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The study of complex information processing systems requires
appropriate theoretical tools to help unravel their underlying
design principles. Information theory is one such tool, and has
been utilized extensively in the study of the neural code. Although
much progress has been made in information theoretic method-
ology, there is still no satisfying answer to the question: “What
is the information that a given property of the neural population
activity (e.g., the responses of single cells within the population)
carries about a set of stimuli?” Here, we answer such questions via
the minimum mutual information (MinMI) principle. We quantify
the information in any statistical property of the neural response
by considering all hypothetical neuronal populations that have the
given property and finding the one that contains the minimum
information about the stimuli. All systems with higher information
values necessarily contain additional information processing mech-
anisms and, thus, the minimum captures the information related to
the given property alone. MinMI may be used to measure informa-
tion in properties of the neural response, such as that conveyed by
responses of small subsets of cells (e.g., singles or pairs) in a large
population and cooperative effects between subunits in networks.
We show how the framework can be used to study neural coding in
large populations and to reveal properties that are not discovered
by other information theoretic methods.
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S ome of the greatest challenges to science today involve com-
plex systems, such as the brain and gene regulatory networks.

Such systems are characterized by a very large number of interact-
ing units that potentially cooperate in complex ways to produce
ordered behavior. Some of the more interesting systems may be
viewed, to a certain degree, as input–output systems. The brain,
for example, receives multiple inputs from the environment and
processes them to generate behavior. In order to obtain insight
into such systems, this transmission of information needs to be
quantified. An attractive mathematical tool in this context is
information theory (IT), introduced by Claude Shannon in his
mathematical theory of communication (1). IT has been used in
neuroscience since the 1950s (2, 3), yielding insights into design
principles in neural coding (4, 5) and offering new methods for
analyzing data obtained in neurophysiological experiments (6).
The main information theoretic measure used in the literature is
the mutual information (MI), which quantifies the level of depen-
dence between 2 variables. Experimental works typically employ
IT by studying the MI between aspects of the external world [e.g.,
motor activity (7) or visual stimuli (8)] and aspects of the neural
response [e.g., spike counts (9) or precise spike times (10) among
others].

Empirical studies of complex systems in general and informa-
tion theoretic analyses in particular are fundamentally limited by
the fact that the space of possible system states is extremely large.
Thus any measurement of the system is bound to be limited and
reveal only a subset of its possible states. For example, it is not
practical to fully characterize the statistics of a 100-ms spike train
of even a single neuron, because of its high dimensionality (2100

for 1-ms precision) and the limited number of experimental trials.

The problem of limited measurements is more acute for multi-
ple neurons for 2 reasons. First, the dimension of the response
space grows exponentially with the number of neurons. Second,
neurons are often not recorded simultaneously but rather over sev-
eral recording sessions, so their joint statistics are not accessible.
However, it is possible to reliably estimate partial measurements,
or statistics, of the system, such as firing rates of single neurons
or correlations between pairs of neurons. Consider for example a
population of a hundred neurons where we experimentally charac-
terize the response of each neuron to a given set of stimuli. These
measurements provide a partial characterization of the popula-
tion response, and as such should also help in estimating the MI
between this response and the stimulus.

Here, we present a framework for evaluating MI in such settings.
At the basis of our approach is the assumption that the partial
measurements hold for the true underlying system, whose com-
plete characterization cannot be measured. We next consider all
hypothetical systems that are consistent with the observed partial
measurements (e.g., all populations of 100 neurons whose single
neuron responses are identical to the ones we measured). Clearly,
there is a large set of such systems, each with its own value of MI
between input and output. Our goal is to find the value of infor-
mation that can be attributed only to the given measurements.
Intuitively, the systems with relatively high MI in the hypothetical
set have some additional structure that cannot be inferred based
on the given partial measurements alone. However, the system
with minimum information in this set cannot be simplified further
(in the MI sense) and its information can thus be taken to reflect
the information available in the given measurements alone. Our
minimum information (MinMI) principle thus states that given a
set of measurements of a system, the MI available in these mea-
surements is the minimum mutual information between input and
output in any system consistent with the given measurements. An
immediate implication of the above construction is that this mini-
mum information is a lower bound on the information in the true
underlying system, because the true system is also in the set we
minimized over.

A conceptual tool which has previously been used to tackle par-
tial measurements is the maximum entropy (MaxEnt) principle
(11–13). MaxEnt posits that the underlying distribution is the one
with “least structure” among all those that could have generated
the given measurements. The MaxEnt principle is oblivious to
the stimulus–response structure of a system and thus may arrive
at incorrect conclusions regarding the information content of the
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neural activity. In contrast, MinMI directly considers information
transfer, and yields a bound on the information in the true system,
whereas MaxEnt does not. The MinMI and MaxEnt distributions
are also mathematically very different, as we show below.

Minimum Information Bound
Consider a system with a discrete input stimulus S ∈ {1, . . . , ns}
and an output response R ∈ {1, . . . , nr} (our formalism applies to
continuous variables as well; we focus on discrete ones for pre-
sentation purposes). The mutual information between S and R is
a measure of the dependence between these 2 variables. Denote
by p(s, r) the joint distribution of S and R. This distribution fully
characterizes the input–output relations in the system. The mutual
information between S and R is defined as

Ip(S; R) ≡
∑
s, r

p(s, r) log
p(s, r)

p(s)p(r)
, [1]

where p(s), p(r) are the marginal distributions of S, R (14). The
MI is zero if and only if the variables are independent. High MI
indicates that the response R encodes properties of the stimulus S.

We focus on the case where p(s, r) is not known. Rather, we
have access to partial measurements of it, given by the expected
value of some function of R given S. Formally, we consider a set
of d functions �φ : {1, . . . , nr} → R

d and assume we know their
expected values given S. We denote these expected values by �a(s),
so that

�a(s) ≡ 〈�φ(r)〉p(r | s), [2]

where the expectation operator 〈〉 is defined by 〈f (x)〉p(x) =∑
x f (x)p(x). Such expected values may be the firing rates of indi-

vidual neurons in a population, the number of coincident spikes
for pairs of neurons, or any other measurable statistic of the
spatiotemporal activity. The expected values are typically esti-
mated from experimental data. Denote the experimental data
by the set of pairs (s1, r1), . . . , (sn, rn). Then �a(s) is estimated by

1
ms

∑
i:si=s

�φ(ri), where ms is the number of data pairs where si = s.
Because of finite sample effects, this empirical estimate will typi-
cally not equal the true expected value. In what follows, we shall
assume that these values are identical. However, our approach
may be extended to the cases where the expected values are known
up to some confidence interval. We further assume that the prior
probabilities of the stimulus variable are known, and denote these
by p(s). This assumption is reasonable because these probabilities
are usually determined by the experimentalist. The above formal-
ism encompasses a wide range of response characteristics, from
the response of single neurons, through that of neurons over time,
to joint statistics of any order.

To bound the information in our system from below, we consider
all hypothetical joint distributions that could yield the given partial
measurements. These distributions are those that yield expected
values of �φ(r) that are equal to the measured ones

P(�a(s), p(s)) ≡
{

p̂(s, r) : 〈 �φ(r)〉p̂(r | s) = �a(s) ∀s
p̂(s) = p(s) ∀s

}
. [3]

The true underlying distribution p(s, r) is clearly in P(�a(s), p(s)).
Thus, the true underlying information Ip(R; S) is lower bounded
by the minimum information attainable in P(�a(s), p(s))

Ip(R; S) ≥ Imin

[ �φ(r), �a(s)
]

≡ min
p̂∈P(�a(s),p(s))

Ip̂(R; S), [4]

where Imin

[ �φ(r), �a(s)
]

denotes the minimum information value.
The distribution p̂MI (r | s) that achieves the above minimum may
be characterized by introducing Lagrange multipliers �ψ(s) ∈

R
d (1 vector per s value), yielding the following characterization

(which can be viewed as a generalization of the result in ref. 15)

p̂MI (r | s) = p̂MI (r)e �φ(r)· �ψ(s)+γ (s), [5]

where γ (s) is a normalization factor. Note that p̂MI (r) depends
on p̂MI (r | s) through marginalization: p̂MI (r) = ∑

s p(s)p̂MI (r | s).
Thus, Eq. 5 is not a closed form solution but, rather, a set of equa-
tions involving the variables p̂MI (r | s) and �ψ(s). The variables �ψ(s)
should be chosen to satisfy the constraints P(�a(s), p(s)) and may
be found by using an iterative algorithm, as we show in Methods.
The value of the minimum information turns out to be a simple
function of the optimal �ψ(s):

Imin

[ �φ(r), �a(s)
]

= 〈�a(s) · �ψ(s) + γ (s)〉p(s). [6]

The function �φ(r) may be any function of the response space.
In analyzing neural codes, we shall be specifically interested in
the case where the expected values are kth order marginals of
the true distribution p(r | s). We denote the minimum informa-
tion given the set of all kth order marginals by I(k) (see Minimum
Information in kth-order Statistics in SI Appendix). In what fol-
lows, we shall specifically demonstrate how I(1) and I(2) may be
used to study aspects of neural coding.

It is interesting to contrast the MinMI solution with that of Max-
Ent (see Relation to Maximum Entropy Modeling in SI Appendix).
The MaxEnt approach will seek the distribution p̂ ∈ P(�a(s), p(s))
with maximum entropy. This distribution (and its MI value) is very
different from the MinMI one, as shown in the following simple
example. Consider a set of N binary neurons with the same first-
order responses p(ri|s) to 2 stimuli: p(ri = 1|s = 1) = α and p(ri =
1|s = 2) = β, and assume p(s) = 0.5. Clearly the information
minimizing distribution is one where neurons are completely cor-
related (i.e., all fire or don’t fire simultaneously). Thus the MinMI
information will equal the information in a single neuron. On the
other hand, the MaxEnt distribution in this case will correspond
to neurons being conditionally independent given the stimulus. As
N → ∞, the information in the MaxEnt distribution will approach
one (as long as α 
= β), because an observer of the response R
will be able to perfectly predict the identity of the stimulus S by
averaging over the N neurons to obtain (with probability 1) the
values α, β for s = 1, 2. Thus, the MaxEnt approach becomes inad-
equate for measuring information in large populations, whereas
the MinMI approach does not have this limitation. This difference
will be illustrated in the experiments reported below.

Synergy and Redundancy Measures
A key issue in neural coding is the importance of high-order sta-
tistics and their contribution with respect to lower-order statistics.
One approach to quantifying this contribution is to compare the
MI in a model based on higher order statistics with one based
on lower-order statistics. A positive difference indicates synergy:
information in higher-order interactions, whereas a negative dif-
ference indicates redundancy. Several such measures have been
suggested in the literature (9, 16–19). The SynSum measure (9) is
defined as:

SynSum(R; S) ≡ Ip(R; S) −
∑

i

Ip(Ri; S). [7]

It measures the difference between the full information and the
sum of individual (first-order) informations. One shortcoming of
the above measure is that the second term becomes dominant as
N grows [the first is always bounded by H(S)]. Thus, large popu-
lations will always appear redundant. Another possible measure
compares the full information to the information in the case where
neurons are conditionally independent (CI) given the stimulus

SynCI(R; S) ≡ Ip(R; S) − IpCI (R; S), [8]
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where pCI (r | s) = ∏N
i=1 p(ri|s) (SynCI was denoted by �Inoise in

ref. 17 and by �I(1,2) in ref. 19). Note that this measure does
not grow with N and will equal zero when the neurons are CI.
Another related measure based on the CI case, but not directly
using information, was introduced in ref. 16.

Both SynSum and SynCI compare the full information to that
in first order statistics. Moreover, the typical implementation of
these measures is for the 2-neuron case, where the only statistics
less than full order are first order. The generalization of syn-
ergy/redundancy measures to higher-order statistics, and to N > 2
populations, poses an important challenge. The SynSum measure
has been generalized to this scenario in ref. 20, where it was decom-
posed into elements measuring synergy in kth order correlations.
MinMI offers an elegant approach for generalizing the SynCI
measure to higher orders. At first sight, it seems like a reasonable
approach is to take the difference between the informations of
the MaxEnt distributions for orders k and k − 1. However, these
2 numbers will saturate as N → ∞ (see Relation to Maximum
Entropy Modeling in SI Appendix), and thus this measure will be
zero at the limit. MinMI offers a way around this problem, as we
now illustrate for second-order statistics. The I(2) measure quan-
tifies the information available in a population given only its (first-
and) second-order statistics. To turn it into a synergy/redundancy
measure, we need to subtract the second-order information in
the CI model. If the neurons are CI, the pairwise statistics are
expected to be p(ri, rj|s) = p(ri|s)p(rj|s). We denote the minimum
information in these pairwise statistics by I(2)

CI . A natural measure
of synergy is then the difference

SynI(2)(R1, . . . , RN , S) = I(2) − I(2)
CI . [9]

When the true population is CI, we have SynI(2) = 0, as expected.
Furthermore, when N = 2, we have that SynI(2) = SynCI. Thus
MinMI generalizes SynCI to the study of pairwise interactions in
large populations. Furthermore, the MinMI information does not
saturate as MaxEnt does, and thus this measure is meaningful even
as N → ∞. The SynI(2) measure may be extended to the kth order
case by replacing I(2)

CI with the minimum information subject to kth
order statistics given by a MaxEnt model of order k − 1.

Results
Neural population codes may be studied at several levels, cor-
responding to different coding strategies. The basic level is the
single neuron code. Next is the relation between the codes of dif-
ferent single neurons. Higher-order interactions between neurons
constitute yet another level, along with the relation between multi-
ple higher-order interactions. Finally, temporal structure may also
be used to enhance coding efficiency. In the applications below,
we show how the MinMI principle may be used to study various
neural coding schemes and to quantify the level to which different
populations use these schemes.

Two Binary Neurons and a Binary Stimulus. We begin with an illus-
tration of MinMI calculation for the case of 2 toy binary neurons
R1, R2 where each neuron has 2 possible responses: 0 or 1. The
stimulus S is also taken to be binary. We assume that only first-
order statistics p(r1|s), p(r2|s), p(s) are known and that p(r1, r2|s)
is unknown. We are interested in the minimum information I(1),
i.e., the information available in a distribution p̂(r1, r2, s) satis-
fying the first-order constraints p̂(ri|s) = p(ri|s), i = 1, 2. Note
that any such distribution is completely defined by 2 numbers
p̂(r1 = 1, r2 = 1|s) (for s = 1, 2), because for each S value p̂(r1, r2|s)
has 4 free parameters and has to satisfy 3 constraints (2 first-order
constraints and one normalization constraint). The space of pos-
sible distributions p̂(s, r) can thus be visualized in 2 dimensions,
as in Fig. 1. The figure shows the value of the MI for each possi-
ble distribution in p̂(s, r) satisfying the constraints above. This is

Fig. 1. Illustration of I(1) for 2 binary neurons and a binary stimulus (p(s) =
0.5). Only the first-order statistics of each neuron are assumed to be known.
The results for 2 different first order statistics are shown. (A and D) The first-
order statistics in the 2 cases. (B and E) The minimum information distribution
p̂MI(r | s) for the statistics in A and D, respectively. (C and F) The information
in all distributions satisfying the given first-order statistics in A and D, respec-
tively. The yellow dot shows the location of the MinMl distribution in this
information plane, and the white square shows the Cl distribution. The X
and Y axes correspond to the probability of both neurons firing for stimuli
s = 1, 2.

done for two different pairs of neurons, with different first-order
responses. The figure shows (in yellow circles) the location of the
MinMI distribution p̂MI (r1, r2|s). Also shown (in white squares) is
the distribution under which the neurons are CI given the stimu-
lus: p̂(r1, r2|s) = p̂(r1|s)p̂(r2|s). By definition, this distribution has
higher MI than I(1). In the first example (Fig. 1 A–C) the 2 neurons
have the same response distributions p(r1|s) = p(r2|s). The MinMI
distribution shown in the figure is then the one in which the neu-
rons are completely correlated and thus lies on the boundary of
the space of possible distributions. It is intuitively clear why this is
the minimum: the 2 neurons are, in the worst case, equivalent to
a single neuron. In this case the CI information is higher because
when the 2 neurons are CI, one can average over the noise to
obtain more information about the stimulus.

In contrast, when the 2 neurons differ in their response distrib-
utions (Fig. 1 D–F), they cannot be completely correlated. Thus,
the information minimizing distribution will not lie on the bound-
ary as in the previous example (compare Fig. 1C with 1F) but will
still be lower than the CI information (compare circle with square
in Fig. 1F).

Coding Redundancy in Single Neurons. We next illustrate the use of
MinMI in the study of single neuron codes and their combination
in a population. As an example, consider a population of neurons
where each neuron is tuned to some preferred direction of move-
ment (PD) in the stimulus (e.g., the direction of hand movement
in motor neurons, or stimulus motion in visual neurons). A pop-
ulation of neurons may have different distributions of such PDs.
In one extreme, all neurons have the same PD, whereas in the
other extreme PDs are uniformly distributed among neurons. It is
intuitively clear that the second scenario is advantageous in terms
of coding. However, it is not clear how to quantify this intuition in
terms of information, especially when the joint distribution of the
population cannot be estimated.

The MinMI principle provides a natural framework for tackling
the above problem. Ideally, in studying information in popula-
tions, we are interested in the quantity I(R1, . . . , RN ; S). More
specifically, we are interested in the contribution of single neu-
ron codes to this information. Our I(1) measure provides precisely
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Fig. 2. The information I(1) for different population coding schemes. We
consider 3 populations of 16 neurons responding to 8 stimuli. The stimuli cor-
respond to 8 equally spaced directions on the circle (s = {0◦, 45◦, . . . , 315◦}).
All neurons are cosine tuned with PDs given in the polar plots (p(ri |s) =
Poiss(ri |5 + 5 cos(s − θi)), where Poiss(r|λ) is probability of count r under a
Poisson distribution with rate λ, and θi is the PD of neuron i; responses where
ri ≥ 25 spikes are clipped at ri = 25). (Left) A setup where all neurons have
similar PDs (directions were drawn uniformly in the range ±22.5◦). (Center)
Tuning to random directions. (Right) Neurons are tuned to equally spaced
directions, so that 2 neurons are assigned to each direction. I(1) and I(1)

CI values
are given for each scenario (values for the overlapping and random tunings
were obtained by drawing PDs 1,000 times and calculating a 99% confidence
interval).

that. To illustrate how I(1) differentiates between different single
neurons coding schemes, we simulate data from 3 hypothetical
neuronal populations, with different degrees of overlap between
single neuron codes. Fig. 2 shows the code structure for these pop-
ulations and the respective I(1) values. The results correspond to
the intuition mentioned above: low I(1) values correspond to pop-
ulations with high overlap between single neuron codes, and high
values correspond to low overlap. Note that the MinMI calcula-
tion is model-free, and thus does not use the concept of directional
tuning or preferred direction. It can thus detect differences in pop-
ulation coding in considerably more complex scenarios, which may
be harder to visualize. Fig. 2 also compares I(1) to the information
in a distribution where neurons are CI given the stimulus (i.e., the
MaxEnt distribution subject to first-order statistics). We denote
this information by I(1)

CI (see Calculating the CI Information in SI
Appendix for I(1)

CI calculation method). The shortcoming of the
CI assumption is that for large populations, the information will
asymptotically reach its maximum value, because one can average
over the responses of independent neurons and recover the exact
stimulus as the population size grows. This behavior is apparent
in the results in Fig. 2, where the I(1)

CI measure approaches the
maximum value of 3 bits for randomly distributed PDs and a simi-
larly high value for the uniformly spaced PDs. Thus, unlike I(1), the
measure I(1)

CI does not differentiate between the different neuronal
populations.

Pairwise Coding in Populations. Second-order statistics between
neurons have been shown to play a part in neural coding in the
sense that their joint activity provides more information about a
stimulus than their individual responses (7, 21). Most research has
been devoted to studying pairs of neurons, mostly due to sample
size limitations (but see refs. 13 and 22). It is intuitively clear,
however, that if the second-order statistics between all pairs in a
population provide information, but about the same property of
the stimulus, this should result in less information than if different
pairs encoded different stimulus properties. This situation is the
pairwise equivalent of the single neuron coding issue discussed in
the previous section.

The information available from grouped pairwise responses in
a population can be quantified using the SynI(2) measure. Fig.
3 shows 2 toy populations, 4 neurons each, with identical pair-
wise synergy values: the set of SynSum(Ri, Rj; S) (i, j ∈ {1, . . . , 4})
values is identical in both populations. Furthermore, in this case

SynSum = SynCI because I(Ri; S) = 0 for all neurons. In one pop-
ulation (Fig. 3B), all synergistic coding provides information about
the same property of the stimulus, whereas in the other (Fig. 3C),
the pairwise codes are designed to provide disparate information.
The difference between these 2 populations is clearly seen in their
SynI(2) values. Thus the MinMI principle can be used to differ-
entiate between populations with different pairwise code designs.
Although MaxEnt models (13) can also be applied to this case, they
suffer from the same asymptotic behavior that we encountered for
the I(1)

CI case, and will not be able to discriminate between different
populations for large N .

Temporal Coding. Temporal response profiles of single neurons
may transmit information about behaviorally relevant variables
(23–25). Intuitively, one could argue that if different behavioral
parameters induce different response profiles, as measured by a
peristimulus time histogram (PSTH), then the temporal response
carries information about the behavior. Our MinMI formalism
allows us to make this statement explicit and to calculate the
resulting information.

The temporal response function of a neuron can be given by its
response in a series of time bins p(rt|s), t = 1 . . . T . A PSTH is an
example of such a profile where rt is a binary variable, and one plots
the rate function p(rt = 1|s). The responses p(rt|s) are merely a set
of first order statistics and we can calculate I(1) for these statistics,
so as to obtain a measure of information in a PSTH.

Fig. 4 illustrates the application of MinMI to temporal coding
in recordings from the primary motor cortex of behaving monkeys
(see Experimental Procedures and Data Analysis in SI Appendix).
We consider the response to a binary laterality signal (a visual stim-
ulus), which instructs the monkey which hand to move. Fig. 4 shows
a PSTH of a neuron, where the total spike count over a period of
600 ms after stimulus is similar for both conditions. However, the
temporal profiles differ between the 2 conditions. To analyze this
coding using I(1), we partitioned the 600-ms period into time win-
dows of 600, 300, 200, 150, and 100 ms, and calculated p(rt|s) and
the corresponding I(1) for each partition. We then shuffled the
trials between laterality signals and compared the shuffled val-
ues with the raw I(1) in order to test whether the raw information
was significantly different from zero. For the neuron in Fig. 4A,
we found that it was not significant for window sizes of 300 ms
and above but was significant for all lower-sized windows. This
indicates that MinMI may be used to detect information related
to temporal structure. We repeated the above procedure for the
entire population of 827 neurons and counted the number of sig-
nificant neurons for each window size. Fig. 4B shows this number
as a function of window size. A large increase can be seen when
moving from 600 to 200 ms, indicating relevant temporal struc-
ture at these time constants. The number then flattens for lower
window sizes, suggesting that no information about the stimulus
is added at these time scales.

Fig. 3. Information in populations from pairwise statistics. We consider the
responses of 4 toy neurons r1, . . . , r4 to 4 stimuli s = {1, . . . , 4} (p(s) = 0.25).
Neurons r1, r2 are conditionally independent from r3, r4 given s. (A) Defini-
tion of 2 pairwise response distributions p1 and p2. (B and C) The pairwise
responses of the 4 neurons under 2 different scenarios. In both scenarios,
pairwise synergy values (SynSum and SynCI, which are equal in this case) are
0.07 for pairs (r1, r2) and (r3, r4) and zero for the other 4 pairs. However, the
SynI(2) values for each distribution are different, as shown in the heading of
B and C.
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Fig. 4. Analysis of temporal coding using MinMl. (A) The PSTHs of the
response to the laterality signal (left hand, red; right hand, green) for a neu-
ron recorded in the primary motor cortex. Time zero indicates the stimulus
onset. The I(1) measure was significant for window size 200 ms and below
but not for 300 ms or 600 ms. (B) The number of neurons with significant
I(1)(p < 0.05) as a function of the window size.

Discussion
We have presented a framework for estimating MI in systems given
partial measurements. Our MinMI principle has 2 attractive prop-
erties. The first is the ability to obtain a bound on information from
a wide array of statistical observations and experimental scenar-
ios. The second is the extension of standard information mea-
sures (such as information in single neurons or pairs of neurons)
to large populations, allowing the detection of complex coding
schemes not evident when analyzing neurons individually. Also,
unlike previous decomposition methods (e.g., ref. 26) MinMI does
not require knowledge of the complete joint distribution. These
advantages improve on current IT-based methods in neuroscience
and provide a comprehensive framework for tackling fundamental
issues in neural coding.

The MinMI principle seeks a distribution p(s, r) that minimizes
an information theoretic measure. This in fact is the mathemati-
cal structure of the central coding theorems in information theory
(14), where information is either minimized (as in the rate dis-
tortion theorem) or maximized (as in the channel capacity theo-
rem) under some constraints on the joint distribution p(s, r). Our
approach is most closely related to rate distortion theory (RDT),
which sets the achievable limits on “lossy” compression, i.e. com-
pression which results in some distortion of the original signal. It
turns out (15) that the optimal compression bound is obtained by
minimizing MI between the input and output alphabets subject to
a fixed prior on the inputs, and a constraint on the allowed input–
output distortion. In MinMI, we also fix the input prior p(s) but
introduce additional constraints on p(r | s) via its expected values.
This can be understood as searching for a distribution p(r | s) as in
RDT but with the single distortion constraint replaced by multiple
constraints on expected values of several functions (interestingly,
such a setting was mentioned in ref. 27 as a possible extension
of RDT).

Another application of information minimization is in cases
where one seeks to transform a signal X1, . . . , Xn into a set of
independent variables Y1, . . . , Ym [e.g., the ICA method of ref.
28 or the method of spatially incoherent features (29)]. In this
case information minimization originates from an assumption that
the data was generated via a transformation on independent vari-
ables, and the reverse transformation is sought. It is thus very
different from the MinMI scenario where no such assumptions
are made, and the focus is on measurement of information rather
than transformation on variables.

MI can be interpreted as a measure of the predictive power
between 2 variables. A different measure is the optimal Bayes
error e∗, defined as the minimum probability of error incurred in
predicting S from R. Interestingly, the MI can be used to obtain
an upper bound on e∗ given by e∗ ≤ 0.5(Hp(S) − Ip(R; S)), where
Hp(S) is the entropy of the stimulus (30). This implies that in the
MinMI case, although the distribution p(s, r) is not known, we

are guaranteed that e∗ ≤ 0.5(Hp(S) − Imin). MinMI thus yields an
upper bound on e∗ of the true underlying distribution. The MinMI
distribution p̂MI (s|r) may also be used directly to predict S from
R, and in fact it can be shown that the resulting error is bounded
from above by Hp(S) − Imin (See Section 6 in ref. 31).

A common approach to calculating information in complex
responses is to apply some quantization to R via a function f (r)
(e.g., the spike count in a spike train r), such that the quan-
tized variable f (R) has relatively few values and p(s, f (r)) may
be estimated from small samples. The data processing inequality
(32) then states that Ip(S; f (R)) ≤ Ip(S; R), and thus the quan-
tized information always provides a lower bound on the true
information. It can be shown (see Relation to the Data Processing
Inequality in SI Appendix) that Ip(S; f (R)) is in fact the outcome
of the following MinMI problem: what is the minimum informa-
tion in a distribution p(s, r) whose quantized version is p(s, f (r)).
Thus, MinMI may be viewed as generalizing the data processing
inequality.

Because the MinMI bound represents a worst case scenario
it may considerably underestimate the true information value in
some cases. Also, the brain has inherent constraints such as energy
consumption and response latency, that might make it impossible
for it to employ the coding strategy obtained by MinMI. However,
the MinMI bound can be increased as more measurements are
added, and additional internal constraints are considered. Gen-
erally, as additional reliable measurements are made available,
the MinMI bound may be gradually refined to better approximate
the true information. Additionally, even in cases where the bound
considerably underestimates the true information, it still serves as
a quantifier of the information in the given measurement, and as
such can be used to compare coding schemes (see Results).

In presenting the method, we made the assumption that par-
tial measurements are exact. Because these measurements are
commonly estimated from finite samples, their exact values are
usually not known, but rather lie in some range of values (with
high probability) which can be determined from the size of the
sample (33). The expectation constraints (Eq. 3) can then be con-
strained to be in this range. The solution in this case still has
the general form of Eq. 5, and corresponding algorithms may be
derived.

Although the results presented here were applied to neural cod-
ing, the MinMI principle is general and may be used for studying
a wide array of complex systems. For instance, it may be used to
estimate the information in a set of gene expression profiles about
external conditions (34) and thus help in analyzing their functional
role and in comparing different gene regulatory networks.

Methods
This section describes algorithms for calculating the MinMI bound. The con-
strained optimization problem in Eq. 4 is convex, because its objective is
convex (14), and the constraints are linear in p̂(s, r). It thus has no local min-
ima and can be solved by using convex optimization machinery (35). Here,
we present 2 specialized iterative algorithms to solve it. The first algorithm is
exact, but has complexity O(nr ). Because nr may sometimes be large, we also
present a second, approximate, algorithm to handle such cases.

The basic building block of our first, exact, algorithm is the I-projection (36).
The I-projection of a distribution q(r) on a set of distributions F is defined as
the distribution p∗ ∈ F , which minimizes the Kullback-Leibler (KL) divergence
to the distribution q(r): p∗ = arg minp∈F DKL[p|q], where DKL[p|q] is defined
as

∑
r p(r) log p(r)

q(r) . The I-projection has a particularly simple form when F is
determined by expectation constraints

F( �φ(r), �a) = {p̂(r) : 〈 �φ(r)〉p̂(r) = �a}. [10]

The I-projection is then given by

p∗(r) = q(r)e �φ(r)·�λ∗+γ ∗
, [11]

where �λ∗ are a set of Lagrange multipliers, chosen to fit the desired expected
values, and γ ∗ is a normalization factor. The values of �λ∗ can be found by
using several optimization techniques. All involve the computation of the
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expected value of �φ(r) under distributions of the form q(r)e �φ(r)·�λ. Here, we
use an L-BFGS-based algorithm (37).

The structural similarity between the form of Eq. 11 and the characteriza-
tion of p̂MI(r | s) in Eq. 5 suggests that p̂MI(r | s) is an I-projection of p̂MI(r) on
the set F( �φ(r), �a(s)). The fact that p̂MI(r) depends on p̂MI(r | s) through mar-
ginalization suggests that the minimization problem may be solved using an
iterative algorithm where marginalization and projection are performed at
each step. Each iteration thus consists of the following steps (31):

• For all s, set p̂t+1(r | s) to be the I-projection of p̂t (r) on F( �φ(r), �a(s)).
• Set p̂t+1(r) = ∑

s p̂t+1(r | s)p(s).

The above procedure can be shown to converge to the minimum information
(see Algorithm Convergence Proof in SI Appendix).

The exact algorithm presented above is feasible when the size of the input
space nr is small enough to allow O(nr ) memory and computational resources.
For systems containing many elements, this is often not the case. For instance,
when R is a response of 100 binary neurons, nr = 2100. To derive an approxi-
mate algorithm for the large system case, we first note that after t iterations
of the exact iterative algorithm, the distribution pt (r) is a mixture of the
form

pt (r) =
(ns)t∑
k=1

cke �φ(r)· �ψk+γk , [12]

where every iteration increases the number of components by a fac-
tor of ns. For the approximate algorithm, we limit the number of ele-
ments in this mixture to some constant K by clustering its components
after each iteration using a K-means algorithm with K centroids (see
chapter 10 in ref. 38). The resulting mixture is represented using its

mixing probabilities ck and parameters �ψk (resulting in O(K) parameters).
We denote the resulting approximate distribution by p̂′

t (r). The algorithm
then proceeds as in the exact method, only with p̂′

t (r) instead of the
exact p̂t (r).

For the I(1) case, the kth element in the mixture has the form
cke

∑n
i=1 ψk (ri )+γk . Recall that in order to perform the I-projection one needs to

calculate expected values for distributions of the form

p̂′
t (r)e�λ· �φ(r) =

∑
k

cke
∑n

i=1 ψk (ri )+λ(ri )+γk . [13]

Because of the factorized form of each element in the sum, the first-order
marginals are straightforward to calculate and so is the I-projection of p̂′

t (r)
on the relevant constraints. For the higher-order cases (e.g., I(2)) the mixture
marginals do not have a closed-form solution, and require approximation
methods such as Gibbs sampling. For the applications presented here, we used
the approximate algorithm only for the I(1) case. We have found empirically
that the above approximation scheme works well for cases where we could
compare it with the exact algorithm (up to nr = 50, 000). In the applications
reported here, we used the exact algorithm for nr ≤ 50, 000.
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