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Abstract
Objective—Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) has recently been
shown to form an essential element of a mechanosensory complex that mediates endothelial
responses to fluid shear stress. The aim of this study was to determine the in vivo role of PECAM-1
in atherosclerosis.

Methods and Results—We crossed C57BL/6 Pecam1−/− mice with apolipoprotein E–deficient
(Apoe−/−) mice. On a Western diet, Pecam1−/−Apoe−/− mice showed reduced atherosclerotic lesion
size compared to Apoe−/− mice. Striking differences were observed in the lesser curvature of the
aortic arch, an area of disturbed flow, but not in the descending thoracic or abdominal aorta. Vascular
cell adhesion molecule-1 (VCAM-1) expression, macrophage infiltration, and endothelial nuclear
NF-κB were all reduced in Pecam1−/−Apoe−/− mice. Bone marrow transplantation suggested that
endothelial PECAM-1 is the main determinant of atherosclerosis in the aortic arch, but that
hematopoietic PECAM-1 promotes lesions in the abdominal aorta. In vitro data show that siRNA-
based knockdown of PECAM-1 attenuates endothelial NF-κB activity and VCAM-1 expression
under conditions of atheroprone flow.

Conclusion—These results indicate that endothelial PECAM-1 contributes to atherosclerotic
lesion formation in regions of disturbed flow by regulating NF-κB–mediated gene expression.
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A therosclerosis is an inflammatory and degenerative disease of arterial walls characterized by
monocyte recruitment, foam cell formation, and complex lesions with smooth muscle cell
proliferation, a necrotic core, cholesterol crystals, and calcification.1,2 Apolipoprotein E–
deficient (Apoe−/−) mice on a C57BL/6 background develop atherosclerotic lesions in the aorta
and its major branches with a distribution similar to human atherosclerosis.3 Disease
progression can be accelerated by feeding a Western diet (21% fat).4 Atherosclerosis
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preferentially develops in regions of disturbed flow (ie, branch points and bifurcations) that
are characterized by oscillatory and low time-averaged shear stress.5 The local hemodynamic
environment promotes distinct proatherosclerotic (“atheroprone”) or antiatherosclerotic
(“atheroprotective”) endothelial phenotypes.6-10

A minimal complex necessary for the endothelial cell shear stress response requires platelet
endothelial cell adhesion molecule-1 (PECAM-1, CD31), vascular endothelial cadherin (VE-
cadherin), and vascular endothelial growth factor receptor 2 (VEGFR2).11 In this cascade,
PECAM-1 senses force exerted by blood flowing across endothelial cells, leading to
transactivation of endothelial VEGFR2. VEGFR2 triggers conformational activation of
integrins followed by stimulation of nuclear factor of kappa light chain gene enhancer in B
cells (NF-κB), a transcription factor responsible for expression of inflammatory adhesion
molecules, cytokines, and chemokines. Therefore, we hypothesized that the PECAM-1–
dependent mechanosensory pathway may be involved in atherogenesis.

PECAM-1 is also expressed on platelets and leukocytes12 and has been implicated in leukocyte
transmigration through endothelial cell monolayers in vitro13 and in vivo.14,15 In a model of
peritonitis, Pecam1−/− mice16 had no defect in leukocyte transmigration when investigated in
the C57BL/6 background,17 the background used in the present study.

Materials and Methods
Mice

Pecam1−/− mice backcrossed 5 times into the C57BL/6 background (Dr S. Albelda, University
of Pennsylvania)18 were crossed 3 times to C57BL/6 Apoe−/− mice. Double heterozygous
offspring were used to generate Pecam1−/−Apoe−/− mice. Nine Pecam1−/−Apoe−/− and 10
Apoe−/− mice aged 10 weeks were fed a Western diet for 13 weeks (Harlan Teklad, TD88137).
Pecam1−/−Apoe−/− mice were fertile and healthy under vivarium conditions. Their blood lipid
profile was indistinguishable from that of Apoe−/− mice (supplemental Table I, available online
at http://atvb.ahajournals.org). Anesthesia (16 μL/g, 1 part atropine sulfate 0.4 mg/mL, 1 part
xylazine 20 mg/mL, 2 parts ketamine 100 mg/mL, and 16 parts 0.9% NaCl) was injected
intraperitoneally before surgeries. Animal experiments and care were approved by the
University of Virginia Animal Care and Use Committee according to AAALAC guidelines.

Tissue Acquisition
After carotid artery cannulation, the intact circulation of the mouse was flushed with PBS and
perfusion-fixed with 4% paraformaldehyde (PFA) in PBS. The aorta was microdissected,
immersed in 4% PFA/PBS for 2 days, cleaned of external fat by blunt dissection, and processed
for en face preparation or paraffin embedding and sectioning.

En Face Preparation and Measurement of Atherosclerotic Lesion
Aortas were stained with oil red O and mounted en face.19 Digital microphotographs of aortas
were analyzed for lesion size in specific regions (supplemental Figure I) by finding percent
stained surface area using ImageJ (NIH).

Bone Marrow Transplantation
Pecam1−/−Apoe−/− mice were lethally irradiated and reconstituted with Pecam1−/−Apoe−/− or
Apoe−/− bone marrow (n=3 recipients for each).20 Mice began a 16-week Western diet 6 weeks
after irradiation.
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Histopathology and Immunoperoxidase
Paraffin-embedded aortas were sectioned from aortic valve to descending thoracic aorta and
stained with the Modified Russell-Movat Pentachrome Method (Armed Forces Institute of
Pathology) or antibodies against Mac2 (clone M3/38, Accurate Chemicals),21 P-selectin
(rabbit polyclonal, Dr S. Green, University of Virginia),22 VCAM-1 (SC-1504, Santa Cruz
Biotech), intercellular adhesion molecule-1 (ICAM-1) (ICAM-1, SC-1511), CD3 (SC-1127),
or CD20 (SC-7735) (Santa Cruz Biotech).23,24 Microwave antigen retrieval, Vectastain Elite
Kit (Vector Labs), and diaminobenzidine (Dako Corp.) were used for localization of antigens.
23 Sections were counterstained with Harris hematoxylin (Richard-Allen Scientific).

En Face Immunofluorescence
Aortic rings 1 to 2 mm thick, with anatomic location and orientation noted, were each placed
in 5 to 10 mL of an antigen retrieval solution (Antigen Unmasking Solution H-3300, Vector
Labs) and processed per manufacturer instructions. Rings were permeabilized with 0.2% Triton
X-100 for 5 minutes, washed twice with 1% IgG-free BSA solution, and incubated with
Alexa-546 –preconjugated (Molecular Probes A20183) antip65 antibody (1 μg/100 μL, mouse
monoclonal 3026, Chemicon) in 1% IgG-free BSA at 4°C with TOTO-3 (Molecular Probes).
An Alexa-546 –preconjugated IgG3 corresponding to antip65 antibody was used as a control
(data not shown). Rings were washed, opened with the endothelium exposed on a glass slide,
and mounted with antifading mounting gel (GelMount, Fisher).

Immunofluorescence on Cross-Sections
Paraffin-embedded aortic sections were mounted on glass slides, deparaffinized, rehydrated,
processed for antigen retrieval, blocked with 10% goat or donkey serum in PBS/FSGO, and
incubated overnight at 4°C with Alexa-546-preconjugated antip65 or anti-VCAM-1 (above),
respectively. Donkey antigoat Alexa-546 was added for VCAM-1 preparations. Sections were
stained with TOTO-3 and mounted with antifading mounting gel.

Confocal Imaging
Images of en face and paraffin-embedded sections were interrogated for each protein (Nikon
C1 confocal microscope). All images were acquired at the same gain, aperture, and exposure
settings.

Quantification of NF-κB
Intensity of nuclear NF-κB p65 was assessed by importing confocal images of stained aortic
sections into MetaMorph Imaging (Molecular Devices). Average nuclear NF-κB intensity was
measured for each TOTO-3-positive nucleus.

Western Blot
Dermal microvascular endothelial cells were harvested and plated for 48 hours in M199, 10%
FBS, 1:250 endothelial cell growth supplement (ECGS, Sigma), and heparin (Sigma).
Atheroprone waveform25 was applied by a cone-and-plate viscometer for 16 hours with
MCDB-131 (Gibco), 2% FBS, 1:1000 ECGS/heparin, and 4% dextran (Sigma). Samples were
collected, run on 10% SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membrane,
and blotted for phospho-p65 (rabbit polyclonal 3031, Cell Signaling) and total p65 (rabbit
polyclonal 3034).

In Vitro Flow Experiment, siRNA, and Luciferase Reporter Transfection
Passage two human umbilical vein endothelial cells (HUVECs) were isolated and plated at
50% confluence on 1% gelatin in M199 growth media (Biowhitaker), 10% FBS (Gibco), 5
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μg/mL ECGS (Biomedical Technologies), 10 μg/mL heparin (Sigma), 2 mmol/L L-glutamine
(Gibco), and 100U penicillin/streptomycin (Invitrogen). HUVECs were treated with 330pmol
of control (D-001810, Dharmacon) or human PECAM-1 siRNA (L-017029—00) and 19.8
μL oligofectamine (Invitrogen) in 3 mL of OptiMEM-I media for 5 hours. High growth media
(20% FBS) was used for 24 hours to grow to confluence. Cells were infected with 5 MOI
adenovirus containing NF-κB-luciferase reporter (Vector Labs) for 16 hours. Cells were
washed in DPBS and placed in reduced serum media (M199 supplemented with 2% FBS, 5
μg/mL ECGS, 10 μg/mL heparin, 2 mmol/L L-glutamine, 100U penicillin/streptomycin, and
2% dextran by weight to increase viscosity). Atheroprone or atheroprotective shear stress was
applied for 24 hours using a cone-and-plate viscometer. Samples were collected in passive
lysis buffer (Promega) for measurement of luciferase luminescence or SDS-MAPK sample
buffer (Cell Signaling) for Western blot of human PECAM-1 and VCAM-1 (R&D Systems).

Statistics
Data are represented as mean±SEM and analyzed using a 2-tailed heteroscedastic Student t
test or nonparametric Wilcoxon–Mann test. P<0.05 was considered significant.

Results
En Face Analysis of Atherosclerotic Lesions

We measured atherosclerotic lesion formation in specific aortic regions (supplemental Figure
I) from Pecam1−/−Apoe−/− and matched Apoe−/− mice on Western diet for 13 weeks. Oil red
O staining revealed robust lesions at branch points of major and minor arteries from both groups
and along the lesser curvature of the aortic arch of Apoe−/− mice (Figure 1A). Lesion size was
reduced in Pecam1−/−Apoe−/− mice by 26% in whole aortas (P<0.05), 28% in aortic arches
(P<0.02), and 42% in lesser curvatures (P<0.005). Differences in the thoracic and abdominal
aortas were not significant (Figure 1B). These findings suggest that PECAM-1 promotes
atherosclerotic lesion development in a flow-dependent manner.

Bone Marrow Transplantation
To test whether PECAM-1 on endothelial or hematopoietic cells determines atherosclerotic
lesion formation, Pecam1−/−Apoe−/− mice were lethally irradiated, reconstituted with either
Apoe−/− or Pecam1−/−Apoe−/− bone marrow, and fed a Western diet for 16 weeks.
Pecam1−/−Apoe−/− mice reconstituted with Apoe−/− bone marrow developed more than twice
as much lesion in the abdominal aorta compared to mice receiving Pecam1−/−Apoe−/− bone
marrow (129% increase, P<0.05, supplemental Figure II). This suggests that PECAM-1 on
leukocytes and platelets promotes atherosclerosis in the abdominal aorta. Differences in the
aortic arch were not significant between mice receiving Apoe−/− (22±1%) and
Pecam1−/−Apoe−/− bone marrow (25±3%, supplemental Figure II), suggesting that endothelial
PECAM-1 determines atherosclerotic lesions in the aortic arch, an area of disturbed flow.

Involvement of NF-κB Activation
To investigate the mechanism by which PECAM-1 promotes atherosclerosis at sites of
disturbed flow, we stained aortas en face for NF-κB p65. Endothelial cells lining the lesser
curvature of Apoe−/− but not Pecam1−/−Apoe−/− mice demonstrated robust nuclear p65
localization (Figure 2A). This suggests that PECAM-1 absence reduces nuclear NF-κB. We
also compared p65-stained aortic arch cross-sections from Apoe−/− and Pecam1−/−Apoe−/−

mice (Figure 2B). Pecam1−/−Apoe−/− mice demonstrated a 77% and 59% reduction in NF-κB
staining in the lesser and greater curvatures, respectively, compared to Apoe−/− controls
(P<0.01, Figure 2C).
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To determine whether regional flow patterns affect PECAM-1 regulation of NF-κB activity,
we cultured human umbilical vein endothelial cells (HUVECs) under atheroprone or
atheroprotective flow patterns derived from the human circulation25 or static conditions.
Atheroprone flow increased VCAM-1 expression, which was reduced by siRNA targeting
PECAM-1 (P<0.001, Figure 3A, supplemental Figure III). NF-κB activity measured using a
luciferase reporter increased 3.6-fold in HUVECs treated with control siRNA under
atheroprone compared to atheroprotective flow (P<0.001, Figure 3B). NF-κB activity under
atheroprone flow decreased by nearly 50% after siRNA-based PECAM-1 knockdown to 20
±13% of control levels (P<0.001). siRNA treatment did not alter NF-κB activity under static
conditions or atheroprotective flow. PECAM-1 knockdown also attenuated the VCAM-1
protein expression under atheroprone flow (P<0.001, supplemental Figure III). Collectively,
these data indicate that PECAM-1 is necessary for NF-κB activation and VCAM-1 expression
under atheroprone flow.

Cross-Sectional Analysis of Atherosclerotic Lesions
We serially sectioned the entire aortic arch from aortic valve to descending thoracic aorta
(Figure 4A). Foam cell-containing and complex lesions were seen in the aortic root of
Apoe−/− and Pecam1−/−Apoe−/− mice (supplemental Figure IV). Lesions of the lesser curvature
were strikingly absent or diminished in thickness and size in Pecam1−/−Apoe−/− mice (Figure
4B). VCAM-1 was expressed in atherosclerotic endothelial and smooth muscle cells of
Apoe−/− mice,27 but this was visibly reduced in Pecam1−/−Apoe−/− mice (Figure 4C).
Pecam1−/−Apoe−/− mice expressed VCAM-1 on 19±5% of the endothelial circumference of
aortic cross-sections compared to 51±6% in Apoe−/− mice (n=13 to 15 cross-sections, 3 mice
per group). This difference was significant in the ascending aorta (P<0.05) but much less
pronounced in the more distal segments of the aortic arch and the descending aorta (data not
shown). VCAM-1 is relatively specific for supporting the adhesion of mononuclear leukocytes.
Its expression correlates well with the occurrence of atherosclerotic lesions.31

Macrophage presence by Mac2 staining was also dramatically reduced in Pecam1−/−Apoe−/−

mice (supplemental Figure V). Foam cells were present on 41±1% of the endothelial
circumference of Movat-stained aortic cross-sections in Apoe−/− mice compared to 10±1% in
Pecam1−/−Apoe−/− mice (P<0.00001, n=18 to 19 cross-sections, 3 mice per group). Maximum
thickness of foam cell regions reached 116±4 μm in Apoe−/− mice, but only 45±3 μm in
Pecam1−/−Apoe−/− mice (P<0.0003). Differences in ICAM-1, P-selectin, (supplemental Figure
V), T cells (CD3) and B cells (CD20, data not shown) were not observed.

Discussion
Endothelial cells have long been known to respond to steady32,33 and transient shear stress.
34,35 The latter has been hypothesized to determine the localization of atherosclerotic lesions
in vivo.36 PECAM-1 plays a key role in the flow-dependent mechanotransduction events
leading to atherosclerosis,11 but this was not found in all experimental systems37 and has not
been directly investigated in vivo. Oscillatory or low time-averaged shear stress promotes the
development of atherosclerotic lesions, whereas areas with high shear stress are protected.38
Cheng et al manipulated the shear stress pattern using a circumferential cuff,38 which also
alters local blood pressure and may disturb the adventitia, an area that contains inflammatory
cells and participates in the process of atherosclerosis.24 The data from Pecam1−/−Apoe−/−

mice described here suggest that PECAM-1 on the endothelium is critically important for
atherosclerotic lesion development in the aortic arch of Apoe−/− mice. This may be attributable
to the involvement of PECAM-1 in the mechanosensory complex containing PECAM-1–VE-
cadherin–VEGFR2.11,39 Our data suggest that causative factors for atherosclerotic lesion
development may vary for different locations in the vasculature.
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Several possible explanations may account for residual atherosclerotic lesions in
Pecam1−/−Apoe−/− mice. First, although shear stress–induced phosphatidylinositol-3-OH
kinase p85 and AKT phosphorylation were completely absent in Pecam1−/− endothelial cells,
shear stress applied to Pecam1−/− endothelial cells activated αVβ3 integrin to a small extent.
11 Second, other unidentified mechanisms in addition to the PECAM-1 pathway may exist for
sensing shear stress. Third, rheological factors such as increased residence time of monocytes
and inflammatory cytokines at atheroprone sites may promote atherosclerosis.40,41 Fourth,
prolonged permeability of inflamed endothelium in Pecam1−/− mice42 may enhance monocyte
recruitment and the action of inflammatory factors. Finally, PECAM-1 may prime the
endothelium in response to atheroprone flow, but its impact may diminish over time as other
factors contribute.43

PECAM-1 regulates transendothelial migration of monocytes44 and neutrophils.13 In a model
of acute lung inflammation, the importance of PECAM-1 for neutrophil recruitment was
demonstrated in vivo.15 Intravital microscopy showed that PECAM-1–specific antibody
hampered leukocyte movement across the basement membrane but not transendothelial
migration.45,46 However, the role of PECAM-1 in transendothelial migration depends on the
mouse strain, because C57BL/6 mice showed no discernible defect in two models of
inflammation.17 Because we investigated Apoe−/− mice on a C57BL/6 background, it is
unlikely that PECAM-1 absence significantly curbed atherosclerosis by inhibiting
transmigration.

Bone marrow transplantation experiments performed here demonstrate that PECAM-1
expressed on leukocytes or platelets promotes atherosclerosis in the abdominal aorta, but not
the aortic arch, even in the absence of PECAM-1 on the endothelium. This suggests a putative
role for either homophilic binding between leukocyte and platelet PECAM-1 via
immunoglobulin-like domain 1 or heterophilic binding via immunoglobulin-like domains 1,
2, and 6.44 As one possible mechanism, elevated very low density lipoprotein leads to increased
human endothelial expression of CD38,47 which may be a PECAM-1 ligand.48

The present findings show that the net effect of removing Pecam1 from the mouse genome is
atheroprotective in regions of the aorta exposed to atheroprone flow patterns. We believe
dynamic fluid shear stress generates tension between adjacent endothelial cells and activates
PECAM-1, which leads to nuclear translocation of NF-κB and expression of inflammatory and
adhesive mediators, such as VCAM-1, that promote atherosclerosis. NF-κB regulation by
PECAM-1 might depend on the underlying extracellular matrix on which the endothelial cells
are sitting. Indeed, endothelial cells on fibronectin-rich, but not collagen-rich, matrices activate
NF-κB in response to atheroprone flow.49

PECAM-1 may also regulate atherosclerosis by mechanisms not investigated here.
Pecam1−/− mice have increased bleeding times,50 and altered hemostatic function may reduce
atherosclerosis. Shear stress sensing is also involved in regulating nitric oxide production,51,
52 preventing apoptosis, and maintaining anticoagulant properties, which might be affected
following knockout of the Pecam1 gene.

Polymorphisms in the human PECAM1 gene correlate with the incidence of coronary
atherosclerosis,53 coronary artery disease,54 and myocardial infarction.55 A 53G>A
polymorphism in the 5′ untranslated region of PECAM1 reduced shear stress response in vitro.
Compared with 53G homozygotes, carriers of the 53A allele showed less focal progression of
disease of coronary atherosclerosis in the LOCAT study and a similar trend in diffuse
progression of disease in the REGRESS study.53 Another study reports that a 373C>G
polymorphism, which may affect homophilic interactions of PECAM-1 via a Leu125Val
exchange in the first immunoglobulin-like domain,56 is associated with coronary artery disease
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in Asian Indians.55 Polymorphisms in the sixth immunoglobulin-like domain (Asn563Ser),
which is important for heterophilic interactions with integrins,57 and the cytoplasmic domain
(Gly670Arg), which participates in signal transduction,58 have been recognized as risk factors
for myocardial infarction in the Japanese.55

In conclusion, the present data identify the PECAM-1–dependent endothelial shear stress
response as a key factor in atherosclerotic lesion development in the aortic arch of the
Apoe−/− mouse, a model that shares many similarities with the human disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
PECAM-1 promotes atherosclerosis in regions of disturbed flow. A, Representative oil red O–
stained aortas from Apoe−/− and Pecam1−/−Apoe−/− mice. B, Pecam1−/−Apoe−/− mice (2
females, 5 males) develop less lesion than Apoe−/− mice (1 female, 7 males) on the whole aorta,
aortic arch, and lesser curvature, but not the thoracic and abdominal aorta.
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Figure 2.
Nuclear NF-κB translocation is PECAM-1–dependent. A, En face aortic arches stained for NF-
κB p65 and TOTO-3 (nuclear stain). B, Aortic arch cross-sections stained for NF-κB p65 and
TOTO-3. C, Quantification of nuclear NF-κB staining in the lesser and greater curvatures (n=44
to 84 nuclei, 11 sections, 2 mice per group, *P<0.01).
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Figure 3.
PECAM-1–dependent activation of NF-κB under atheroprone shear stress. Ad-NF-κ B-Luc–
transfected endothelial cells cotransfected with control siRNA (siControl) or siRNA to
PECAM-1 (siPECAM-1) were exposed to static conditions, atheroprone (“prone”) flow, and
atheroprotective (“protective”) flow. A, siPECAM-1 attenuates PECAM-1 and VCAM-1
expression. B, NF-κB activity increases under atheroprone flow in the presence of PECAM-1.
(*P<0.001 vs atheroprone siControl, ** P<0.001 vs atheroprone siPECAM-1, n=5).
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Figure 4.
PECAM-1–deficient aortas have decreased lesion and VCAM-1. A, Aorta was interrogated at
various positions: (1) root, (2–3) proximal to innominate artery, (4) between innominate and
left subclavian arteries, (5) at left subclavian artery, (6) descending thoracic aorta. B, Movat
stain, greater and lesser curvatures are on the left and right of each image, respectively. C,
VCAM-1 protein expression in Apoe−/− (left) and Pecam1−/−Apoe−/− (right) mice.
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