each sample size (20% missing), are summarized in Figure 3.
The results show appreciable reduction in error for all sample sizes and, as expected, this
improves with sample size.

Finally, we note that proposed method can be implemented in standard statistical software
with LME model routines, including SAS, R or Splus since they involve fitting LME models
after binning by U. The computational cost is modest as it involves mainly fitting the H
LME models.
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7 Discussion
As described in Section 3.1, the varying coefficient model can be applied to study the
relationship between the observed variables Ỹ and X̃ at varying levels of U, although this is
not the objective of inference for CAR (or the CA-LME) model. Thus, the main distinction
(difference) between the two approaches of analyzing the data with VCMs and with CAR is
that in the latter approach, U is viewed as a “nuisance” parameter. Hence in the CAR
analysis, the result is a model that is free from or adjusted for the effects of U (by removing
its effect). The object of inference in the CAR/CA-LME model is the relationship between X
and Y (not directely observed). Thus, if one were interested in inference for the relationship
between Ỹ and X̃ and how this relationship/effect is modified by U, the VCM is the
preferred/suitable modelling approach and CAR would not be suitable for this specific aim.
Also, we emphasize that in the VCM analysis, U is an important part of the modelling
where one of the main goals is to recover (understand) the effects of U via the varying
coefficient functions, i.e. the βr(·)’s.

Although VCMs and CAR models both serve useful, but different, purposes (as described
above) the applicability of CAR can seem limited, when viewed from a latent variable
modelling perspective. From a latent variable modeling perspective, it is true that not being
able to check the linearity of the underlying model is a limitation that it shares with other
latent variable models. However, the applicability and advantage of CAR is in (biomedical)
applications where the adjustments (for U) is due to general measurement errors induced by
U, therefore, U is nuissance (so that the relationship of interest is between X and Y). The
most common example of this in literature is the adjustment for U via division (which
originally motivated the CAR method). That is, the motivation for the treatment of U as a
nuisance variable and, hence, for our covariate adjusted approach comes from studies that
involve adjustment via division by body configuration measures (such as body mass index
or body surface area). An example is the 2002 study of Kaysen et al. [18] where albumin
turnover and protein catabolic rate were among the variables that were adjusted for body
surface area via division. After the adjustment, researchers proceed to analyze the linear
regression relation between the adjusted variables. Here the assumption is that the effects of
U on the variables are removed by the division. Thus, in such cases, CAR has an advantage
over the simple adjustment via division, in that the distortion effects of U are in fact
unknown (a priori) and CAR provides a way to model this uncertainty.

Also, we point out here that for the particular simulation set-up considered in Section 6, it
was observed that the variance of CA-LME estimators are lower than or approximately
equal to those of the unadjusted estimators. Even though we know that the unadjusted
estimators do not target the underlying regression parameters (bias does not decrease with
increasing n), since the variance formulas are not derived for CA-LME estimators, one
cannot claim that their variance will always be larger compared to the variance of the CA-
LME estimators generally. Also, unlike other typical studies where the bias and variance
trade-off of two estimators can be studied via a tuning parameter, like the bandwidth, the
current setting does not lend itself to such a simple analysis. With respect to this issue, there
are (at least) two key considerations that explains the complicated bias-variance relationship.
First, the effect of the distortion functions on the variance of both estimators are different,
which makes it difficult to predict which variance will be larger in a given set-up (i.e.
generally). Second, since the unadjusted estimators do not target the underlying regression
parameters, they are estimating a different quantity. Hence, the estimators can potentially
have very different variances. In our study, we have two estimators that have completely
different forms due to the distortion and they target two different quantities.
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Finally, while estimation of the varying coefficient functions (i.e. the β(·)’s) are a natural by-
product of the proposed estimation procedure, estimation of φ(·) and ψ(·) is not. Although
this can be viewed as an advantage of the covariate adjusted estimation approach, i.e. that
without having to know the form of distortions, or without targeting these distortion
functions, the underlying relationship can be targeted directly; these functions can provide
information graphically. Formulating an alternative estimation algorithm to also target the
distortion functions is a challenge for further research.
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Appendix A: Covariate-Adjusted Variance Components
Denote the vector of distorted and undistorted random effects for the underlying LME model

(15) by , where  and . We express the
covariance matrix of these random effects, D ≡ Var(γi), as

where . The observable varying
coefficient model is (16) where the random varying coefficients at Ui = u is denoted by

 with  and .
Direct calculation yields,

where

and . Therefore, the average of the variance components

estimates from each bin, namely , can be
adjusted to obtain the covariate-adjusted variance components estimators. From the above
expression for D ̃(u), the required adjustment coefficients involve
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Similar to Section 3.3, it can be shown that
 and λrs =

(γrγs)−1E{βr(U)βs(U)}. The estimators for the adjustment coefficients are:

They are sample moments corresponding to theoretical moments {λ0, λrr, λr, λrs}.

Appendix B: Proof

Technical conditions
The following assumptions are made.

• C1. The covariate U is bounded below and above: −∞< a ≤ U ≤ b < ∞, for real
numbers a < b. The density f(u) of U satisfies infa≤u≤b f(u) > 0, supa≤u≤b f(u) < ∞,
and is uniformly Lipschitz; that is there exists a real number M such that supa≤u≤b|
f(u + c) − f(u)|≤M|c| for any real number c.

• C2. The needed dependence/independence structure is that U is independent of ej,
Xrj is independent of ej and U; and Wsj is independent of ej for r = 1, …, p, s = 1,
…, q, j = 1, …, T.

• C3. For the predictors, sup |Xrij|≤B1 and sup |Wrij|≤B2 for some bounds B1, B2 ℝ+

and where sup is taken over 1 ≤ i ≤ n, 1 ≤ r ≤ p, 1 ≤ j ≤ ni. In addition

 for 1 ≤ r ≤ p.

• C4. The functions ψ(·) and φr(·), 1 ≤ r ≤ p, are twice continuously differentiable,
satisfying E{ψ(U)} = 1 E{φr(U)} = 1 and |φr(·)| > c, for some constant c > 0.

• C5. Define  to be the normalization of Ωi, where the  row and  column
element of  is given as , and mj1j2denotes the number of
subjects observed at both times tj1 and tj2. As infj1j2 mj1j2 → ∞,

 in probability where the limiting p + q + 1 × p + q + 1 matrix
 is nonsingular.

Proof of Theorem 1
We first introduce some boundedness considerations. Since Xrij and Wrij are assumed to be
bounded (C3) and U has compact support (C1), X̃rij are also bounded. The matrices Ṽvk and

 have been assumed to be invertible previously; more precisely,

assume , where 1a×b is an a ×b dimensional matrix of ones.
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We define  and  for 1 ≤ k ≤ Lv, 1

≤ r ≤ p, 1 ≤ v ≤ H, where , is the average of the U’s in Bv. The following
boundedness results for 1 ≤ r ≤ p, 1 ≤ k ≤ Lv can be obtained using Taylor expansions:

; supv,k |Δvk| = O(H−1); .

The coefficient function estimators β ̂v can be expressed as

Next we expand  and  in the above formulation around , the average of the
U’s in bin Bv. The remainder terms from this expansion, when averaged to form γ ̂r, will be

shown to be either  or op(H−1), while the leading term will be shown to be

, hence Theorem 1 follows. Details are given below.

Making use of the remainder terms Δvk and  defined above, we have
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where . Thus, the CA-LME estimators γ ̂r becomes
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where  and

. Let us analyze each term separately. Term
P1 becomes

Note that E(P2|U, ˜, Lv, ) = 0 and since  is bounded uniformly in v,

Thus,  and so is P3, …, Pp+q+3. With similar expansions and using the fact that

Δvk,  are O(H−1), .
Similar considerations of conditional mean and variance can be used to show that

. Thus, it follows that  for 0 ≤ r

≤ p. Showing that  follows closely the derivation above and
therefore is omitted here.

Appendix C: Bootstrap estimate of standard errors
To obtain standard error estimates for the data analysis of section 5, the wild bootstrap is
used as it is more suitable for heteroskedastic cases that commonly arise in nonparametric
regression. For the covariate-adjusted regression model, the point estimators for the fixed
effects are obtained by averaging heteroskedastic estimators coming from each bin given by
equation (11). Bin specific estimators are indeed heteroskedastic since their variance
depends on U. The wild bootstrap algorithm implemented is as follows.

1. Within each bin v, bin specific estimates are obtained based on the original data and
the resulting residual vectors are  for subject k in bin v (k = 1, …, Lv).

2. We multiply each residual belonging to a specific subject and repetition (i.e. each
component of ) by a random variable sampled from the two-point distribution
attaching masses  and  to the points  and

 to obtain the wild bootstrap residual vectors , k = 1, …, Lv. (These
wild bootstrap residuals approximate the variance and skewness of the residuals for
each subject.)
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3. The new responses in bin v, , are obtained from the wild bootstrap residuals; and
bootstrap bin-specific estimates (11) are obtained based on the bootstrap data.

We repeat the above procedure to obtain B = 400 bootstrap samples to estimate the standard
errors. (Standard error estimates in this case stabalize after B = 100 bootstrap samples.)
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Figure 1.
Plot of β ̂0(·), β ̂1(·) and η ̂(·) for the calciuim absorption data.
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Figure 2.
Estimated variance and mean square error (MSE) for estimation of fixed effects coefficients,
specifically for the intercept (γ0), X slope (γ1) and W slope (δ1), corresponding to the
benchmark (dashed line), CA-LME (solid line) and unadjusted LME (dotted line) estimates.
Due the large MSE for the unadjusted LME estimates of the X slope, we plotted 1/4× MSE
(of the unadjusted estimates) so that it would be on a similar order as the CA-LME and
benchmark MSEs (column 2, row 2).
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Figure 3.
Proportionate reduction in error (PRE) due to the inclusion of estimated subject-specific
effects. Displayed are results for 1000 Monte Carlo data sets (20% missing data) for each
sample size n.
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Table 1

Estimation of fixed effects and variance components for the unobserved latent model of calcium absorption as
a function of calcium intake and age: E(ca. absij) = γ0 + γ0i + (γ1 + γ1i)intakeij + δ1ageij, based on observed

data  for n = 188 women and 1 ≤ ni ≤ 4. Standard errors (S.E.) corresponding to CA-
LME model estimates are obtained using 400 bootstrap samples.

CA-LME Unadjusted-LME

(A) Fixed effects estimates and standard error (S.E.)

Parameter Estimate S.E. Estimate S.E.

Intercept (γ0) 0.5698 0.0059 0.5575 0.0262

Intake (γ1) −0.1705 0.0041 −0.1489 0.0114

Age (δ1) −0.0035 0.0001 −0.0035 0.0005

(B) Variance components estimates

d11 = Var(γ0i) 0.0067 0.0042

d22 = Var(γ1i) 0.0084 0.0012

d12 = Cov(γ0i,γ1i) −0.0062 −0.0020

σ2 0.0042 0.0046
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