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Abstract We present a three-dimensional computer simulation of the dynamics of
a vein valve. In particular, we couple the solid mechanics of the vein wall and valve
leaflets with the fluid dynamics of the blood flow in the valve. Our model captures the
unidirectional nature of blood flow in vein valves; blood is allowed to flow proximally
back to the heart, while retrograde blood flow is prohibited through the occlusion of
the vein by the valve cusps. Furthermore, we investigate the dynamics of the valve
opening area and the blood flow rate through the valve, gaining new insights into the
physics of vein valve operation. It is anticipated that through computer simulations
we can help raise our understanding of venous hemodynamics and various forms of
venous dysfunction.

Key words vein valves · phlebology · venous · simulation · lattice spring model ·
lattice Boltzmann

1 Introduction

Veins are vessels which return de-oxygenated blood to the heart. The mechanism by
which this occurs is through a “peripheral heart” system consisting of veins, their
valves and the surrounding leg muscles [1, 2]. During muscular contraction, the
vein vessels are locally squeezed by the surrounding leg muscles. This results in a
pressure gradient which would cause blood to flow in both directions, but for the
presence of vein valves. The valves are composed of two intraluminal membranous
structures, or valve cusps, and ensure that blood only flows proximally back to the
heart [1, 2]. In particular, the valve cusps meet in the centre of the vein vessel and
prevent retrograde (proximal to distal) blood flow by occluding the vessel. Blood
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circulation through veins depends upon the unidirectional nature of vein valves and
their dysfunction, in this regard, causes almost all known venous disorders [3].

Venous diseases are common and can be debilitating or even fatal [4]. Venous
dysfunction allows retrograde blood flow in the veins which is detrimental to
circulation and can result in stagnation and blood clots. There are a number of
reasons why venous reflux can occur. In some patients, the valve cusps have been
observed to attach to the vein wall in such a way as to leave an intermediary gap [5].
That is, the valve cusps no longer meet in the centre of the vein and a reversal of
the pressure gradient (resulting in retrograde flow) is required to bring these cusps
together and occlude the vessel. Venous dysfunction can arise as a consequence of
valve failure, where the valve cusps become shrunken, deformed, or perforated and,
therefore, incompetent [6]. Normal valve leaflets, however, are mechanically robust,
and the valve cusps are more than capable of withstanding the physiological stresses
imposed by the blood flow [7]. Venous dysfunction can also develop through venous
dilation [3]. In other words, the vein walls become increasingly stretched such that
the valve cusps are pulled apart and no longer meet in the centre of vein. Retrograde
blood flow can, therefore, occur through this opening and through the vein valve.
It is believed that a better understanding of venous hemodynamics will give crucial
insights into these conditions.

It was previously thought that venous valves closed only in response to a suffi-
ciently large reverse flow velocity [8]. This is no longer thought to be the case, and the
vein valves are now thought to respond to pressure gradients [9]. Significant insights
into the physics of vein valves have been obtained through recent developments in
ultrasound technology by Lurie et al. [10–12]. They have been capable of visualising
in situ both the vein valve cusps and the blood flow through the valve. This led to
the characterisation of four phases to the valve cycle: opening, equilibrium, closing
and closed [12]. Interesting dynamic behaviour was observed during the equilibrium
phase (when the valve is fully opened). The leading edges of the valve cusps were
observed to flutter as the blood streamed past (much as a flag flutters in the wind)
and vortical flow was observed behind the valve cusps in the valve sinuses [11]. It is
this complex interaction between venous hemodynamics and valve solid mechanics
that make modelling vein valves challenging.

Vein valves have been ‘modelled’ experimentally. That is, an artificial system
which mimicked vein valves was constructed from latex tubing and polyurethane film
[5]. This approach allowed the systematic investigation of valve geometry without
having to account for physical variations in vein valves that occur naturally from one
individual to the next. However, to the best of our knowledge, there has been no
computer modelling work on the fluid–structure interactions in vein valves reported
in the literature. We have, therefore, developed a simple fluid–structure interaction
model which captures the qualitative behaviour of vein valves.

The fluid in our model is captured using a lattice Boltzmann (LB) model, while
the solid mechanics is captured using a lattice spring model (LSM). The LB method
and LSM are both computationally efficient models whose local rules are guided
by atomistic phenomena, but whose emergent behaviour captures the continuum
physics of the problem. In particular, the LB technique proceeds through the
propagation and collision of fluid distributions on a simple lattice, similar to the
propagation and collision of fluid atoms on the microscopic scale [13]. In a similar
manner, the LSM consists of a lattice of interconnected springs and is adopted from
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solid state physics and early atomistic models which considered harmonic interatomic
potentials [14]. The LB model and the LSM can be shown to recover the desired
Navier–Stokes equation and continuum elasticity theory, respectively.

These models have previously been coupled in order to capture the dynamics of a
microcapsule impacting on either a hard or sticky surface [21]. Here, we extend the
approach to capture the two-dimensional nature of both the valve cusps and the vein
walls and apply our dynamic three-dimensional model to the simulation of vein valve
structures. We give details of this computational technique in the following section.
Results and discussion are presented in Section 3. Finally, we summarise our results
and draw relevant conclusions in Section 4.

2 Methodology

2.1 Solid Mechanics

In order to simulate the elastic mechanics of the vein wall and the vein valves, we
use the lattice spring model (LSM). While the solid regions of the vein walls and
the vein valve are three-dimensional, we capture the physics of the deformation of
these solid regions using a two-dimensional LSM. In other words, we treat both
the vein wall and the valves as elastic membranes which can freely bend and take
into consideration stretching forces only. This is reasonable for very thin shells, but
may not be reasonable for vein walls which may exhibit bending effects, nonlinear
behaviour and anisotropy. The continuum elastic membrane is replaced by a discrete
set of elastic springs connecting regularly spaced nodal points. The elastic energy at
node i can be given by [14]

Ai = 1

2

∑

j

kij

(
|rij| − |r0

ij|
)2

(1)

where the summation is over all nearest- [10] and next-nearest- [11] neighbouring
nodes of a simple square lattice. The difference between the position of node i and
the neighbouring node j is rij, and the equilibrium distance is r0

ij. We consider simple
Hookean springs where kij is the spring constant. This form of the free energy can
be linearised and mapped onto continuum elasticity theory to give the following in-
plane Young’s modulus [14, 15]

Eh = 8kh
3�x

(2)

where the thickness of the vein wall is given by h, k is a force constant and �x is the
equilibrium unit length of the LSM lattice. The Poisson’s ratio (defined as the ratio
of transverse contraction strain to longitudinal extension strain) is fixed at 1

3 in the
absence of non-central interactions.

The elastic forces that act on the nodal points can be obtained from the derivative
of the free energy. The force acting on node i due to the deformation of the spring
between nodes i and j is given by

Fij = −∂ Ai

∂rij
= −kij

( |rij| − |r0
ij|

|rij|

)
rij. (3)
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Given the forces acting on the nodal points, we can update the nodal positions.
To capture the dynamics of this system, we assign masses to the nodal points and
integrate Newton’s equation of motion,

Fi = Mi
∂2ri

∂t2
(4)

where Mi is the mass at node i and Fi the force acting on this mass. Newton’s equation
of motion can be integrated using the velocity Verlet algorithm [16]. This allows us
to obtain the velocity at the nodes and, when coupling the solid and fluid systems,
transfer the velocities at the bounding solid walls to the enclosed fluid. The velocity
Verlet algorithm updates the position, velocity and acceleration of the nodal masses
in the following manner [16],

ri (t + �t) = ri (t) + vi (t) �t + 1

2
ai (t) �t2

vi

(
t + �t

2
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ai (t) �t

(5)
ai (t + �t) = Fi (t)
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)
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)
+ 1

2
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where vi and ai are the velocity and acceleration of node i, respectively. The damping
constant, Di, dampens internal elastic waves. In this manner, we can dynamically
evolve the mechanics of the vein walls and valve structure subject to external (fluid
pressure) and internal (elastic) forces.

The elastic shells which make up both the vein walls and vein valves in our model
are considered to be 2D elastic films which are curved. The vein wall is assumed
to be cylindrical in shape and the 2D LSM lattice is wrapped around to form the
cylinder. The vein valves are created from sections of ellipsoidal tubes to give an
appropriate curvature to the valves. The valves intersect at right angles with the
vein walls at the base of the valve sinus while at the centre of the channel the valves
meet and the valve walls run parallel with the vein walls. This geometry is depicted
in Fig. 1, which shows the lattices for the two valves (labelled a and b) and the vein
wall (labelled c) both collectively and, for clarity, separately. By changing the aspect
ratio of the ellipsoidal geometry of the vein valves, we can specify the sinus depth of
the valves. Regions in the vein wall surrounding the vein valve are assigned different
elastic properties as detailed later.

At the beginning of the simulation, when the system is unperturbed, we establish
contacts between nodes in the valve lattices and nodes in the vein wall lattice. In
particular, nodes in the valve lattice which overlap the vein wall are considered
to be dependent on the vein wall lattice. These dependent nodes obtain their
displacements from the displacements of the vein wall lattice nodes, and the forces
exerted on these dependent nodes are applied directly to the vein wall lattice nodes.

It should be noted that the sinus regions of the vein are more distensible than
other regions of the vein wall. Furthermore, the valve structure is likely to be more
flexible and thinner in the centre of the vein than where the valve attaches to the
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Fig. 1 LSM lattice structure of
both vein leaflets (a and b) and
vein wall (c). For clarity the
LSM lattice is shown both
separately and collectively

vein wall. We take this heterogeneity into consideration in our LSM model by locally
varying the elastic spring constant. The local reduction in Young’s modulus has been
mentioned in experimental papers, but no quantitative information is obtainable.
The form chosen here simply allows the sinus region to expand as observed ex-
perimentally. In particular, the sinus region is considered to be between x = 4 cm
and x = 6 cm (a sinus depth of 2 cm) and the force constant between x = 2 cm and
x = 6 cm is chosen in order to qualitatively mimic experimental observations [11]

k =
{

k0(0.05 + 0.105(x − 5)2) (x < 5)

k0(0.05 + 0.95(x − 5)2) (x > 5)
(6)

where x is the distance along the length of the vein and the spring constant is locally
reduced to 5% of its normal value. The stiffness of the valve leaflet is reduced as a
function of the initial radial distance R. The stiffness is given by k = k0(0.9 R

R0
+ 0.1),

where R0 is the radius of the vein. Therefore, the stiffness of the valve is reduced to
10% at the centre of the vein channel (R = 0).

We now turn our attention to the calculation of the hydrodynamics, and the fluid
pressures which act upon this solid structure.

2.2 Fluid Dynamics

In the current study we use the lattice Boltzmann (LB) method [13] to solve
the hydrodynamics of blood flow. The LB method is chosen as it has been used
previously to capture both blood flow [17–20] and fluid–structure interactions [21–
26]. Only a brief description of the LB method is given here and the reader is referred
to the works of Verberg and Ladd [27, 28], Frisch et al. [29], He and Luo [30, 31], and
d’Humières et al. [32] for a more complete description.

The LB model consists of a particle distribution function which evolves according
to the following equation

fi(r + ei�t, t + �t) = f �
i (r, t) = fi(r, t) + �i[f(r, t)] (7)

where fi(r, t) represents the density of fluid particles at position r, time t, and with
a velocity ei [29]. Similar to real fluids on the microscopic scale, the LB model
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evolves through both the propagation, and subsequent collision, of fluid particles.
The collision of the fluid particles is illustrated in the above equation through the
inclusion of the post-collision term, f �

i (r, t). The propagation is assumed to occur
on the confines of the lattice. The collision operator, �i[f(r, t)], relaxes the stresses
toward local equilibrium and accounts for instantaneous collisions between fluid
particles at the lattice nodes [28].

There are 19 fluid velocities in the three-dimensional model used here (referred
to as D3Q19) which correspond to a rest velocity (e = [000]) and velocities in the
nearest- (e = {100}) and next-nearest-neighbour (e = {110}) directions.

The velocity moments of the particle distribution function are the hydrodynamic
quantities, mass density ρ, momentum density j, and the momentum flux �. These
are given by

ρ =
∑

i

fi

j =
∑

i

fiei = ρv (8)

� =
∑

i

fieiei

where v is the fluid velocity.
The boundaries are included using a non-slip link bounce-back scheme [28].

This scheme takes a particle distribution as it streams towards a wall node and
bounces it back to the node it came from. For stationary walls, this is described
by the propagation step fk(r, t + �t) = f �

i (r, t), where k represents the direction
opposite to the i direction; further details regarding the bounce-back scheme can
be found in the next section. At the inlet and outlet of the system we assign constant
pressure boundary conditions and put the gradient of the velocity to zero. In other
words, we assign equilibrium distribution functions at the boundary nodes with a
predetermined boundary density and velocities which are obtained from LB sites
one lattice spacing in from the boundary nodes. We have shown how the LSM can
simulate the elastic mechanics of the vein valve, and the LB can capture venous
hemodynamics. We now detail the solid-fluid coupling between these two systems.

2.3 Coupling Fluid and Solid Models

In order for the vein walls and fluid to interact, the fluid must impose pressures and
viscous stresses on the solid walls, whilst at the same time the fluid velocity at the
walls must be equal to the velocity of the walls. A simple two-dimensional diagram
of the fluid structure interface is given in Fig. 2. The LSM springs and nodes are
not fixed in space and can freely move (as the structure deforms). However, the LB
lattice is fixed and the discrete solid-fluid interface is defined by the regions where
the LB links cross the LSM lattice; the method of establishing whether or not a LB
link crosses a two-dimensional ‘tile’ is given in the Appendix. The LB lattice consists
of nodes which are considered fluid and nodes which are considered solid. These
definitions are transient, and change as the LSM structure moves with respect to the
underlying LB lattice. It is, therefore, necessary to identify which LB nodes are fluid
and which are solid.
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Fig. 2 Simple two-
dimensional representation of
the fluid–structure interaction.
The LSM lattice changes shape
as the solid structure becomes
deformed. The LB lattice
remains fixed and the fluid–
solid interface in the LB model
is given by the LB boundary
links

We first obtain the LB boundary links on the LB lattice, which are defined as links
which cross the LSM lattice structure. In the case of the vein walls, these represent
the interface between fluid LB nodes and solid LB nodes. Once these boundary links
are obtained, we can perform a cluster-counting operation to find regions within the
vein walls (fluid LB nodes) and regions outside of the vein wall (solid LB nodes).
In particular, by defining clusters as collections of LB nodes which do not cross LB
boundary links, a simple cluster-counting algorithm will produce two clusters, one
inside the vein walls and one outside. However, not all boundary links separate fluid
and solid regions. The boundary links for the valve structure separate fluid regions on
one side of the valve structure from fluid regions on the other side. These boundary
links, however, do not contribute towards the cluster-counting procedure.

Once the fluid domain is identified (as the region of fluid LB nodes inside the vein)
we can evolve the LB model for the fluid dynamics. The velocity of the surrounding
solid walls, and the internal walls of the vein structure, influence the no-slip boundary
conditions for the fluid. In particular, fluid particles that are being streamed towards
a boundary node are reflected back in the direction they came from in the following
manner [28],

fk (r, t + �t) = f �
i (r, t) − 2ρaiei · vb (rb )

c2
f

(9)

where k indicates the direction opposite to i, and vb is the velocity at the boundary
node, situated at rb = r + ei/2. This link bounce-back scheme ensures that the
velocity of the fluid follows the velocity of the wall, and that mass is conserved.
The velocity at the LB boundary node can be obtained from the velocity of the
neighbouring LSM nodes. In particular, we perform a weighted average of the
velocities at the surrounding LSM nodes, where the velocities are weighted by
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the inverse of the distance from LB boundary node to LSM node, squared [21]. The
velocity of the LB boundary node is of the form,

vb (rb ) =
∑

r

[
v(r)/(r − rb )2

]
∑

r

[
1/(r − rb )2

] (10)

where r and v(rb ) are the position and velocity of neighbouring LSM nodes. The
summation is taken over all the LSM nodes within a given distance. This provides an
efficient way of transferring the velocity from the LSM lattice to the LB boundary
nodes.

In the link bounce-back boundary scheme, as just mentioned, fluid propagating
towards the boundary is reflected back at the LB boundary nodes. Therefore, there
is a change in momentum occurring at the boundary, which results in a fluid pressure
which acts on the solid wall. This force, located at the LB boundary nodes, is given
by [28]

Fb

(
rb , t + �t

2

)
= 2

(
f �
i (r, t) − 2ρaiei · vb (rb )

c2
f

)
ei (11)

where, in the current paper, we subtract an additional amount of 2ρ0aiei to account
for an external density ρ0. In real systems, the external environment is expected to
be more complicated than what we consider here and it is unclear what effect this
surrounding tissue might have on the function of a vein valve. The fluid pressure,
however, is located on the LB lattice and must be distributed to the solid LSM lattice.
In a similar manner to how we transfer the velocity of the LSM nodes to the LB
lattice, we can distribute the forces from the LB lattice to nearby LSM nodes. In
particular, we again weight the distribution of the forces by the inverse of the distance
from LSM node to LB boundary node, squared [21]. The force acting on a solid LSM
node, from the fluid pressure, is given by

F(r) =
∑

rb

Fb (rb )
1/(r − rb )2

∑
r 1/(r − rb )2

. (12)

In this manner, we ensure that the forces acting on the solid boundary wall are
efficiently distributed to the solid LSM nodes. The velocities of the LSM nodes are
also efficiently conveyed to the boundary in the LB fluid, enabling us to capture the
dynamic fluid–structure interactions in the vein valve system.

3 Results

We investigate the fluid–structure interactions that act between the vein valve me-
chanical structure and the venous hemodynamics. In particular, we apply a pressure
gradient across the system and simultaneously evolve the solid mechanics and fluid
hydrodynamics towards equilibrium. The vein wall is considered to have a Young’s
modulus of 1,000 kN m−2 [5, 33] and a thickness of 0.05 cm. The density of blood
is taken to be 1,060 kg m−3 and the blood viscosity to be 0.0027 Ns m−2 [34]. The
response of the vein valve structure to a pressure difference of 13.8 kPa (proximal
to distal) is shown in Fig. 3. For clarity, only half of the vein wall is shown and the
cusps of the vein valve are coloured grey. The pressure difference pushes the valve
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Fig. 3 Response of the vein
valve to a (proximal to distal)
pressure difference of
13.8 kPa. The vein leaflets
(coloured grey) remain closed,
occluding the vessel and
restricting retrograde blood
flow

cusps together, occluding the flow of blood, and ‘inflates’ the valves. Furthermore,
the fluid pressure causes the valve sinuses to ‘balloon’ out. It should be noted that the
vein wall near the sinus becomes inflated as the Young’s modulus of the wall in this
region is reduced. In particular, the deformation in Figs. 3 and 4 can be compared
with Fig. 1 which shows the region of reduced Young’s moduli. The response of
the vein valve, to a proximal to distal pressure difference, is to ensure that the
valve is closed and retrograde blood flow is prevented. However, a distal-to-proximal
pressure difference has the opposite effect.

Figure 4 shows the same structure as shown in Fig. 3, but in response to a distal-
to-proximal pressure difference of 13.8 kPa. Here the fluid pressure pushes the
valve cusps away from each other and results in an opening in the centre of the
vein. In particular, the valve cusps remain attached to the vein wall but no longer

Fig. 4 Response of the vein
valve to a (distal to proximal)
pressure difference of
13.8 kPa. The pressure pushes
the valve open, allowing blood
to stream through the open
valve (blood flow is indicated
by the cones)
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meet or overlap in the centre of the vein. The pressure forces the valve cusps to
move away from the centre of the vein, and towards the vein wall, opening the
vein valve. Blood can, therefore, flow proximally through the open vein valve; the
velocity and directionality of this blood flow is indicated by the blue cones in Fig. 4.
It should be noted, however, that we do not observe the valve leaflet ‘fluttering,’ as
observed experimentally, and this may be due to the damping in the LSM solid or
our assumption of a homogeneous Newtonian fluid.

The flow field in the same system depicted in Fig. 4 is plotted in Fig. 5a, which
shows the fluid flow in the central plane, i.e., the plane which passes through both
the valve sinuses and vein opening area. The magnitude of the flow is indicated by
the contours (black indicates zero velocity and white a velocity of 36 cm s−1). The
magnitude and direction of the fluid flow is also indicated by the size and orientation
of the arrows. Blood flows through the open valve and the velocity of the blood flow
is greatest as it passes through the vein valve opening. The velocity is also higher
in the centre of the channel than at the walls where no-slip boundary conditions are
enforced. Figure 5b shows a close up of this flow field, at a region where the fluid flows
back behind the valve cusp and into the valve sinus. Note that the axes on Fig. 5b
run from x = 3.8 to x = 4.2 and y = 0.8 to y = 1.2 and that this is an enlargement

Fig. 5 Two-dimensional
velocity profile through the
centre of the simulation. The
system has a distal-to-proximal
pressure difference of
13.8 kPa. In (a) the magnitude
of the velocity is indicated
by the contours (in units of
cm s−1), and the magnitude
and directionality of flow is
indicated by the arrows. In (b),
we present a close-up view of
the velocity profile in the small
square region in (a), showing
vortical flow in the valve sinus
pocket
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Fig. 6 Opening area of the
valve (divided by the
cross-sectional area of the
undeformed vein tube) as a
function of time. Systems with
different pressure differences
are contrasted
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of the region indicated by the small white square in Fig. 5a, which shows the full
system. At the region of the vein valve where the faster moving fluid through the
open valve meets the slower moving fluid in the wider vein channel, some of the
blood is redirected into the valve sinus. This results in a recirculation of the blood in
the valve sinus and such flow is thought to prevent stasis inside the valve pocket [12].

In order to quantify the dynamics of vein valve opening, in Fig. 6, we show the
ratio of the opening area to the undeformed vein cross-sectional area as a function
of time for various distal-to-proximal pressure differences. The vein valve is initially
closed at time t = 0, and the difference in pressure forces the valve open. The valve
opens reasonably quickly before the valve opening area plateaus at an equilibrium
value. As the pressure difference is reduced, the valve opening area is also reduced.
Furthermore, it appears to take a longer time for the structure to evolve towards
an equilibrium state (the vein opening area takes longer to plateau) in systems with
lower pressure differences.

Not only can we measure the area of the valve that is open, but also the flow
rate of blood through this opening. In Fig. 7, we show the corresponding blood flow

Fig. 7 Flow rate of blood
through the valve as a function
of time. Systems with different
pressure differences are
contrasted
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rates as a function of time for systems of varying pressure difference. The flow rate
also suddenly increases and plateaus as a function of time, in a similar manner as
the valve opening area. The flow rate, however, plateaus at a value which is more
sensitive to the pressure difference. That is, the pressure difference not only forces
the valve open but is also the driving force for fluid flow through the valve. Reducing
the pressure difference results in a smaller valve opening for the fluid to pass through
and reduces the driving force for fluid flow through the aperture. Therefore, the flow
rate through the valve is significantly reduced.

4 Summary and Conclusions

To summarise, we have developed an efficient1 computer model which captures the
dynamics of a vein valve. We couple the solid mechanics of both the vein wall,
and the valve leaflets, with the hydrodynamics of the blood flow. Our model captures
the essential features of vein valve mechanics, allows us to visualise and quantify
the vein valve hemodynamics, and reveals interesting insights into the structural
dynamics of these complex systems. In particular, these simulation results illustrate
the basic physics of vain valves: restricting the retrograde flow of blood and ensuring
unidirectional blood flow through the vein valve.

It should be noted that the model presented in this paper only gives a qualitative
description of a vein valve. There are many areas of improvement which might help
to make this model more quantitative, including (1) the incorporation of nonlinear
elasticity for the vein walls and surrounding tissue, (2) the extension of the fluid
to include non-Newtonian fluid dynamics, and (3) a more accurate physiological
description of the geometry and local stiffnesses of the vein and valves. To our
knowledge, however, this is the first computer simulation of a vein valve and the
coupling of fluid and structure in these systems represents a significant advancement
in this field. Future work, therefore, will seek to address some of these issues, and,
through collaboration with experimental groups, we hope to obtain the physiological
information, required for parameterising these computer simulations.

Future work will also concentrate on applying this model to dysfunctional vein
valves. In particular, we can systematically increase the spring lengths in the LSM of
the vein wall and simulate venous dilation. Alternatively, we can shorten or remove
springs from the LSM of the vein valve and elucidate the effects of valve shrinkage
or damage. In this manner, we can gain crucial insights into various forms of venous
dysfunction and help predict possible treatments for these disorders.

Appendix

In order to identify fluid and solid regions in the LB model, and locate the LB
boundary nodes, we must determine when a LB link crosses a LSM ‘tile’, which
is defined as the area between neighbouring LSM nodes, e.g., between nodes at
positions r(i, j), r(i + 1, j), r(i, j + 1) and r(i + 1, j + 1). The cylindrical vein wall is

1An average simulation takes roughly seven hours on a standard Linux machine with a 3GHz Xeon
processor.
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described, in a sense, by these LSM tiles and determining if a LB link crosses these
tiles can tell us which LB links straddle the fluid-solid boundary. Furthermore, it is
necessary to determine which LB links cross the LSM tiles which make up the valve
cusps in order to ensure that the fluid–structure interactions are accounted for in
these regions. A LSM tile is shown in Fig. 8, consisting of four corner points (A, B,
C, and D). We can spatially interpolate any point between these corner points using
the two variables s and t. Furthermore, the LB link is shown as a line in Fig. 8 and
a point on this line is mathematically described as L + u�L where L is the location
of a LB node, u is a variable between 0 and 1, and �L is a vector to a neighbouring
node. If the LB link crosses the LSM tile, then the following equation is satisfied

L + u�L = (1 − s)(1 − t)C + s(1 − t)A + t(1 − s)D + stB (13)

for values of u, s and t between 0 and 1. As an example, we consider LB links of the
form, �L = [100]. We obtain the following equations

u = (1 − s)(1 − t)Cx + s(1 − t)Ax + t(1 − s)Dx + stBx − Lx (14)

s = Ly − (1 − t)Cy − tDy

(1 − t)(Ay − Cy) + t(By − Dy)
= Lz − (1 − t)Cz − tDz

(1 − t)(Az − Cz) + t(Bz − Dz)
(15)

0 = (Ly − Cy)(Az − Cz) − (Lz − Cz)(Ay − Cy)

+ t
[
(Cy − Dy)(Az − Cz) − (Cz − Dz)(Ay − Cy) + (Bz − Dz − Az + Cz)

(16)×(Ly − Cy) − (By − Dy − Ay + Cy)(Lz − Cz)
]

+ t2
[
(cy − Dy)(Bz − Dz − Az + Cz) − (Cz − Dz)(By − Dy − Ay + Cy)

]

We obtain two values of t from the quadratic (16). If either of the values are between
0 and 1 then we can substitute this value into (15) to obtain a value of s. If this yields

Fig. 8 Intersection of a line
(LB link) with a ‘tile’ (area
between neighbouring nodes
of a LSM lattice)
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a value of s between 0 and 1, we can substitute this value, and the t value, into (14)
to obtain a value for u. If the value for u is also between 0 and 1, then the LB link
crosses the LSM tile.
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