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Abstract
The rates of transmethylation and transsulfuration of methionine were quantified using [1-13C]
methionine and [C2H3]methionine tracers in newborn infants born at term gestation and in
prematurely born low birth weight infants. Whole body rate of protein breakdown was also measured
using [2H5]phenylalanine. The response to enteral formula feeding and parenteral nutrition was
examined in full term and prematurely born babies, respectively. The relative rates of appearance of
methionine and phenylalanine were comparable to the amino acid composition of mixed body
proteins. Rates of transmethylation were high, both in full term infants (fast 32±14 µmoles kg−1

h−1; fed 21.7±3.2) and in preterm infants (57.2±14.8). Significant flux through the transsulfuration
pathway was evident (full term: fast 6.0±4.4, fed 4.1±2.1; preterm: 24.9±9.9 µmoles kg−1 h−1).
Transsulfuration of methionine is evident in the human newborn in the immediate neonatal period,
suggesting that cysteine may not be considered a “conditionally” essential amino acid for the neonate.
The high rate of transmethylation may reflect the high methylation demand, while high rates of
transsulfuration in premature babies may be related to high demands for glutathione and to the
amounts of methionine in parenteral amino acid mixtures.
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Methionine, an essential amino acid, is also a source of methyl groups for a number of
methylation reactions such as methylation of nucleic acids, proteins, biogenic amines,
phospholipids, etc. Methionine is also a source for the cysteine required for the synthesis of
glutathione (1,2). Interest in the metabolism of methionine has remained high ever since it was
observed that a key enzymes involved in the formation of cysteine from homocysteine
(transsulfuration), cystathionine γ lyase, is absent in the fetal liver and its activity appears for
the first time in the immediate neonatal period (3–7). It has been suggested that the human
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fetus and neonate is unable to convert cystathionine to cysteine in significant quantities. Thus,
cysteine has been suggested to be a “conditionally essential” amino acid for the neonate, and
is often added to the parenteral amino acid mixtures, especially for prematurely born infants
(8,9). However, the development of the activity of cystathionine γ lyase after birth, the impact
of premature birth and of nutrient interventions on the transsulfuration of methionine is
unknown.

The synthesis of cysteine from homocysteine and serine is regulated by an individual’s nutrient
state and by the relative concentration of insulin, glucagon and adrenal corticosteroids (10–
12). Insulin has a repressive effect on hepatic cystathionine γ lyase and on cystathionine β
synthase, while glucagon and glucocorticoids increase the hepatic activity of these enzymes.
Transition to extrauterine life is characterized by a decrease in plasma levels of insulin and a
surge in plasma glucagon and catecholamines (13). In contrast, parenteral nutrition (amino
acids plus glucose) increases plasma insulin and decreases the concentration of glucagon. The
impact of adaptation during transition to extrauterine life and the effect of nutrient interventions
on methionine metabolism have not been evaluated. In the present study, we have quantified
the kinetics of methionine and its metabolism in healthy full term and prematurely born infants.
Our data show that the human newborn develops the capacity to metabolize methionine via
transsulfuration rapidly after birth.

Methods
The study protocol was approved by the Institutional Review Board of MetroHealth Medical
Center, Cleveland, Ohio. All studies were carried out after obtaining verbal assent from the
attending neonatologist. Written informed consent was obtained from the parent(s) after fully
explaining the procedure. The studies in full term infants were performed in the General
Clinical Research Center, while studies in premature infants were performed in the neonatal
intensive care unit.

Full term appropriate- for- gestation newborn infants (n=18) were recruited from the newborn
nursery (Table 1). They were all healthy and had no antenatal or neonatal problems. Their
Apgar scores were within normal range and none were receiving antibiotics. All of them were
receiving formula (Similac®, Ross Pharmaceuticals, Columbus, Ohio) ad libitum every 3h
from birth.

Nine prematurely born neonates were recruited from the neonatal intensive care unit. Their
Apgar scores were >7 at 5 min and the median score for neonatal acute physiology (SNAP), a
marker of acuity of illness at birth (14), was 11 (25th –75th percentile: 6–16). The infants were
all clinically stable, were either on minimal ventilator support or were receiving supplemental
oxygen via nasal cannula. None were receiving vasopressors or glucocorticoids. All
prematurely born babies were given ampicillin and gentamicin for 48 h for presumed sepsis.

Full term infants (Figure 1A)
Three hours after their last feed, two indwelling vascular catheters were placed, one on the
dorsum of the hand for infusion of the tracer solution, and the other in the saphenous vein.
After obtaining basal sample (time 0), tracer amino acid solution was infused for 7h. Blood
and breath samples were obtained during the basal state and following feeding. Every 30
minutes, infants were fed 20ml.kg−1 of infant formula (Similac®) in six equal aliquots. The
formula provided methionine at 14±0.4 µmol.kg−1.h–1 and phenylalanine at 21.6±0.6
µmol.kg−1.h−1. Breath samples were collected in a small anesthesia bag using a facemask and
a low resistance Rudolph valve (15) and then transferred into the sampling tube. The rate of
carbon dioxide production (VCO2) was measured during the basal period and after enteral
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feeding by using a DeltaTrac II indirect calorimeter (SensorMedics; Yorba Linda, CA) (15,
16).

Premature infants (Figure 1B)
As per the clinical practice, premature infants were started on 10% dextrose water at birth and
changed to parenteral nutrition between 24–36h. Babies were on parenteral amino acid solution
(Troph Amine ®, B. Braun Medical, Irvine, CA) at 3g kg−1 d−1 for 24h before the tracer study.
Cysteine hydrochloride was added at 40 mg g−1 amino acid. Preexisting indwelling vascular
catheters, placed for clinical reasons, were used to infuse the tracers and to collect blood
samples. After obtaining the basal samples, the tracer solutions were infused for 5h. Breath
samples were collected by placing a plastic cannula attached to a 20 ml syringe near the external
nares. The expired air was drawn in the syringe and transferred into a sampling tube. During
the tracer study, babies received parenteral amino acids 3.1±0.5g kg−1 d−1, methionine 24±0.4
µmol kg−1 h−1, phenylalanine 30±5 µmol kg−1 h−1, and cysteine 33±6 µmol kg−1 h−1.

The tracers were infused as follows: [1-13C] methionine (Prime: 2.9 µmole kg−1; Constant rate
1.8µmol kg−1 h−1), [2H3 methyl] methionine (Prime: 2.9µmol kg−1; Constant rate 1.8µmol
kg−1 h−1) and [2H5] phenylalanine (Prime: 4µmol kg−1; Constant rate 4µmol kg−1 h−1). A
priming dose of 60µmol of NaH[13C]O3 was given to achieve an early isotopic steady state in
the bicarbonate pools. Initial data showed that this priming dose of sodium bicarbonate was
high for the fasting state and therefore the dose was reduced to 25 micromoles in subsequent
(n=5) studies. Two full term infants were studied without a priming dose of sodium bicarbonate.
Complete fasting and feeding data on transsulfuration was obtained in seven full term infants,
while data in the fed state could be calculated on all infants. In full term infants, blood and
breath samples were collected every 15 min between 150–180 min (fast) and between 390–
420 min (feed). Samples from premature infants were collected every 30 minutes between 240–
300 min. Samples of the tracer infusates were obtained for quantitative analysis and to test for
sterility.

Analytical procedures—Blood glucose was measured by the glucose oxidase method using
a glucose/lactate analyzer (Yellow Springs Instruments, Yellow Springs, OH). The
concentration of total homocysteine, total cysteine and of amino acids in the plasma and
infusates were measured by HPLC (15,17). Plasma insulin levels were determined using a
human plasma insulin ELISA kit (Millipore; Billerica, MA).

Gas chromatography-mass spectroscopy analysis—The methodology used to
measure the enrichment of amino acid tracers in the plasma has been described (15–17). The
m/z 250 (m+0) and 255 (m+5) were monitored to measure the enrichment of [2H5]
phenylalanine. The mass-to-charge (m/z) ratios 234 (m+0), 235 (m+1), 236 (m+2), 237 (m+3)
and 238 (m+4) were monitored to quantify unlabeled and labeled methionine. The mass 235
(m+1) represented the enrichment of [1-13C]methionine and the mass 237 (m+3) represented
the enrichment of [2H3 methyl]methionine. Multiple linear regression analyses were performed
in order to calculate the relative enrichments and correction for natural abundance of m+1
([1-13C] tracer) and m+3 ([C2H3]methyl)methionine (18,19), using an in-house developed
software (by J. Kim). Enrichment of 13C in the carbon dioxide, which was quantified by isotope
ratio mass spectrometry (Metabolic Solutions; Nashua, NH). The 13C enrichment of
homocysteine in plasma was measured as described by Davis et al (20).

The rate of appearance (Ra) of phenylalanine was calculated by tracer dilution during isotopic
steady state (21). Phenylalanine Ra from protein breakdown was calculated by subtracting the
exogenously administered phenylalanine from total phenylalanine Ra.
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The various components of methionine metabolism were calculated as described by Storch et
al and McCoss et al (19,22,23). The Ra of methionine estimated from the dilution of carboxyl
labeled tracer (Qc) represents methionine entering the circulation from proteolysis and from
exogenous, enteral or parenteral, source. The carboxyl label is retained during the conversion
of methionine to homocysteine (transmethylation) or back to methionine (remethylation). In
contrast, the methyl label is lost during transmathylation and replaced by unlabeled methyl
group during remethylation. Therefore, the Ra of methionine estimated from the dilution of
[C2H3]methionine is a sum of methionine released from protein breakdown, and the methionine
that is exogenously administered plus the amount that is synthesized by methylation of
homocysteine.

Ra (carboxyl tracer) or QC = B+I, where B is the appearance of methionine via protein
breakdown and I is the methionine administered exogenously.

Ra (methyl tracer) or QM = B+I+RM, where RM is the rate of remethylation of methionine
from homocysteine. The difference between QM and QC represents the rate of remethylation:
QM-QC=RM.

The rate of transsulfuration was assumed to be equal to the rate of oxidation of methionine and
was estimated from the rate of appearance of 13C of [1-13C]methionine tracer in the expired
CO2 (22,23). We could not perform satisfactory respiratory calorimetry estimates in the LBW
infants. Therefore, the average VCO2 data (6 ml.kg−1.min−1−) from the literature (24–26) were
used. The calculations for the rate of oxidation have been described (16). It is assumed that
during the formation of cysteine, an equimolar quantity of alpha-ketobutyrate is formed and is
oxidized to CO2 in the tricarboxylic acid cycle (19,23).

We did not correct the kinetic data for the intracellular enrichments of methionine; therefore,
our estimates of transmethylation and transsulfuration are lower than actual. We did measure
the plasma homocysteine enrichments as an index of intracellular [1-13C]methionine
enrichment. However, homocysteine enrichments were not measured at all time points and,
therefore, cannot be used as a measure of isotopic plateau.

We did not adjust for possible CO2 retention, because our previous data and those of others
from healthy adults showed no significant retention of tracer during parenteral glucose infusion
(27). The use of a 20% tracer retention factor would only increase our estimates of
transsulfuration.

Statistical analysis—All data are presented as mean±SD. Group comparisons were made
using parametric and nonparametric statistical methods with Statistix software (Analytical
Software; La Jolla, CA).

Results
All infants were in stable clinical state and tolerated the procedures well.

Plasma amino acids and insulin concentrations
In full term babies, in response to feeding there was a significant increase in the concentration
of essential amino acids (leucine, isoleucine, valine, phenylalanine, methionine and arginine),
and of certain non-essential amino acids, i.e. ornithine, citrulline, alanine aspartate and
glutamate (Table 2). The plasma amino acid concentrations of preterm infants were
significantly higher when compared with full term infants in the fed state, except for glutamine
and alanine, which were significantly lower.
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The plasma concentration of homocysteine (fast 5.0±1.2, fed 5.2±1.3 µmole.L−1), cysteine
(fast 311.0±39.2, fed 321.5±31.1 µmole.L−1), and taurine did not change in response to formula
feeding.

The concentration of plasma insulin of full term infants was 3.5±2.1 and 4.2±2.3 µU/ml before
and during feeds, respectively. In preterm infants, the insulin levels were 11.1±7.0 µU/ml.

Amino acid kinetics
Isotopic tracer plateaus were reached in the plasma, for methionine and phenylalanine both in
preterm and full term infants (Figure 2).

Phenylalanine—The Ra of phenylalanine in full term infants during fasting (72.6±10.8
µmole.kg−1.h−1) was similar to that reported by us previously (Table 3) (15,28). The total Ra
of phenylalanine remained unchanged during feeding (Table 3). Assuming complete
absorption of phenylalanine from the gut, the calculated endogenous Ra of phenylalanine was
significantly less than that during fasting, suggesting a suppression of whole body proteolysis.

In contrast to the full term babies, the Ra’s of phenylalanine, both total and endogenous, was
significantly higher in the preterm infants, suggesting a higher rate of protein breakdown.

Methionine—Using [1-13C]methionine tracer, the Ra of methionine in full term infants
during fasting was 36.2±7.3 µmole.kg−1.h−1. Mixed nutrient feeding did not have any
significant impact on the total Ra of methionine. The calculated Ra of methionine from
proteolysis was significantly less in the fed state. Ra methionine estimated using [C2H3]
methionine tracer was higher than that estimated using [1-13C]methionine tracer (Table 3). The
Ra of methionine was significantly higher in preterm infants, using either tracer.

The ratio of endogenous methionine:phenylalanine Ra for both preterm and full term infants,
~0.5, was similar to that reported in mixed animal proteins, ~0.48 (29).

13C enrichment of plasma homocysteine—The 13C enrichment of plasma
homocysteine was measured in ten full term infants in order to examine the relation between
the intracellular and extracellular enrichments of methionine (22). 13C enrichment of total
homocysteine in the plasma at 180 and 420 minutes of tracer infusion was 1.37±0.37 and 2.32
±0.48 moles % excess, or 30% and 53%, respectively, of the corresponding plasma methionine
enrichment. In the preterm infants, plasma homocysteine enrichment at 4.5 hours of tracer
infusion was 1.15±0.14 moles % excess, or 44% of the 13C enrichment of plasma methionine.

Transmethylation and transsulfuration—The rate of methylation of homocysteine
(RM) was variable (range 4–38 µmole.kg−1.h−1). It was 17.1±12.1 µmole.kg−1.h−1 (n=17)
during fasting in the full term babies and did not change during feeding (Table 3). The rate of
methylation of homocysteine (35±18 µmole.kg−1.h−1) was significantly higher (p<0.03) in the
prematurely born infants.

Because of the low contribution of 13CO2 from methionine to expired carbon dioxide, reliable
data could be obtained in only six infants during fasting (Table 4). An isotopic steady state in
expired CO2 was evident during the fed state in all infants. Oxidation of methionine contributed
less than 0.04% to the expired CO2. The rate of oxidation of methionine, or transsulfuration,
was 6.0±4.4 (n=6) and 4.1±2.1 (n=14) µmole kg−1 h−1 during fasting and feeding, respectively.
One full term baby showed no evidence of transsulfuration. The contribution of methionine to
expired CO2 was higher (0.18%) in preterm infants. We calculated the rate of transsulfuration
using the average reported value of VCO2 [(6 ml kg−1 min−1, (24–26)). The rate of
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transsulfuration was higher in low birth weight infants as compared with those born at term
gestation.

Discussion
Our data show that transsulfuration of methionine was evident in healthy newborn infants born
at term gestation and that the rate of transsulfuration is high in prematurely born neonates
receiving parenteral amino acids. The rates of remethylation and transmethylation of
methionine were high in newborn babies compared with those reported in adults (19,23).

Our kinetic measurements are based upon quantification of tracer enrichments in the plasma
compartment. Since the intracellular enrichments of methionine are likely to be less than that
in the plasma, our measurements of transmethylation and transsulfuration are less than the
actual rates. Although the enrichment of 13C in homocysteine was measured and showed a
significant plasma to intracellular gradient, we could not calculate intracellular kinetics, since
a steady state enrichment of tracer in homocysteine could not be confirmed.

The Ra of essential amino acids in the plasma reflects the respective amino acid composition
of the body proteins (29). We compared the relative Ra of phenylalanine with Ra of methionine
measured by [1-13C] tracer. Both in the full term babies and in low birth weight babies, the
ratio of Ra methionine/Ra phenylalanine was ~0.5. The similarity of this ratio to the reported
amino acid composition of mixed body proteins ~0.45 (30) provides credence to our
measurements. As reported by us (15,28), the rates of phenylalanine turnover and hence the
rate of whole body protein turnover were high in the neonate when compared with those in
adults.

The rate of transsulfuration was estimated by the appearance of 13C of carboxyl carbon of
methionine in CO2 (19). Although methionine could also be decarboxylated via s-adenosyl
methionine decarboxylase, the contribution of this pathway to mammalian methionine
metabolism has been suggested to be negligible (2). Therefore, the oxidation of methionine
reflects, for the most part, the transsulfuration pathway. The rate of transsulfuration was high
in the low birth weight infants who were receiving parenteral amino acids with methionine
when compared with the full term babies. These data are of interest when examined in the
context of the expression and appearance of the enzymes, cystathione β synthase and
cystathione γ lyase during development (3–7). Studies by Sturman and Gaull (3,7) had shown
that the cystathione gamma lyase activity was not detectable in the liver of the human fetus,
but it was present in significant quantities in both prematurely born infants as well as those
born at term gestation (5,7). Cystathione γ lyase activity could be induced by cAMP, glucagon
and dexamethasone in vitro in explants of liver obtained from human fetuses in the second
trimester (4). A recent study has confirmed these observations and shown that although the
gene for cystathione γ lyase is expressed in the liver in the human fetus, (mRNA was detected),
but there was no CGL enzyme activity and the protein was not detectable in fetal, premature
and full term neonatal liver tissue (6). Cystathionine γ lyase is present in fetal kidney but
whether the renal activity can substitute for the lack of activity in the liver has not been
determined (5). Thus, the gene for cystathione γ lyase is transcribed in the liver during fetal
life, but there is no enzyme activity until after birth. This is probably due to an inhibition of
translation of cystathionine γ lyase mRNA in the liver before birth. The mechanism that is
responsible for this unusual type of regulation is not clear. The enzyme data thus suggest a low
transsulfuration activity in the human newborn, which may be significant for premature infants.
Our data show that in healthy full term infants, there is significant transsulfuration during the
first 48 hours after birth. The magnitude of transsulfuration was variable although it
approximated that reported in healthy adults (19). This was likely related to the variability of
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the expression of enzymes involved because of difference in nutrient intake at this stage after
birth.

The data in the premature infants are significant in that the magnitude of transsulfuration was
five-fold higher than was noted in full term babies. This high rate may be related to the large
amount of methionine in the parenteral nutrition and represents the irreversible disposal of
“unbalanced” methionine administered to these babies. Alternatively, it may also be related to
the possible high demands for glutathione and creatine and may be controlled by the redox
sensitive regulation of cystathionine β synthase (31).

The rates of methylation of homocysteine were higher in the neonates when compared with
those reported in healthy adults (19,22). The rates of remethylation and transmethylation were
even higher in prematurely born infants. The high rates may be related to the high demands
for methylation required for cell proliferation, growth, polyamine, and DNA synthesis (32).
The data of the premature infants are particularly significant since both transmethylation and
transsulfuration were high in these babies. Similar high rates of transmethylation and
transsulfuration were seen in patients with severe brain injury (33), a protein catabolic state,
and during parenteral amino acid administration (33). A high methionine load is expected to
increase the concentration of s-adenosylmethionine (SAM). SAM is an allosteric activator of
the CBS reactions (31,34). Parenteral methionine infusion would therefore increase
transsulfuration, as was seen in our study. SAM is also inhibitory for enzymes involved in
methylation of homocysteine, i.e. betaine homocysteine methyltransferase (BHMT) and
methylene tetrahydrofolate reductase (MTHFR) (35,36). Therefore, the high rate of
methylation of homocysteine was surprising. In this context, MTHFR activity was reported to
be higher in the second trimester in human fetal liver and kidney as compared with adults, and
BHMT specific activity was lower in fetal liver than in mature liver (37).

Transmethylation and remethylation of homocysteine in the methionine cycle does not result
in net gain of methionine in the body. We propose that the high rate of remethylation of
homocysteine to form methionine in the human newborn is aimed at shuttling of the methyl
groups from methyl donors, methylene tetrahydrofolate and betaine to SAM for various
methyltransferase reactions (Figure 3), while the transsulfuration is aimed at meeting the
cysteine and glutathione requirement, and for the disposal of “excess” methionine.

Clinical implications
As discussed above, data from previous studies had suggested that the activity of both CGL
and CBS were absent or low in the human fetus and in the newborn. In the prematurely born
infant, the low activity was associated with higher concentrations of cystathionine and lower
levels of cysteine in the plasma (38). In addition, red blood cells isolated from the premature
infants at less than 32 weeks of gestation synthesized glutathione from added methionine at a
lower rate when compared with red cells from full term infants (39). Based upon such data L-
cysteine has been suggested to be “conditionally” essential amino acids for neonates. However,
cysteine supplementation in clinical studies has not been shown to impact nitrogen balance,
weight gain or other clinical parameters (40). The negative clinical results of cysteine
supplementation can be explained from our data showing significant rates of transsulfuration
in the neonate. These data suggest that cysteine may not be a “conditionally” essential amino
acid for the newborn. However, because of the marked variability in the rate of transsulfuration
and because of its role in increasing the solubility of Ca and P, it may be appropriate to continue
to provide cysteine in parenteral nutrition.
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Figure 1.
Study design. (A) Full term infants. (B) Preterm infants.
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Figure 2.
Isotopic tracer enrichments in the plasma in full term babies (A) and preterm babies (B). MPE:
moles % excess. ♦ [2H5]phenylalanine, ■ [1-13C]methionine, ▲[C2H3]methionine.
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Figure 3.
Methionine metabolism in-vivo. Red indicates transfer of methyl groups from methyl donors;
blue indicates the catabolism of methionine.
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Table 2
Plasma amino acid concentration in full term and premature infants

Full term babies Premature infants

Fast Feed During Parenteral Nutrition

(n=18) (n=18) (n=9)

Glutamate 22 ± 7 24 ± 6 35 ± 16

Aspartate 48 ± 11 52 ± 9* 10 ± 2

Serine 141 ± 43 152 ± 41 194 ± 70

Glutamine 770 ± 146 808 ± 147 450 ± 150

Glycine 263 ± 83 262 ± 73 266 ± 78

Histidine 63 ± 19 67 ± 18 94 ± 28

Threonine 129 ± 44 137 ± 42 200 ± 102

Citrulline 17 ± 7 14 ± 5** 23 ± 13

Alanine 181 ± 55 217 ± 57** 157 ± 40

Arginine 55 ± 20 61 ± 19** 143 ± 57

Tyrosine 69 ± 21 75 ± 18* 117 ± 75

Valine 110 ± 25 123 ± 18* 221 ± 48

Taurine 41 ± 16 42 ± 14 37 ± 12

Tryptophan 31 ± 5 31 ± 5 38 ± 10

Methionine 31 ± 6 35 ± 5** 63 ± 30

Phenylalanine 61 ± 11 66 ± 8* 84 ± 28

Isoleucine 36 ± 9 44 ± 7** 74 ± 15

Leucine 64 ± 13 73 ± 11** 144 ± 25

Ornithine 42 ± 17 56 ± 22** 153 ± 75

Lysine 115 ± 32 133 ± 33** 202 ± 56

Mean ±SD

Fast vs. fed

*
p<0.05;

**
p<0.01;

Premature infants amino acid concentrations were significantly different (p<0.05 to p<0.001) compared with full term infants.
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Table 3
Phenylalanine and methionine kinetics

Term Preterm

(n=18) (n=9)

RA Phenylalanine

   Fast 72.6 ± 10.8 -

   Fed (total) 73.2 ± 13.3 128.9 ± 34.9

   Fed (endo) 52.3 ± 13.3* 98.7 ± 37.6**

Ra Methionine ([1-13C] tracer)

   Fast 36.2 ± 7.3 -

   Fed (total) 37.0 ± 7.0 75.4 ± 24.1

   Fed (endo) 23.4 ± 7.1* 54.4 ± 25.8**

Ra Methionine ([C2H3] tracer)

   Fast 53.3 ± 12.5 -

   Fed (total) 55.9 ± 14.2 100.1 ± 19.31

   Fed (endo) 42.4 ± 14.3* 76.3 ± 20.4**

Mean ± SD, µmoles.kg−1.h−1

(endo) = endogenous

*
significantly different than fast, paired t < 0.001

**
significantly different from full term babies, p<0.006
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